Establish the Three Theorems:
Brain-Like DNs Logically Reason and Optimally Generalize

Juyang Weng

Abstract—In artificial intelligence (AI) there are two major
schools, symbolic and connectionist. Weng 2011 [6] proposed
three major properties of the Developmental Network (DN)
which bridged the two schools: (1) From any complex FA
that demonstrates human knowledge through its sequence of
the symbolic inputs-outputs, the DP incrementally develops a
corresponding DN through the image codes of the symbolic
inputs-outputs of the FA. The DN learning from the FA is
incremental, immediate and error-free. (2) After learning the
FA, if the DN freezes its learning but runs, it generalizes
optimally for infinitely many image inputs and actions based
on the embedded inner-product distance, state equivalence, and
the principle of maximum likelihood. (3) After learning the FA,
if the DN continues to learn and run, it “thinks” optimally in
the sense of maximum likelihood based on its past experience.
This paper presents the three major theorems and their proofs.

I. INTRODUCTION

The major differences between a symbolic network (SN)
and a Developmental Network (DN) are illustrated in Fig. 1.

Marvin Minsky 1991 [4] and others argued that symbolic
models are logical and clean, while connectionist (he meant
emergent) models are analogical and scruffy. The logic capa-
bilities of emergent networks are still unclear, categorically.

Computationally, feed-forward connections serve to feed
sensory features [5] to motor area for generating behaviors. It
has been reported that feed-backward connections can serve
as class supervision [2], attention [1], and storage of time
information.

In the following, we analyze how the DN theory bridges
the symbolic school and the connectionist school.

II. DP ALGORITHM

The small DP algorithm self-programs logic into a huge
DN directly from physics. A DN has its area Y as a “bridge”
for its two banks, X and Z. If Y is meant for modeling
the entire brain, X consists of all receptors and Z consists
of all muscles neurons. Y potentially can also model any
Brodmann area in the brain. The most basic function of an

Juyang Weng is a professor at the Department of Computer Sci-
ence and Engineering, Cognitive Science Program, and Neuroscience Pro-
gram, Michigan State University, East Lansing, MI, 48824 USA (email:
weng@cse.msu.edu) and a visiting professor at the School of Computer
Science and Engineering at Fudan University, Shanghai, China.

The author would like to thank Hao Ye at Fudan University who carefully
proof-read the proofs presented here and raised two gaps that I have filled
since then. The author would also like to thank Z. Ji, M. Luciw, K. Miyan
and other members of the Embodied Intelligence Laboratory at Michigan
State University; Q. Zhang, Yuekai Wang, Xiaofeng Wu and other members
of the Embodied Intelligence Laboratory at Fudan University whose work
have provided experimental supports for the theory presented here.

Given the body
and a task N
c
Sensory| Image | 5 52 Symbols
) image 2 o g | Handcrafted
Physical ® g Z FA (or SN)
environment Moo image |2 g g Symbols
image £5¢
< (@)
Given the body
without task =~
[DP |
Sensory| Image

Emergent DN

. >
Physical Image X Y 7
environment Motor | mage
(b

image

)

Image

Fig. 1. Comparison between a symbolic FA (or SN) and an emer-
gent DN. (a) Given a task, an FA (or SN), symbolic, handcrafted by
the human programmer using a static symbol set. (b) A DN, which
incrementally learns the FA but takes sensory images directly and
produces motor images directly. Without given any task, a human
designs the general-purpose Developmental Program (DP) which
resides in the DN as a functional equivalent of the “genome” that
regulates the development — fully autonomous inside the DN.

area Y seems to be prediction — predict the signals in its
two vast banks X and Y through space and time.
Algorithm 1 (DP): Input areas: X and Z. Output areas: X
and Z. The dimension and representation of X and Y areas
are hand designed based on the sensors and effectors of the
species (or from evolution in biology). Y is the skull-closed
(inside the brain), not directly accessible by the outside.

1) Attime t = 0, for each area A in {X,Y, Z}, initialize
its adaptive part N = (V, @) and the response vector
r, where V' contains all the synaptic weight vectors
and G stores all the neuronal ages. For example, use
the generative DN method discussed below.
2) Attime t =1,2,..., for each A in {X,Y, Z} repeat:
a) Every area A performs mitosis-equivalent if it is
needed, using its bottom-up and top-down inputs
b and t, respectively.
b) Every area A computes its area function f, de-
scribed below,

(r',N') = f(b,t,N)

where 1’ is its response vector.
¢) For every area A in {X,Y, Z}, A replaces: N «
N and r < 1’.

In the remaining discussion, we assume that Y models
the entire brain. If X is a sensory area, x € X is always
supervised. The z € Z is supervised only when the teacher
chooses to. Otherwise, z gives (predicts) motor output.

The area function f which is based on the theory of
Lobe Component Analysis (LCA) [7], a model for self-
organization by a neural area. Each area A has a weight
vector v = (v, v¢). Its pre-response vector is:

7 b Vi t
[voll (bl f[vell [It]]

r(vp, b, v, t) v-p (D)
which measures the degree of match between the direc-
tions of v = (vy/||vsll,v¢/|[vel]) and p = (b,t) =
(b/[[bl, £/Il¢])-

To simulate lateral inhibitions (winner-take-all) within
each area A, top k winners fire. Considering k£ = 1, the
winner neuron j is identified by:

j=arg 121;3%(07‘(%2-, b, v, t). 2)

The area dynamically scale top-k winners so that the top-
k respond with values in (0,1]. For k = 1, only the single
winner fires with response value y; = 1 and all other neurons
in A do not fire. The response value y; approximates the
probability for p to fall into the Voronoi region of its v;
where the “nearness” is 7 (v, b, vy, t).

