Symbolic Processing in Neural Networks

Jodo Pedro NetpHava T. Siegelmafinand J. Félix Costa
jpn@di.fc.ul.pt, iehava@ie.technion.acdhd fgc@math.ist.utl.pt
!Faculdade de Ciéncias, Dept. Informética, Bloco C5, Piso 1, 1700 ListmarueaL

2Faculty of Industrial Engineering and Management, TECHNION CITY, HAIFA 32 088aeL
3Instituto Superior Técnico, Dept. Matematica, Av. Rovisco Pais, 1049-001 ListmrrucaL

Abstract. In this paper we show that programming languages can be transhate
recurrent (analog, rational weighted) neural nets. Implementation ogfgonming
languages in neural nets turns to be not only theoretical exciting, swlssome
practical implications in the recent efforts to merge symbolic and subsymbolic
computation. To be of some use, it should be carried in a context of bounded
resources. Herein, we show how to use resource bounds to speed wpationmp

over neural nets, through suitable data type coding like in the usual programming
languages. We introduce data types and show how to code and keep them inside the
information flow of neural nets. Data types and control structures are panitditaes
programming language callegtTDEF. EachNETDEF program has a specific neural net

that computes it. These nets have a strong modular structure and a synchronization
mechanism allowing sequential or parallel execution of subnets, despite the massive
parallel feature of neural nets. Each instruction denotes apeandent neural net.
There are constructors for assignment, conditional and loop instructions. Btésde
language core, many other features are possible using the same method. There is also
aNETDEFcompiler, available at http://www.di.fc.ul.pt/~jpn/netdef/netdef.htm.

Keywords. Neural Networks, Neural Computation, Symbolic Processing,
NETDEFR

1. Introduction

Analog recurrent neural nets can be formulated as dynamic systems. We adapt to our case the
definition given in [Sontag 90], that corresponds to the corafegliscrete, complete, time-invariant
dynamic system. A dynamic system is a triple D = (Sg)lonsisting of: (a) a non-empty set S
called the state space of D, (b) a non-empty set U called the control-value or input-value space of D,
and (c) a total mag SxU - S called the dynamic map. We will consider S and U as being finite

dimensional vector spaces over the reals, or restrictions to them.

An analog neural net is considered a particular case of dynamic systemgidhefehe formg-,
beingt SxU - S an affine map, and: S— S a possibly discontinuous function. Linearityrofs
equivalent to the existence of linear maps As S and B: U- S such thatx,u) = o(Ax+Bu).
These systems are said to be autonomous whenever B is the null matrix, otherwése taég to
be non-autonomous or net systems with controls. If we assume that théseopgris/ariable with
constant value 1, then we recover, using appropriate matrices, the model in thgXfopm=

o(Ax+Bu+c), where c is known as the bias vector.

We will consider two cases for the function

(&) The McCulloch and Pitts neural net model,

0 ,x<0
= 1
aM=0 "o (1)
(b) The saturated sigmoid model,
M ,x<0
o) =k x0[o] 2)

H_ X>1

For notational purposes we write for the new value of the state, afitéraion) t+1,

X(t+1) = @ x(t), u(t)) ®3)

to denote a step of computation, or just

X'=@x u) 4)

With dynamical systems in general we have computation without programmabbdifythe extra

power these systems exhibit has to do with the decoupling between programming and computation.
Up to the power of Turing machines, computations are describable by progedrosrtespond to

the prescription by finite means of some rational parameters of the system. Beyorgl pbwer

we have computations that are not describable by finite means: computation without a.pirogram

this paper we want to shed some light on the programmabilityuofheets.

1.1. Computability

The use of analog recurrent neural networks for computability analysis is dHavddSiegelmann.
In [Siegelmann 93, 99] they were used to establish lower boundkeir computational power.
These systems satisfy the classical constraints of computation theory, namelgu(a} idiscrete
(binary) and finite, (b) output is discrete (binary) and finite, anjdh system is itself finite
(control is finite). Neurons may hold values within [0,1] with unboungliextision. To work with
such analog systems, binary input is encoded into a rational number between 0 and ftagtain

coding), and the rational output is decoded into an output binary sequence.