All the connections in a DN are learned incrementally
based on Hebbian learning — cofiring of the pre-synaptic ac-
tivity p and the post-synaptic activity y of the firing neuron.
If the pre-synaptic end and the post-synaptic end fire together,
the synaptic vector of the neuron has a synapse gain yp.
Other non-firing neurons do not modify their memory. When
a neuron j fires, its firing age is incremented n; <— n; + 1
and then its synapse vector is updated by a Hebbian-like
mechanism:

V< wy (TLj)Vj + w2(nj)yjp 3)

where wo(n;) is the learning rate depending on the firing age
(counts) n; of the neuron j and w;(n;) is the retention rate
with wi(n;) + wa(n;) = 1. The simplest version of wa(n;)
is wo(n;) = 1/n; which corresponds to:

1

i i—1 i—1 . .
V§) = 5 V§) +;1p(tz),7,: 1,2,...

;T (4)

where ¢; is the firing time of the post-synaptic neuron j. The
above is the recursive way of computing the batch average:

) _ 1 XA
v§ —;ij(ti) 5)

i=1

The initial condition is as follows. The smallest n; in Eq. (3)
is 1 since n; = 0 after initialization. When n; = 1, v; on
the right side is used for pre-response competition but does
not affect v; on the left side since wi(1) =1—1=0.

A component in the gain vector y;p is zero if the corre-
sponding component in p is zero.

III. FORMULATIONS

As we need a slight deviation from the standard definition
of FA, let us look at the standard definition first.

Definition 1 (Language acceptor FA): A finite automaton
(FA) M is a 5-tuple M = (Q,X%,qo,0,A), where @ is a
finite set of states, consists of symbols. X is a finite alphabet
of input symbols. gy € @ is the initial state. A C @ is the
set of accepting states. § : @) X X — (is the state transition
function.

This classical definition is for a language acceptor, which
accepts all strings = from the alphabet X that belongs to a
language L. It has been proved [3] that given any regular
language L from alphabet X, there is an FA that accepts
L, meaning that it accepts exactly all x € L but no other
string not in L. Conversely, given any FA taking alphabet
Y., the language L that the FA accepts is a regular language.
However, a language FA, just like any other automata, only
deals syntax not semantics. The semantics is primary for
understanding a language and the syntax is secondary.

We need to extend the definition of FA for agents that run
at discrete times, as follows:

Definition 2 (Agent FA): A finite automaton (FA) M for a
finite symbolic world is a 4-tuple M = (Q, %, qo, 6), where
Y and ¢ are the same as above and () is a finite set of
states, where each state ¢ € () is a symbol, corresponding
to a set of concepts. The agent runs through discrete times
t =1,2,..., starting from state ¢(t) = qo at t = 0. At each
time ¢ — 1, it reads input (¢t — 1) € ¥ and transits from state
q(t—1) to q(t) = §(q(t — 1),0(t — 1)), and outputs ¢(¢) at

. . o(t—1)
time ¢, illustrated as q(t — 1) —" q(t).

The inputs to an FA are symbolic. The input space is
denoted as ¥ = {01,039, ...,07}, which can be a discretized
version of a continuous space of input. In sentence recog-
nition, the FA reads one word at a time. The number [is
equal to the number of all possible words — the size of the
vocabulary. For a computer game agent, [is equal to the total
number of different percepts.

The outputs (actions) from a language acceptor FA are
also symbolic, A = {aj,as,...,a,} which can also be a
discretized version of a continuous space of output. For a
sentence detector represented by an FA, when the FA reaches
the last state, its action reports that the sentence has been
detected.

An agent FA is an extension from the corresponding
language FA, in the sense that it outputs the state, not only
the acceptance property of the state. The meanings of each
state, which are handcrafted by the human programmer but
are not part of the formal FA definition, are only in the mind
of the human programmer. Such meanings can indicate that
a state is an accepting state or not, as a special case of
many other meanings associated with the state. However,
such concepts are only in the mind of the human system
designer, not something that the FA is “aware” of. This
is a fundamental limitation of all symbolic models. The
Developmental Network (DN) described below do not use
any symbols, but instead (image) vectors from the real-world

other “well”
other
i oung” S~ “cat” “ooks”
~(z youg@cat 2 oos
e e
wh KUen other .-
S other (a)
Backgrounds m— | o
— /‘::"‘\\
“ ” 2
young 20
g . <o
= kitten S@\ D Outout
o utpu
§) “cat” ;® % U
= ~(6) 5) | T
| “well”] Teach or
5 5205 D | practi
e |, " = practice
< stares ‘/,
" " N9
|“looks \/
o S
backgrounds m<_| = 1Y
X Skull-closed network/ (b)
Fig. 2. Conceptual correspondence between an Finite Automaton

(FA) with the corresponding DN. (a) An FA, handcrafted and static.
(b) A corresponding DN that simulates the FA. It was taught to
produce the same input-out relations as the FA in (a). A symbol
(e.g., z2) in (a) corresponds to an image (e.g., (21,22, ..., 24) =
(0,1,0,0)) in (b).

sensors and real-world effectors. As illustrated in Fig. 2, a
DN is grounded in the physical environment but an FA is
not.

Fig. 3 gives an example of the agent FA. Each state is
associated with a number of cognitive states and actions,
shown as text in the lower part of Fig. 3, reporting action
for cognition plus a motor action. The example in Fig. 3
shows that an agent FA can be very general, simulating an
animal in a micro, symbolic world. The meanings of each
state in the lower part of Fig. 3 are handcrafted by, and only
in the mind of, the human designer. These meanings are not
a part of the FA definition and are not accessible by the
machine that simulates the FA.

Without loss of generality, we can consider that an agent
FA simply outputs its current state at any time, since the
state is uniquely linked to a pair of the cognition set and the
action set, at least in the mind of human designer.

A. Completeness of FA

It has been proved [3] that an FA with n states partitions
all the strings in X into n sets. Each set is called equivalence
class, consisting of strings that are indistinguishable by the
FA. Since these strings are indistinguishable, any string =
in the same set can be used to denote the equivalent class,
denoted as [z]. Let A denote an empty string. Consider
Fig. 3. The FA partitions all possible strings into 6 equivalent
classes. [A] = [“calculus”] as the agent does not know
about “calculus” although it is in X. All the strings in the
equivalent class [A] end in z;. All strings in the equivalent
class [“kitten” “looks”] end in zy4, etc.

The completeness of agent FA can be described as fol-

other “young” “well”
{7 other Q"young" “Kitten”
d 2 3
& \-{\"/' toz,
S “stares” ,/
..... other .-
e ~“other
" " P gy 1y
meal time full
@ Zg toz;
“hungry”
“hungry”

z,:report “start”
z5: report “kitten-equiv.”
Zs:report “meal”

z,:report“young”
z,:report “kitten-looks equiv.”
zs:report “hungry-equiv.” and eat

Fig. 3. An FA simulates an animal. Each circle indicates a context
state. The system starts from state z;. Supposing the system is at
state q and receives a symbol o and the next state should be ¢’, the
diagram has an arrow denoted as ¢ -2+ ¢’. A label “other” means
any symbol other than those marked from the out-going state. Each
state corresponds to a set of actions, indicated below the FA. The
“other” transitions from the lower part are omitted for brevity.

lows. Given a vocabulary X representing the elements of a
symbolic world, a natural language L is defined in terms
of ¥ where the meanings of all sentences in L are defined
by the set of equivalent classes, denoted by). When the
number of states is sufficiently large, a properly designed
FA can sufficiently characterize the cognition and behaviors
of an agent living in the symbolic world of vocabulary .

B. DN Simulates FA

Next, let us consider how a DN learns to simulate any FA.
First we consider the mapping from symbolic sets ¥ and @),
to vector spaces X and Z.

Definition 3 (Symbol-to-vector mapping): A symbol-to-
vector mapping m is a one-to-one mapping m : X — X.
We say that 0 € ¥ and x € X are equivalent, denoted as
o =x, if x =m(o).

A binary vector of dimension d is such that all its
components are either 0 or 1. It simulates that each neuron,
among d neurons, either fires with a spike (s(t) = 1) or
without (s(¢) = 0) at each sampled discrete time ¢ = ¢;.
From discrete spikes s(t) € {0, 1}, the real valued firing rate
at time ¢ can be estimated by v(t) = >, 5, o s(t:)/T,
where T is the temporal size for averaging. A biological
neuron can fire at a maximum rate around v = 120 spikes per
second, producible only under a laboratory environment. If
the brain is sampled at frequency f = 1000Hz, we consider
the unit time length to be 1/f = 1/1000 second. The timing
of each spike is precise up to 1/f second at the sampling
rate f, not just an estimated firing rate v, which depends on
the temporal size T (e.g., T = 0.5s). Therefore, a firing-
rate neuronal model is less temporally precise than a spiking
neuronal model. The latter, which DN adopts, is more precise
for fast sensorimotor changes.

Let Bg denote the d-dimensional vector space which
contains all the binary vectors each of which has at most
p components to be 1. Let Eg C Bg contains all the binary
vectors each of which has exactly p components to be 1.

Definition 4 (Binary-p mapping): Let Q = {¢; | i =

1,2,...,n}. A symbol-to-vector mapping m : Q — Bg is a
binary-p mapping if m is one to one: That is, if z; = m(q;)
then ¢; # q; implies z; # z;.
The larger the p the more symbols the space of Z can repre-
sent. However, through a binary-p mapping, each symbol g;
always has a unique vector z € Z. Note that different ¢’s are
mapped to not only different z’s but also different directions
of z’s as the input p of DN is a unit p.

Suppose that a DN is taught by supervising binary-p codes
at its exposed areas, X and Z. When the motor area 7 is
free, the DN performs, but the output from Z is not always
exact due to (a) the DN outputs in real numbers instead of
discrete symbols and (b) there are errors in any computer
or biological system. The following binary conditioning can
prevent error accumulation, which the brain seems to use
through spikes.