The input streamsgufor k=1..M, input bits into the system through time. Input streams aps ma

u:N -{0,1}, different from O only finitely many times (this is the clasdi constraint of input

finiteness). (Wk=1.m can also be seen as the set of control symbols, to adopt the flavour of Minsky's

description of such systems, that the reader may find in [Minsky 67]. In the absencerdftbent

systems are said to be autonomous and the dynamics is given by

N
X(t+1) =o(S ajx(t) +g) (5)
=1

We may then identify the set of computable functions by analog recurrent nesrgiroetded that

the type of the weights is given. This research program is systematically presented in

[Siegelmann 99]:

The first level of nets is NET[integers], where the type of the weights iseint€gese nets

are historically related with the work of Warren McCulloch and Waltds.PAs the weights

are integer numbers, each processor can only compute a linear combination of integer
coefficients applied to zeros and ones. The activation values are thus always zexolor on
this case the nets 'degenerate’ into classical devices called finiteatuttinvas Kleene who

first proved that McCulloch and Pitts nets are equivalent teefiautomata and therefore

these models are able to recognize all regular languages (see [Minsky 67] foy. details

The second relevant class we consider in this paper is NET[rationals], where thetkype of
weights is rational. Rationals are indeed computable numbers in finite, tamd
NET[rationals] turn to be equivalent to Turing machines. Twofold equivalatitnal nets
compute the same functions as Turing machines and, under appropriate coding ahchpu

output, they are able to compute the same functions in exactly the same time.

The third relevant class is NET[reals], not considered in this paper, wleetgpth of the
weights is real. Reals are indeed in general not computable. But theories of physics abound
that consider real variables. The advantage of making a theory of computation on top of
these systems is that nonuniform classes of computation, namely the classes that arise in
complexity theory using Turing machines with advice, are uniformly described in
NET][reals]. As shown in [Siegelmann 99] all sets over finite alphabets can beeriad as

reals that encode the families of boolean circuits that recognize them. Undenteffioe
computation, these networks compute not only all efficient computations bygTu
machines but also some non-recursive functions such as (a unary encoding of)irige halt

problem of Turing machines. Note that while the networks can answer questions regarding

Turing machines computation, they still can not answer questions regardmovthdialting

and computation.

1.2. Programmability of Analog Neural Nets: Contributions of this Paper

Within the class of NET[rational] we can develop the implementationagframming languages,
providing for each written command a suitable analog neural net. The implememep will be
provided in this paper for a (Turing complete) subset of the GR@damguage. A first concern is
the size of the resulting nets. In fact the size of the netsimdtease with the complexity of
programs. However, it is always possible to implement the C®camterpreter of Occaf®,
determining a universal neural net for the language interpretation. With thes (@ap extended
version of the short conference paper [Net@l. 97]) we do not aim at theoretical contributions in
neural net computation theory. Proofs of Turing completeness of neuralapmared in the
beginning of the nineties (namely, the most well known proof can be foundeige[@ann 93]).
We aim instead at a strong methodological contribution, showing how to perform &ymbol
computations over neural nets, using a programming language. As a side-effect, thevehigh
programming language is useful for high-level construction of particularhedtare relevant in the
proof of several results in neurocomputing theory, as in [Siegelmann 9% whest descriptor is

used to encode analog shift maps into neural nets.

1.3. Related Work

There is some related work in the literature on symbolic neural catigut TheJaNNeT system

(see [Gruatet al. 95] for details), introduces a dialect of Pascal with some parallel cosstiinis
algorithmic description is translated, using several automated stepsr{fadtee-like data structure
and then on a low-level code, nanesllular codg, to produce a non-homogenous neural network
(with four different neuron types) able to perform the required atatipns, a significant
difference with NETDEF which produces homogeneous neural networks. Another difference to
NETDEFis the network dynamics. In our model, at each instant, all neurons aredipdtt their

new values. InJaNNeT, every neuron is activated only when all its synapses have transfezied th
values. Since this may not occur at the same instant, the global dynammocs $ynchronous.