Definition 5 (Binary conditioning): For any vector from
z = (21, 22, ..., 24), the binary conditioning of z forces every
real-valued component z; to be 1 if the pre-response of z;
is larger than the machine zero — a small positive bound
estimating computer round-off noise.

The output layer Z that uses binary-p mapping must use the
binary conditioning, instead of top-k competition with a fixed
k, as the number of firing neurons ranges from 1 to p.

C. DP for Generative DN (GDN)

Algorithm 2 (DP for GDN): A GDN is a DN that gives
the following specific way of initialization. It starts from pre-
specified dimensions for the X and Z areas, respectively. X
represents receptors and is totally determined by the current
input. But it incrementally generates neurons in Y from an
empty Y. Each neuron in Z is initialized by a synaptic vector
v of dimension 0, age 0. Suppose V = {v; = (x;,2;) | x €
X,z € Z,i = 1,2,...,c} is the current synaptic vectors
in Y. Whenever the network takes an input p = (x,z),
compute the pre-resppnses in Y. If the top-1 winner in Y has
a pre-response lower than 2 (i.e., p € V), simulate mitosis-
equivalent by doing the following:

1) Increment the number of neurons, ¢ + ¢+ 1.

2) Add a new Y neuron. Set the weight vector v = p,
its age to be 0, and its pre-response to be 2 since it is
the perfect match based on Eq. (1). There is no need
to recompute the pre-responses.

The response value of each Z neuron is determined by
the starting state (e.g., background class). As soon as the
first Y neuron is generated, every Z neuron will add the first
dimension in its synaptic vector in the following DN update.
This way, the dimension of its weight vector continuously
increases together with the number ¢ of Y neurons.

Lemma 1 (Properties of a GDN): Suppose a GDN simu-
lates any given FA using top-1 competition for Y, binary-p
mapping, and binary conditioning for Z, and update at least
twice in each unit time. Each input x(¢—1) is retained during
all DN updates in (¢ — 1,¢]. Such a GDN has the following
properties for t = 1,2, ...:

1) The winner Y neuron matches perfectly with input
p(t—1)= (¢t —1),0(t — 1)) with v = p and fires,
illustrated in Fig. 4(a) as a single transition edge (red).

2) All the synaptic vectors in Y are unit and they never
change once initialized, for all times up to ¢. They only
advance their firing ages. The number of Y neurons ¢
is exactly the number of learned state transitions up to
time .

3) Suppose that the weight vector v of each Z neuron is
v = (p1,p2, -, Pe(y)), and Z area uses the learning
rate straight recursive average ws(n;) = 1/n;. Then
the weight p; from the j-th Y neuron to each Z neuron
is

p; = Prob(j-th Y neuron fires | the Z neuron fires)
= fi/n, (6)

j =1,2,...,¢(Y), where f; is the number of times
the j-th Y neuron has fired conditioned on that the Z
neuron fires, and n is the total number of times the Z
neuron has fired.

4) Suppose that the FA makes transition g(t — 1) o))
q(t), as illustrated in Fig. 4(a). After the 2nd DN
update, Z outputs z(t) = ¢(t), as long as Z of DN is
supervised for the 2nd DN update when the transition
is received by Z the first time. Z then retains the values
automatically till the end of the first DN update after
t.

Proof: The proof below is a constructive proof, instead
of an existence one. To facilitate understanding, the main
ideas are illustrated in Fig. 4. Let the X of the DN take the
equivalent inputs from ¥ using a symbol-to-vector mapping.
Let Z be supervised as the equivalent states in (), using a
binary-p mapping. The number of firing neurons Z depends
on the binary-p mapping. The DN lives in the simulated sen-
sorimotor world X x Z determined by the sensory symbol-
to-vector mapping: m, : X — X and the binary-p symbol-
to-vector mapping m, : QQ — Z.

We prove it using induction on integer t.

Basis: When ¢ = 0, set the output z(0) = ¢(0) = qo
for the DN. Y has no neuron. Z neurons have no synaptic
weights. All the neuronal ages are zeros. The properties 1,
2, 3 and 4 are trivially true for ¢ = 0.

Hypothesis: We hypothesize that the above four properties
are true up to integer time ¢. In the following, we prove that
the above properties are true for ¢ + 1.

Induction step: During ¢ to ¢ 4+ 1, suppose that the FA

makes transition ¢(t) AN q(t + 1). The DN must do the

equivalent, as shown below.

At the next DN update, there are two cases for Y: Case 1:
the transition is observed by the DN as the first time. Case
2: the DN has observed the transition.

Case 1: new Y input. First consider Y. As the input
p(t) = (x(¢)),z(t)) to Y is the first time, p € V. Y
initializes a new neuron whose weight vector is initialized
as v; = p(t) and age n; = 0. The number of ¥ neurons
c is incremented by 1 as this is a newly observed state

z(t)=q(t)

z (2(t-1)= q(t-1) 2 (2(t-0.5) =q(t-1) (

N
v (D= a2, o2) (y(t0.5)= @(e), oft-1)
\

N
X (x(t-1)= o(t-1)

Time: t-1 t-0.5 t (b)

(yw=@n, o)

(X(t-0.5) =0 (t-1) (X(®)= o()