Special attention is given to design automation of the final neural netwdikeatare.

Another neural language projectNg (outlined in [Siegelmann 93] and [Siegelmann 96]). Whe
system is also able to perform symbolic computations by using certain sets dfictorss that are
compiled into an appropriate neural netL(and NETDEF use the same homogeneous neural
architecture). It has a complex set of data types, from boolean and scalar types, to lists, stacks or
sets that are kept inside a single neuron, using fractal coding. Because nf thises unbounded
precision, whileNETDEF manages type and operator processing with limited precision. An important
difference is thaNETDEF has a modular design, whikiL has some non modular features, like the
synchronization system and the way processes interact with each otheNlAldogs not provide
essential mechanisms required for a neural language like a mutual exclusion fmhean@ble
access security, temporal processes for real-time applications, genuine parallelfealiimis and
procedures, blocking communication primitives for concurrent process interaction, dyneayic ar
assignmentNETDEF deals with and solves all these subjects without loosing its modular properties.
A proposed goal, but just delineated in [Siegelmann 96], was to provide mashdmiguning the
compiled network, in order to generalize the initial processednmafiiton. However,\NIL was
mainly used as a tool to derive specific theoretical results about neurocomputatiowas not

fully developed into a network compiler application.

2. Neural Software

2.1. Neural Net Model

An analog recurrent neural net is a dynamic systéft+® = ¢(X (t), U (t)), with initial state

X (0) = %, where xt) denotes the activity (firing frequency) of neuron i at time t within
population of N interconnected neurons, ag(t)uthe input bit of input stream k at time t within a
set of M input channels. The application m@js taken as a composition of an affine map with a
piecewise linear map of the interval [0,1], known as the saturated sighaédin (2). The dynamic

system becomes

N M
Xj(t+1) =o(zaji X (1) + ijk-uk(t) +q) (6)
=1 k=1

where @, bk and ¢ are rational weights, assuring that a system can be simulated by a Turing
machine. Fig. 1 displays the graphical representation of equation (6) usechtiutotiys paper

(when g, b or g take value 1, they are not displayed in the graph).

gj
]

OO
G
Fig. 1. Graphical notation for neurons, input channels and their interconnections.
Our problem will be to find a suitable neural network for each program writteéheirchosen

programming language.

2.2. The NETDEF Language

We will adopt a syntactic fragment of Occarfor the programming language. Océamwas
designed to express parallel algorithms on a network of processing computersndife
information, see [SGSHOMSOM 95]). With this language a program can be described as a
collection of processes executing concurrently, and communicating with each other through

channels. Processes and channels are the main concepts of th& @rogmamming paradigm.

Occan? programs are built fromprocessesThe simplest process is an action. There are three types
of action: assignment of an expression to a variable, input and output. Input means toareceive
value from a channel and assign it to a variable. Output means to send the valmeaetdiable

through a channel.

There are two primitive processes: skip and stop. The skip starts, performs no actiomeradezr

The stop starts, performs no action and never terminates. To constrectongplex processes,
there are several types of construction rules. Herein, we present some ofvttikemif, seqand

par. Theif is a conditional construct that combines a number of processededuar a Boolean
expression. Thewhile is a loop construct that repeats a process while an associated Boolean
expression is true. Theeqis a block construct combining a number of processes sequentially. The

par is a block construct combining a number of processes in parallel.

A communication channeprovides unbuffered, unidirectional point-to-point communication of
values between two concurrent processes. The format and type of values are definestthin

specified protocol.

Here follows the simplified grammar 8ETDEF (Network Definition), in EBNF:

program ::= “NETDEF id “ 1S” def-var process “.".

process ::= assignment | skip | stop | if-t-e | while-do | seq-blpek-plock.
Our goal is to show that aNETDEF programs can be compiled into neural nets. There exists a
dynamic system of the kind (6) that runs amyDEF program on some given input. A first account

on the concepts beyond the langusgedEFcan be found in [Netet al.98].

2.3. Information Coding and Operators

With the guidelines provided ifiSiegelmann9€], the seminal work on the implementation of
information coding in neural networks (J&&ruauet al. 99 for a different approach), we introduce
data types and show how to encode and keep them inside the infornatioof fneural nets.
NETDEFhas the following type definitions.

type ::= primitive-type | channel-type | composite-type.

primitive-type ::= “BOOLEAN' | “ INTEGER | “ REAL",

channel-type ::= ‘CHANNEL".

composite-type ::= ARRAY “[“ number “]” “ OF" primitive-type.
2.3.1. Primitive Types

To be of some use, implementation of programming languages in neural nets shoultedeoaarr
in a context of bounded resources. Herein we show how to use resource bounds to speed up
computations over neural nets, through suitable encoding of suitablaygat like in the usual

programming languages.

To take into consideration the lower and upper saturation limits of thatam functiono, every
value x of a given basic type is encoded into some valuf0di. For each type T, there is an
injective encoding mamr:T —[0,1 mapping a value XT onto its specific code. Basic types

include:boolean integerandreal.

If resources are bounded, then there exists a limit to the ipreciSevery value (in fact, even reals
are bounded rationals). Considering a maximum precision of P digits, the umindistance

between any two values is10Let us denote Tty M.

i . . , X=FALSE
* For booleans, T is B =TRUE, FALSE}, the encoding map igg(x) = Y=TRUE

. . M M M+ 2
» Forintegers, Tis Z = {7, ,7} andaz(x) = M X

+ For reals withinfa, , oa5(X) :E;.Z
2.3.2. Operators

Together with data types, many different operators are needed to procesatiofarin arbitrary
set of operators (with constants, variables and input data) forms an exprbasiafier evaluation
returns a result of some type. The net corresponding to each expression starts its execution when i
receives signaN (for details see section 2.4.1). After evaluation, it returnsitta fesult through

outputRESand at the same time outputs signéf.

IN —p»! Expr ——p OUT

Fig. 2. An expression subnet. Non-labelled arcs default to weight 1.
The next figures show, for each operation, the computations needed to betgxpéected values
throughRES. Each subnet have an extra structure to receive the appropriate data and the input signal,
and also to synchronize the result with output signat. We present an example of it for binary

integer sum, that is easily adapted to all the other operators.
-2-1/2

v

Fig. 3.Net structure fox + v.

The extra-2 in the bias of the upper neuron stops the flowing of variables y adtivities, until an

input signal arrives (overriding the ext2 in order to exactly compute the sum).

e Boolean Operators These are the typical McCulloch-Pitts Boolean operators[{de€ulloch
and Pitts 4B.

1 -1
v x_ ¥
X_]>Q_> =X)Q—} x Oy >>O—> xQdy
y y
(@ (b) (c)

Fig. 4. Boolean operators: (80T X, (b)X AND Y, (C) X ORYY.

¢ Integer Operators. There are arithmetical and relational operators for integers (M, pedsient
2.3.1, is the maximum rational number possible to represent withingtersipounded resources).
-1/2

1 1/2
+ X X
y Y71
(@) (c)

(b)
X

-1
y y71

(d) (e)

Fig. 5. Integer operators: (ax-(b) X + v, (c)X -V, (d)x <Y, (e)X>Y.

* Real Operators. The encodingajay is a scaling of the intervdl,[j into [0,1]. Binary sum,

subtraction and multiplication by a constant are straightforward.

§ +a/(b-a) y +—a/(b-a) -a(c-1)/(b-a)
C
y y--1
@ (b) (©
X X

(d) (e)
Fig. 6. Real operators: (& + Y, (b)X-VY, (¢) X, (d)xX<Y, (€)X>Y.

2.3.3. Channel and Composite Types

Each channel is denoted by two neurons, one to keep the processed value anchenaiheio
keep a Boolean flag (with value one if the channel is empty, or zero otherwise). To kmew m
about channels see section 2.4.2. It is also possible to define arrayegarigdth one of the data
elements is coded by a specific neuron. This means that a composite type is a finiteseinsf. n

The array has the following structure (Fig. 7):

Fig. 7. The basic structure of an array.
The indexing of a position within the array is done by filtering the actuaixirndlue, in order to

activate just the right element on the structure. These are the most complex neuralsnetwork

NETDEF, since they must perform dynamic indexing on fixed neural nets.