Fig. 4. Model the brain mapping, DN, and SN. In general, the brain performs external mapping b(t) : X (¢t — 1) x Z(t — 1) — X (t) x Z(t) on the
fly. (a) An NS samples the vector space Z using symbolic set @ and X using ¥, to compute symbolic mapping Q(t — 1) x (¢t — 1) — Q(¢). This
example has four states Q = {q1, g2, g3, g4 }, with two input symbols ¥ = {o1, o2 }. Two conditions (g, o) (e.g., ¢ = g2 and o = o2) identify the active
outgoing arrow (e.g., red). gz = d(g2,02) is the target state pointed to by the (red) arrow. (b) The grounded DN generates the internal brain area Y as
a bridge, its bi-directional connections with its two banks X and Z, the inner-product distance, and adaptation, to realize the external brain mapping. It
performs at least two network updates during each unit time. To show how the DN learns a SN, the colors between (a) and (b) match. The sign = means
“image code for”. In (b), the two red paths from ¢(t — 1) and o (¢ — 1) show the condition (z(t —1),x(t — 1)) = (q(t — 1),0(¢t — 1)). At t — 0.5, they
link to y(¢ — 0.5) as internal representation, corresponding to the identification of the outgoing arrow (red) in (a) but a DN does not have any internal
representation. At time ¢, z(t) = q(t) = 6(q(t — 1), o(t — 1)) predicts the action. But the DN uses internal y (¢ — 0.5) to predict both state z(¢) and input
x(t). The same color between two neighboring horizontal boxes in (b) shows the retention of (g, o) image in (a) within each unit time, but the retention
should be replaced by temporal sampling in general. The black arrows in (b) are for predicting X. Each arrow link in (b) represents many connections.
When it is shown by a non-black color, the color indicates the corresponding transition in (a). Each arrow link represents excitatory connections. Each bar

link is inhibitory, representing top-k competition among Y neurons.

transition. From the hypothesis, all previous Y neurons in
V' are still their originally initialized unit vectors. Thus, the
newly initialized v; is the only Y neuron that matches p(t)
exactly. With k£ = 1, this new Y neuron is the unique winner
and it fires with y; = 1. Its Hebbian learning gives age
advance n; <~ n; +1=0+1=1 and Eq.(3) leads to

vi ¢ wi(n)p+wa(n;)-1-p

= (wi(n;) +wa(ny))p=1-p=p. (1)

As DN updates at least twice in the unit time, Y area is
updated again for the second DN update. But X and Z retain
their values within each unit time, per simulation rule. Thus,
the Y winner is still the same new neuron and its vector still
does not change as the above expression is still true. Thus,
properties 1 and 2 are true for the first two DN updates within
(t,t+1].

Next consider Z. Z retains its values in the first DN
update, per hypothesis. For the 2nd DN update, the response
of Z is regarded the DN’s Z output for this unit time, which
uses the above Y response as illustrated in Fig. 4. In Case
1, Z must be supervised for this second DN update within
the unit time. According to the binary-p mapping from the
supervised ¢(t + 1), Eq. (3) is performed for up to p Z
neurons:

\2 wl(nj)v'j + UIQ(’nj) -1- p (8)

Note that Z has only bottom input p = y and the normalized
vector p is binary. That is, only one component (the new one)

in p is 1 and all other components are zeros. All Z neurons
do not link with this new Y neuron before the 2nd DN
update. Consider two subcases, subcase (1.a) the Z neuron
should fire at the end of this unit time, and subcase (1.b) the
Z neuron should not fire.

Subcase (1.a): the Z neuron should fire. All Z neurons that
should fire, up to p of them, are supervised to fire for the 2nd
DN update by the Z area function. Suppose that a supervised-
to-fire Z neuron has a synapse vector v .= (p1,p2, ..., Dc)
with the new p. just initialized to be 0 since the new Y
neuron j = ¢ now fires. From the hypothesis, p;, = fi/n,
i =1,2,...,c — 1. But, according to the Z initialization in
GDN, p. = 0 for the new dimension initialization. Then
from 0 = p. = f./n, we have f. = 0 which is correct for
fe- From Eq. (3), the c-th component of v is

n fe 1 _fe+1 1 9
n+l n n+1 Con+l o+l ©)
which is the correct count for the new v., and the other
components of v are

v — .ﬁ_’_ L _fi+0 _ fi’

n+l n n+1 n+1 n+1
for all © = 1,2, ...,c — 1, which is also the correct count for
other components of the v synaptic vector. Every firing Z
neuron advances its age by 1 and correctly counts the firing
of the new c-th Y neuron. As Y response does not change for
more DN updates within (¢,¢ + 1] and the firing Y neuron
meets a positive 1/n; weight to the firing Z neuron with

1-1

Ve

1-0

(10)

age nj, the Z area does not need to be supervised after the
second DN update within (¢,¢ + 1].

Subcase (1.b): the Z neuron should not fire. All Z neurons
that should not fire must be supervised to be zero (not firing).
All such Z neurons cannot be linked with the new Y neuron
before, as it was not present. The new added weight for this
new Y neuron is initialized to O in the Z area function.
All these non-firing neurons keep their counts and ages
unchanged. As Y response does not change for more DN
updates within (¢,¢ + 1], the Z area does not need to be
supervised after the second DN update within (¢, ¢+ 1], since
the only firing Y neuron meets a 0 weight to the Z neuron.