2.4. Synchronization Mechanisms

Neural networks are models of massive parallelism. In our model, at each ialitaetjrons are
updated, possibly with new values. This means that a network step with n sxeurrparallel
execution of n assignments. Since programs (even parallel programs) have a sequegite of
defined steps, there must be a way to control it. This is done by a@yizetion mechanism based

on handshaking.

2.4.1. Instruction Blocks

There are two different ways to combine processes, the sequential block and thelypackll&ach
process in a sequential block must wait until the previous processtermdsputation. In a parallel
block all processes start independently at the same time. The parallel block (whisklfis it
process) terminates only when all processes terminate. This semantics demandsiggticm

mechanisms in order to control the intrinsic parallelism of neural nets.

To provide with these mechanisms, edelDEF process has a specific and modular subnet binding
its execution and its synchronization part. Each subnet is activated when the value 1 ésl receiv
through a special input validation ling. The computation of a subnet terminates when the

validation output neuroouT writes value 1.

IN S N ! 1, p Nyl |, L our

ouT

(b)

Fig. 8. Block processes: (®EQH, ..., InENDSEQ
(b) PAR I, ..., I, ENDPAR All subnets are denoted by squares.

2.4.2. Occami Channels

The languag@ETDEF assumes the Occ&nechannel communication protocol, allowing independent

process synchronization.
We introduce two new processeSNDandRECEIVE

send ;=" SEND' id “INTO" id.

receive ::=“RECEIVE id “FROM’ id.
The processEND sends a value through a channel, blocking if the channel is full, and process
RECEIVE receives a value through the channel, blocking if the channel is empty, anagwaatil

some value arrives. To minimise the blocking nature of channelsgséons 2.7 and 2.8.

ouT

(b)

Fig. 9.Channel instructions: (a)AR C: CHANNEL, (b) SEND X INTO C(C) RECEIVE Y FROM C

Each channel has a limited memory of one slot. Using several channels in sequence, kléstpossi

create larger buffers. E.g.,

SEQ
RECEI VE X1 FROM Cl1; SEND X1 I NTO G- TEMP;
RECEI VE X2 FROM G- TEMP; SEND X2 INTO C2;

ENDSEQ,

simulates a buffer with two elements.
2.4.3. Shared Variables

Processes can communicate through global variables (defined in the initial bigoihciple, each

neuron could see every other neuron in the net. The subject of variable scope is aesfrictiion

made by the compilation process. Several methods in the literature,nikpts@res or monitors, are
implemented as primitive instructions. These methods are usedomoote mutual exclusion
proprieties to a certain language, helping the programmer to solvaltgpitcurrency problems. In

NETDEFthere is also a mutual exclusion mechanism for blocks, providing the same type of service.

2.5. Control Structure

The NETDEF program control structure consists of one block procgse ¢r PAR). This process
denotes an independent neural net as seen before. The implementation is thamr,réecmsise
each process might correspond to a structure of several processes. The procesarsubumidtin a

modular way, but they may share information (via channels or shared egyiabl

Besides théN andouT synchronization mechanism explained in 2.4.1, there is a special reset input
for each instruction module. This reset is connected to every neuron of thé isstnetion with
weight -1. So, if the signal one is sent through this channel, all neuroat@ets/terminate in the

next instant. For simplification, we do not show these connections. Once afloseibnets are

represented by squares and non-labelled arcs default to weight 1.

IN—}Q—} ouT |N4>6
(@

(b)
Fig. 10.Skip and Stop processes: §&¥)P, (b) STOP.

lN—»Qﬂ>

Fig. 11.Assignment process: := EXPR. All subnets are denoted by squares.

ouT

E [out

Fig. 12.Conditional processe G THEN T ELSE E All subnets are denoted by squares.

The CASE process can be seen as a parallel bloak pfocesses. TheoND process is a sequential

block ofIF processes.

P Tout

ouT

Fig. 13.Loop instructionWHILE G DO P. All subnets are denoted by squares.

Other loop instructions (likREPEATUNTIL) are built in the same way.