The binary conditioning for Z makes sure that all the Z
neurons that have a positive pre-response to fire fully. That
is, the properties 3 and 4 are true from the first two ND
updates within (¢, ¢ + 1].

Case 2: old Y input. First consider Y. To Y, p(t) =
(x(t),z(t)) has been an input before. From the hypothesis,
the winner Y neuron j exactly matches p(¢), with v; = p(¢).
Eq. (7) still holds using the inductive hypothesis, as the
winner Y neuron fires only for a single p vector. Thus,
properties 1) and 2) are true from the first ND update within
(t,t + 1].

Next consider Z. Z retains its previous vector values in
the first DN update, per hypothesis. In the 2nd DN update,
the transition is not new, we show that Z does not need to
be supervised during the unit time (¢,¢+ 1] to fire perfectly.
From Eq. (1), the Z pre-response is computed by

Vi b v y

r(vp,b) = 2. 2 -
voll (1Bl lIvell [l¥]l

where y is binary with only a single positive component and
t is absent as Z does not have a top-down input. Suppose that
Y neuron j fired in the first DN update. From the hypothesis,
every Z neuron has a synaptic vector v = (p1,p2, ..., Dc),
where p; = f;/n counting up to time ¢, where f; is the
observed frequency (occurrences) of Y neuron j firing, i =
1,2,...,c, and n is the total number of times the Z neuron
has fired. Consider two sub-cases: (2.a) the Z neuron should
fire according to the transition, and (2.b) the Z neuron should
not.

For sub-case (2.a) where the Z neuron should fire, we have

(11

L Yz Dj
r(ve,b) = r(vy)=v.y=—"%-1="
Il vl
N VAR £
vl nllvl]

because the Z neuron has been supervised at least the first
time for this transition and thus f; > 1. We conclude that the
Z neuron guarantees to fire at 1 after its binary conditioning.
From Eq. (3), the j-th component of v is:

. & + 1 .11 = fj +1
n+l n n+1 n+1"
which is the correct count for the j-th component, and the
other components of v are:

n fi 1
. % o —_— .
vi n+1 n + n+1

v (12)

O_fi+0_ fi
T n+1l n+1

, (13)

for all ¢ # j, which is also the correct count for all
other components in v. The Z neuron does not need to be
supervised after the second DN update within (¢,¢ + 1] but
still keeps firing. This is what we want to prove for property
3 for every firing Z neuron.

Next consider sub-case (2.b) where the Z neuron should
not fire. Similarly we have r(vy,b) = r(v,y) =
fij/(n||v]]) = 0, from the hypothesis that this Z neuron
fires correctly up to time ¢ and thus we must have f; = 0.
Thus, they do not fire, change their weights, or advance their
ages. The Z neuron does not need to be supervised after the
second DN update within (¢,¢+ 1] but keeps not firing. This
is exactly what we want to prove for property 3 for every
non-firing Z neuron.

Combining the sub-cases (2.a) and (2.b), all the Z neurons
act perfectly and the properties 3 and 4 are true for the first
two DN updates. We have proved for Case 2, old Y input.

Therefore, the properties 1, 2, 3, 4 are true for first two
DN updates. If DN has time to continue to update before
time ¢ 4 1, we see that we have always Case 2 for Y and Z
within the unit time and Y and Z retain their responses since
the input x retains its vector value. Thus, the properties 1,
2, 3, 4 are true for all DN updates within (¢,¢ + 1].

According to the principle of induction, we have proved
that the properties 1, 2, 3 and 4 are all true for all ¢. []

D. Theorem 1: DN simulates FA incrementally, immediately,
and error-free

Using the above lemma, we are ready to prove:

Theorem 1 (Simulate any FA as scaffolding): The
general-purpose DP incrementally grows a GDN to
simulate any given FA M = (Q, %, o, 0, A), error-free and
on the fly, if the Z area of the DN is supervised when
the DN observes each new state transition from the FA.
The learning for each state transition completes within two
network updates. There is no need for a second supervision
for the same state transition to reach error-free future
performance. The number of Y neurons in the DN is the
number of state transitions in the FA.

Proof: Run the given FA and the GDN at discrete time
t, t =1,2,.... Using the lemma above, each state transition
q - ¢ is observed by the DN via the mappings m, and
m,. Update the DN at least twice in each unit time. In DN,
if p = (z,x) is a new vector to Y, Y adds a new neuron.
Further, from the proof of the above lemma, we can see that
as soon as each transition in FA has been taught, the DN
has only Case 2 for the same transition in the future, which
means that no need for second supervision for any transition.
Also from the proof of the lemma, the number of Y neurons
corresponds to the number of state transitions in the FA. H

If the training data set is finite and consistent (the same
(¢,0) must go to the unique next state ¢’), re-substitution
test (using the training set) corresponds to simulating an
FA using pattern codes. Theorem 1 states that for the DGN
any resubstitution test for consistent training data is always
immediate and error-free. Conventionally, this will mean that
the system over-fits data as its generalization will be poor.

However, the DGN does not over-fit data as the following
Theorem 2 states, since the nature of its parameters is optimal
and the size of the parameter set is dynamic. In other words,
it is optimal for disjoint tests.

Definition 6 (Grounded DN): Suppose that the symbol-
to-vector mapping for the DN is consistent with the real
sensor of the a real-world agent (robot or animal), namely,
each symbol o for FA is mapped to an sub-image x from the
real sensor, excluding the parts of the irrelevant background
in the scene. Then the DN that has been trained for the FA
is called grounded.