2.6. Procedures and Functions

Functions and procedures do not have a specific neural network for each call.avéeyomplex
neural nets to ensure that just one call is executed at each time, blotléngadls until the end of
execution. This makes effective lock mechanisms on shared data (e.g., accessinguigtiaotily
one procedure). Functions and procedures have parameters by valudu@hef the expression is
duplicated into the procedure/function argument) and parameters by resultl{#ghefie variable
is duplicated into the argument and when the function/procedure call terminatesiué of the

argument is assigned to the initial variable).

However, a drawback exists METDEF functions and procedures: there is no recursion. This is a
complex problem, since the number of neurons is fixed by compilation. There isynavaato

simulate a stack mechanism of function calls into neural nets.

2.7. Input/ Output

To handle input from the environment and output resNEIDEF uses the channel primitives with
two special set of channelsix (linked directly with input channekland ouT,. The number of

infout channels is defined before compilation. This subject depends eorcaotfitext of the

application, so we do not define the architecture of these interfaces. In grinogt channels

must have a FIFO list in order to keep the incoming data, and a structunairitain theiNy

channels in a coherent state (i.e., update the channel flageath time usends a value).

O—()

Fig. 14.Input channel wconnects withNETDEF channelNy.

In this way, in/out operations are simple channel calls. An in/out example could be,

SEQ
RECEI VE @ FROM I N1,
SEND a | NTO QUTZ2;

ENDSEQ,

This process inputs data through the variable 'a’ from therfppat thannel, and sends it through the

second output channel.

To obtain asynchronous in/out, there is a boolean fun@EwmPTY(channel) returning true if the

channel is empty, or false otherwise.

ISEMPTY(C)

ouT

Fig. 15. Asynchronous in/out.

E.g., to implement an asynchronous output,
I F 1 SEMPTY(C) THEN SEND X INTO C

2.8. Timers

In real applications, some processes may create deadlock situationsETTiEE communication
primitives (GEND and RECEIVE) are blocking, i.e., they wait until some premises are satisfied (the
channel must be empty feENDand full forRECEIVE). If these premises are never satisfied, then we
have a problem: we cannot wait indefinitely for input in real-time applicatido handle this

problem,NETDEF has several timer processes.

The first one iSTRY. It guarantees termination, if the execution of an instruction does not tegminat

before the expected time (held by an integer variable).

timed-instruction ::=“TRY “(* variable”)” instruction.

ouTt

O—O—={*J

Fig. 16.Timer constructorTRY(N) P. All subnets are denoted by squares.

Neuron X has arcs with weighiM and neuron Y has arcs with weight to neurons A, B and C.

Two other types of timers exist: delay-timers and cyclic-timers.yDatgers delay the execution of

instructions during a given time.

delayed-instruction ::=* DELAY' “(* variable”)” instruction.

P _>OUT ouT

Fig. 17.Timer constructorDELAY (N) P. All subnets are denoted by squares.

Cyclic-timers restart the execution of an instruction whenever a specific time pasegdanhbe

used to simulate interrupts.

cyclic-instruction ::=“ cycLE “(* variable™)” instruction.

-3/2-3M

P W’OUT

Fig. 18.Timer constructorCYCLE (N) P. All subnets are denoted by squares.

Several timer constructs can be used sequentially. E.g., thesgproce

CYCLE (10000) TRY(50) IF flag = 1 THEN SEND X INTO C;

means that on each 10 000 cycles, it will check if an integer vafitdie has value 1. If it has, the
timer sends the value of X through channel C. If the variable cannot be séntyulés, the timer

aborts execution.

2.9. Exceptions

In high-level languages, like Eiffé[Interactive 89 or Ada” [USDD 83], exceptions are unexpected
events occurring during the execution of a system and disrupting the normal faecation (e.g.,
division by zero or an operation overflow). Some exceptions are raised by the syseembpyptthe
program itself. The (hypothetical) neural net hardware is homeage there is no system disruption

other than neuron or sinapse failure.

Despite the possibility of system failures, our concern hereinbeilbnly about programmer raised
exceptions. These exceptions add some extra block control. They appear as EEQ of 2AR

block. First, an example,

nmet hl-fail ed : = FALSE
SEQ
IF methl-failed THEN method-1 -- witha RAISE excp-1’
ELSE method-2 ; -- witha' RAISE excp-2’
j ob-acconpl i shed : = TRUE;
EXCEPTI ON
VWHEN excp-1 DO
SEQ
nmet hl-fail ed: = TRUE;
RETRY;
ENDSEQ;
VWHEN excp-2 DO
SEQ
j ob-acconpl i shed : = FALSE;
TERM NATE;
ENDSEQ,
ENDSEQ

Suppose we have two methods to do the same work. In this sequentialibtbekfirst method
fails, it raises an exception callegkcp-1 trapped by the handler feature of the block. It changes the
value of the Boolean variable and then executes the block again, trying the second method. If this

also fails, then the block terminates with a no job accomplishment status.

ProcessRAISE E raises exceptioB. To each exception corresponds an associated process (that can
be again &EQ or PAR block), and some special block handlers. These block handlers define what to
do with the actual block:

e RETRY —reset and execute the block again,

e ABORT —reset and terminate the block,

* PROPAGATE -reset the block and raise the same exception in the upper block.

Each instruction block with an exception feature has its net architecture changed.

IN—}OA B oot ouT
TRESET
ouT

le (—2BORT PROPAGATE

(:) ﬁN
Fig. 19.The exception handler E of instruction block B.

Block I is the instruction associated with exception E.
All subnets are denoted by squares.

RETR To upper block

Each exception has a specific neuron receiving the block process signal. With this type a&structu

RAISE is defined as,

PAR
E =1, = RAI SE E
STCP;

ENDPAR;

There is a cascade effect for no handled exceptions. If a block raises an exedmitohas no

handler for it, the compiler inserts by default the following handler,
VHEN E DO PROPAGATE;

Any process sending this signal is not resumed (unless one of the upper bloekstsetsiecution).

2.10. Space and Time Complexity

The proposed implementation map is able to translate any §&EDEF program to an analog
recurrent (rational) neural net that performs the same computations. We wondés thieaspace
complexity of the implementation, i.e., how many neurons are needed to supeeh &ETDEF

program? We take a close look at each basic process to evaluate its contribution to the size of th

final net. Theassignmeninserts 3 neurons plus those that are needed to compute the expression.
The skiP and sTop need only one neuron. The-THEN-ELSE needs 4, and th&/HILE needs 5
neurons. TheEQ statement needs no neurons andrre of n processes needs n+2 neur@eEND
needs 5 neurons arRECEIVE needs 4. Timers also have constant number of neurons. All other
processes exhibit the same behaviour with respect to the number of nddatamstypes and
operators need a number of neurons linear in the size of the used informatierpr&isions can

be evaluated with a number of neurons linear in the number of neurons tedddéd data. Every
process adds a constant or linear complexity to the final net, the same mesdnted in
[Siegelmann 93] for neural nets of the same kind. The spatial catgpdéxhe emulation is linear

on the size of the algorithm. Concerning time complexity, each subnet executes itsvespecti
command with a linear delaweTDEF adds a linear time slowdown to the complexity of the

corresponding algorithm.

3. Compiling a Process

For a better understanding,’lesee how proce$svHILE b DO x ;= x+1” is translated into a neural

network using th&lETDEF compiler.

IN ouT
B @

o CRt
Module G 1

ouT

Fig. 20.Main module and module G. All subnets are denoted by squares.
The synapseN sends value 1 (by some neura) Xnto xy; neuron, thus starting the computation.
Module G (denoted by a square) computes the value of Boolean vabiabted sends the 0/1 result
through synapsBES This result is synchronized with an output of 1 through symapseThe next
two neurons decide between stopping the procbsss(false) or executing module B'(is true),
iterating again. The dynamic system is described by the following equations:
Xma(t+1) = o xin(t) + %eAt))

Xmz(t+1) = o XeAt) + *ea(t) —=1.0)
Xma(t+1) = o(2.%cAt) — Xe3(t) = 1.0)