For a grounded DN, the SN is a human knowledge
abstraction of the real world. After training, a grounded DN
can run in the real physical world, at least in principle.
However, as we discussed above, the complexity of symbolic
representation for ¥ and () is exponential in the number of
concepts. Therefore, it is intractable for any SN to sufficiently
sample the real world since the number of symbols required
is too many for a realistic problem. The fact that there are
enough symbols to model the real world causes the symbolic
system to be brittle. All the probability variants of FA can
only adjust the boundaries between any two nearby symbols,
but the added probability cannot resolve the fundamental
problem of the lack of sufficient number of symbols.

E. Theorem 2: DN generalizes optimally while frozen

The next theorem states how the frozen GDN generalizes
for infinitely many sensory inputs.

Theorem 2 (DN generalization while frozen): Suppose
that after having experienced all the transitions of the FA,
from time ¢t = £y the GDN turns into a DN that

1) freezes: It does not generate new Y neurons and does
not update its adaptive part.

2) generalizes: It continues to generate responses by tak-
ing sensory inputs not restricted to the finite ones for
the FA.

Then the DN generates the Maximum Likelihood (ML)
action z,,(t), recursively, for all integer ¢ > {¢:

n(t) =argmax h (Bt~ Dlza(t),z(t = 1)), (14)
where the probability density h(p(t — 1)|z;(¢),z(t — 1)) is
the probability density of the new last observation p(t — 1),
with the parameter vector z;, conditioned on the last executed
action z(t — 1), based on its experience gained from learning
the FA.

Proof: Reuse the proof of the lemma. Case 1 does not
apply since the DN does not generate new neurons. Only
Case 2 applies.

First consider Y. Define ¢ Voronoi regions in X x Z
based on now frozen V' = (vi,Va,...,v.), where each R;
consisting of p vectors that are closer to v; than to other v;:

R;={p|j=arg 112?2(0-% ‘phi=12..c
Given observation p(t - 1), V has two sets of parameters,

the X synaptic vectors and the Z synaptic vectors. They are
frozen.

According to the dependence of parameters in DN, first
consider consider ¢ events for area Y: p(t — 1) falls into
R;, 1 = 1,2, ..., c partitioned by the ¢ Y vectors in V. The
conditional probability density g(p(t—1)|v;,z(t—1)) is zero
if p(t — 1) falls out of the Voronoi region of v;:

gt —1)|vi,z(t — 1)) =
{ gi(p(t —1)|vi,z(t—1)) ifpt—1)€R; (15)
0 otherwise

where ¢;(p(t — 1)|v4,2(¢t — 1)) is the probability density
within R;. Note that the distribution of ¢;(p(t — 1)|v;,z(t —
1)) within R; is irrelevant as long as it integrates to 1.

Note that p(t —1) = (x(t — 1),z(t — 1)). Given p(t — 1),
the ML estimator for the binary vector y; € E{ needs to
maximize g(p(t — 1)|v;,z(t — 1)), which is equivalent to
finding

j=arg 1rg;aéxcg(p(ﬁ—l)|vi, z(t—1)) = arg nax v;-p(t—1),

(16)
since finding the ML estimator j for Eq. (15) is equivalent
to finding the Voronoi region to which p(¢ — 1) belongs to.
This is exactly what the Y area does, supposing k£ = 1 for
top-k competition.

Next, consider Z. The set of all possible binary-1 Y
vectors and the set of producible binary-p Z vectors have a
one-to-one correspondence: y; corresponds to z,, if and only
if the single firing neuron in y; has non-zero connections
to all the firing neurons in the binary-p z, but not to
the non-firing neurons in z,. Namely, given the winner Y
neuron j, the corresponding z € Z vector is deterministic.
Furthermore, for each Y neuron, there is only unique z
because of the definition of FA. Based on the definition of
probability density, we have:

9Bt = 1)|v;, z(t = 1)) = h(p(t — 1)[zn(t),2(t — 1))

for every v; corresponding to z,(t). Thus, when the DN
generates y(t — 0.5) in (16) for ML estimate, its Z area
generates ML estimate z,,(¢) that maximizes (14). [|

F. Theorem 3: DN thinks optimally

There seems no more proper terms to describe the nature
of the DN operation other than “think.” The thinking process
by the current basic version of DN seems similar to, but not
exactly the same as, that of the brain. At least, the richness of
the mechanisms in DN that has demonstrated experimentally
to be close to that of the brain.

Theorem 3 (DN generalization while updating): Suppose
that after having experienced all the transitions of the FA,
from time t = £y the GDN turns into a DN that

1) fixes its size: It does not generate new Y neurons

2) adapts: It updates its adaptive part N = (V, A).

3) generalizes: It continues to generate responses by tak-
ing sensory inputs not restricted to the finite ones for
the FA.