Module G just accesses the valuédfand outputs it through neurogsxThis is achieved because
Xgszbias—1.0 is compensated by value 1 sent by &llowing the value of’ to be the activation of

Xg3. This module is defined by:

Xei(t+1) =o(Xwa(t))
XeAt+1) =0(Xea(t))
Xea(t+1) =o(xea(t) + b(t)—1.0)

a2
Module P /

Fig. 21.Modules P and E. All subnets are denoted by squares.

ouTt

Module P makes an assignment to the real variablevith the value computed by module E.
Before neuron x receives the activation valueggf the module uses the output signal of E to erase
its previous value.

Xpi(t+1) =a(xuz(t))

XpAt+1) = a(Xea(t))
Xpt+1) = 0(XeAt) + Xea(t) —1.0)

In module E the increment 6f is computed (usingc (1) for the code of real 1, whef@ is a
predefined value set by the compiler). The extt&® bias of neuronggis necessary due to the
internal coding:

Xei(t+1) =0(Xea(t))

XEz(t+1) = 0(2)@1(':) - XE4(t) + X(t) -5/2)

XE3(t+ 1) = 0(XEl(t))
Xedt+1) =0(Apcg(l))

The dynamics of neuron x is given by:

X(t+1) = o(X(t) + Xealt) —Xex(t))
However, if neuron x is used in other modules, the compiler will awbre synaptic links

corresponding to the new dynamic equation for x

4. Conclusions

We introduced the core of a new languageTDEF. NETDEF develops an easy way to build neural
nets performing arbitrarily complex computations. This method is modular, where each process is
mapped in an independent neural net. Modularity brings great flexihilityexample, if a certain

task is programmed and compiled, the resulting net is a module that can be used elsewhere.

The use of finite neural networks as deterministic machines to implement rdybit@amplex
algorithms is now possible by the automation of compilers NikedEF. If someday, neural net
hardware would be as easy to build as von Neumann hardware, thsaTther approach will
provide a way to insert algorithms into the massive parallel architecture mfiartieural nets. To
test our program, able to compile and simulate the dynamiesurél nets described in this paper,

go to http://www.di.fc.ul.pt/~jpn/netdef/netdef.htm.

5. References

Interactive Software Engineering Inc., Eiffelthe Language. TR-El 17/RM, 1989.

F. Gruau, J. Ratajszczak, and G. Wiber. A Neural Compileeoretical Computer Sciendetl
(1-2), 1-52, 1995.

B. Lester. The Art of Parallel Programming. Prentice Hall, 1993.

W. McCulloch and W. Pitts. A Logical Calculus of the Ideas Immanent énvdlis Activity.
Bulletin of Mathematical Biophysiés 115-133, 1943.

M. Minsky. Computation: Finite and Infinite Machines. PreatHall, 1967.

J. P. Neto, H. Siegelmann, J. F. Costa, and C. S. Araujo. Turingerdality of Neural Nets
(revisited).Lecture Notes in Computer Science 133@ringer-Verlag, 361-366, 1997.

J. P. Neto, H. Siegelmann, J. F. Costa, On the Implementation of Progrgrhanguages with
Neural NetsFirst International Conference on Computing Anticipatory Systé&d#sSYS 97,
CHAOQOS, [1], 201-208, 1998.

H. Siegelmann. Foundations of Recurrent Neural Netwoflhnical Report DCS-TR-306,
Department of Computer Science, Laboratory for Computer Science Res@&ae State
University of New Jersey Rutgers, October 1993.

H. Siegelmann. On NIL: The Software Constructor of Neural Netw@&#sallel Processing Letters
6(4), World Scientific Publishing Company, 575-582, 1996.

H. Siegelmann. Neural Networks and Analog Computation, Beyond the Turmg Birkhauser,
1999.

SGS-THOMSON, Occafn2.1 Reference Manual, 1995.

E. Sontag. Mathematical Control Theory: Deterministic Finite Dsiwral Systems. Springer-
Verlag, New York, 1990.

United States Department of Defence. Reference Manual for th& Rdmramming Language.
American National Standards Institute Inc., 1983.