Then the DN “thinks” (i.e., learns and generalizes) recur-
sively and optimally: For all integer ¢ > {y, the DN re-
cursively generates the Maximum Likelihood (ML) response
y;(t —0.5) € Ef: with

j = arg max g(p(t = VVi(t —1),2(t -1)) A7)
where g(p(t—1)|v;(t—1),z(t—1)) is the probability density,
conditioned on v;(t — 1),z(t — 1). And the Z has the pre-
response vector z(t) = (r1,72,...,7¢(z)), Where r,, n =
1,2,...,¢(Z), is the conditional probability for the n-th Z
neuron to fire:

Tn = pPn;(t) =Prob(j-th Y neuron fires at time ¢ — 0.5

| n-th Z neuron fires at time t). (18)

The firing of each Z neuron has a freedom to choose
a binary conditioning method to map the above the pre-
response vector z € R%) to the corresponding binary vector
z € B9,

Proof: Again, reuse the proof of the lemma with the
synaptic vectors of Y to be V(¢ — 1) = (vq, va, ..., V.) now
adapting.

First consider Y. Eq (16) is still true as this is what
DN does but V' is now adapting. The probability density
in Eq. (15) is the currently estimated version based on past
experience but V' is now adapting. Then, when k = 1 for top-
k'Y area competition, the Y response vector y;(t—0.5) € Ef
with j determined by Eq. (16) gives Eq.(17). In other words,
the response vector from Y area is again the Maximum
Likelihood (ML) estimate from the incrementally estimated
probability density. The major difference between Eq.(16)
and Eq.(17) is that in the latter, the adaptive part of the DN
updates.

Next, consider Z. From the proof of the Lemma 1, the
synaptic weight between the j-th Y neuron and the n-th Z
neuron is

Pnj = Prob(j-th Y neuron fires in the last DN update
| n-th Z neuron fires in the next DN update). (19)

The total pre-response for the n-th neuron is
Tn = r(vmy) =V, y= PnjY; = pnj1 = Pnj,

since the j-th neuron is the only firing Y neuron at this time.
The above two expressions give Eq. (18). []

The last sentence in the theorem gives the freedom for
Z to choose a binary conditioning method but a binary
conditioning method is required in order to determine which
Z neurons fire and all other Z neurons do not. In the brain,
neural modulation (e.g., expected punishment, reward, or
novelty) discourages or encourages the recalled components
of z to fire.

The adaptive mode after learning the FA is autonomous
inside the DN. A major novelty of this theory of thinking is
that the structure inside the DN is fully emergent, regulated
by the DP (i.e., nature) and indirectly shaped (i.e., nurture)
by the external environment.

The neuronal resource of Y gradually re-distribute ac-
cording to the new observations in Y x X. It adds new
context-sensory experience and gradually weights down prior
experience. Over the entire life span, more often observed
experience and less often observed experience are propor-
tionally represented as the synaptic weights.

However, an adaptive DN does not simply repeat the
function of the FA it has learned. Its new thinking expe-
rience includes those that are not applicable to the FA. The
following cases are all allowed in principle:

(1) Thinking with a “closed eye”: A closed eye sets x = u
where u has 0.5 for all its components (all gray image).
The DN runs where Y responses mainly to z as x has little
“preference” in matching.

(2) Thinking with an “open eye”: In the sensory input x
is different from any prior input.

(3) Inconsistent experience: From the same (z,x) =
(g, 0), the next z’ = ¢’ may be different at different times. FA
does not allow any such inconsistency. However, the incon-
sistencies allow occasional mistakes, update of knowledge
structures, and possible discovery of new knowledge.

The neuronal resources of Y gradually re-distribute ac-
cording to the new context-motor experience in Y X Z. The
learning rate wy(n;) = 1/n; amounts to equally weighted
average for past experience by each neuron. Weng & Luciw
2009 [7] investigated amnesic average to give more weight
to recent experience.

In the developmental process of a DN, there is no need
for a rigid switch between FA and the real-world learning.

The binary conditioning is suited only when Z is super-
vised according to the FA to be simulated. As the “thinking”
of the DN is not necessarily correct, it is not desirable to use
the binary conditioning for Z neurons.

The thinking process by the current basic version of DN
seems similar to, but not exactly the same as, that of the
brain. At least, the richness of the mechanisms in DN is not
yet close to that of the brain. For example, the DN here does
not use neuromodulators so it does not prefer any signals
from receptors (e.g., sweet vs. bitter).

In conclusion, the above analysis and proofs have estab-
lished the three theorems.

REFERENCES

[1] R. Desimone and J. Duncan. Neural mechanisms of selective visual
attention. Annual Review of Neuroscience, 18:193-222, 1995.

[2] G. E. Hinton, S. Osindero, and Y-. W. Teh. A fast learning algorithm
for deep belief nets. Neural Computation, 18:1527-1554, 2006.

[3] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, Boston, MA,
2006.

[4] M. Minsky. Logical versus analogical or symbolic versus connectionist
or neat versus scruffy. Al Magazine, 12(2):34-51, 1991.

[5] B. A. Olshaushen and D. J. Field. Emergence of simple-cell receptive
field properties by learning a sparse code for natural images. Nature,
381:607-609, June 13, 1996.

[6] J. Weng. Three theorems: Brain-like networks logically reason and
optimally generalize. In Proc. Int’l Joint Conference on Neural
Networks, pages 2983-2990, San Jose, CA, July 31 - August 5, 2011.

[7]1 J. Weng and M. Luciw. Dually optimal neuronal layers: Lobe compo-
nent analysis. /IEEE Trans. Autonomous Mental Development, 1(1):68—
85, 2009.

