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Abstract— Research in recurrent neural networks has pro- quickly ™learned™ the quadratic mapping such that upon
duced a genre of networks referred to as Fixed Weight Neural presentation of a new input, the FWNN produced the correct
Networks (FWNNs) which have the ability to adapt without 45t a5 specified by the selected quadratic mapping. After

changing explicit weights. FWNNs are unique in that they adapt . . ) .
their processing based on the spatiotemporal characteristics of it had learned the selected mapping, a new quadratic mapping

the incoming signal without need for weight change. As a result, Was selected and again the FWNN ™learned™ that mapping.
a single FWNN is able to model and control many families of The term ™learned™ here is highlighted because it is na&asl

disparate systems without weight changes. FWNNs pose an inter- if this is learning or adaptation. It is probably more reasa
esting model for contextual memory in neural systems. The Work 1, || this adaptation since further research has shown tha

reported takes a FWNN, decomposes it and analyzes its internal . . . . .
workings. Using new insight, FWNNs are reformulated into a FWNNs created in this way while able to generalize their

simpler structure, Context Discerning Multifunction Networks —adaptation over the family of quadratic mappings are not
(CDMN). able to able to ™learn” mappings not in the family of

guadratic mappings. So in some way, the adaptation happenin
in these FWNNSs is dependent upon storing some meta-level
Fixed-weight neural networks (FWNNs) refer to recurreribformation about the family of quadratic mappings. We will
neural networks (RNNs) (a.k.a. dynamic recurrent networkster explore this meta-information as a form of memory.
(DRNSs)) which, after training, have the ability to adaptiwitit The researchers used specialized neural networks anéhgyain
further change of explicit parameters (i.e. weights). Tdieai algorithms including the more well known Long Short Term
seems to originate in 1990 with the work of Cotter antMemory (LSTM) approach[5].
Conwell [1]. In their work, Cotter and Conwell separated
the concept of adaptation from the notion of weight adjust- Feldkamp et al. [6], [7] were the first to provide useful
ment in a neural network. The researchers propose-itked application of the concepts. In particular, they trainedNi\R
Weight Learning Theorem (FWLThich states that a RNN to identify and control a set of simulated plants but this
can approximate with arbitrary precision the dynamics of tane using only a generic RNN whose weights were fixed
feedforward neural network being trained with an adaptivater training. More recent work by Prokhorov et al. [8] has
weight learning algorithm. The innovative aspect of the FWLTeproduced the quadratic modeling FWNN, but again only
is the RNN can approximate these dynamics without need fasing a generic RNN. Most recently, Feldkamp et al. [9]
weight changes, hence the "fixed-weight™ label. have extended this work to create FWNNSs that are able to
This concept would later be picked up again but referreapproximate more than just one family of functions and even
to asLearning to Learnand Metalearningin [2], [3] and [4]. family of systems. As stated before, if a FWNN is created
This work is conceptually different from the earlier work inthrough training a RNN over the family of quadratic funcson
that it focuses on the concept of RNNs learning to implemetiten the resulting FWNN will only adapt to approximate
learning machines, hence the label metalearning. While tthee quadratic functions and no other type of functions. The
FWLT is built on the notion of calculating the fixed weight#WNNs created by Feldkamp and Prokhorov now are able
of the RNN that would implement a particular adaptive weighib approximate several families of functions and even more.
learning algorithm, metalearning instead sought to get thideir FWNNs also model time evolving dynamical systems,
same fixed weights through an adaptive learning processen those with chaotic dynamics. Thus they have extended
The resulting FWNNs from this line of research were not &WNNs from simply being able to adapt to mappings but also
general, though. For example, the researchers trained a RiéNlemporally dynamic systems. Thus for further discussion
to learn a family of quadratic functions. After training,eth the idea of mappings and dynamic systems will simply be
weights of the RNN were fixed thereby making it an FWNNreferred to as systems. This ability seems very impresside a
Then the FWNN was shown input-output (I0) pairs from onthe work reported here seeks to understand the principés th
member of the family of quadratic functions. The FWNMillow FWNNSs to adapt to all of these family of systems.

I. INTRODUCTION



Il. MOTIVATIONS emulate all mappings as defined by a parameterized quadratic

The exploration into FWNNSs reported here is motivate@duation. In particular the parameterized equation was
from sevgra! directions. First, 'FWNNs offer an interesting y(t) = axy(t)? 4 bxg(t)? + cay ()xa(t)
way of thinking about the relationship between memory and +dz () + exa(t) + (1)
synaptic weights. While concepts like metalearning are in-
teresting, it seems that the simpler explanatory concept \where a,b,c,d,e, f € [~1,1]. The variables are defined
what FWNNs do is more along the lines of storing anth discrete time. Data points were generated by randomly
recalling memories. While FWNNSs by definition are recurrerthoosingz;(t) and xz»(t) from a uniform distribution over
in nature, to understand their uniqueness one might thithke interval [-1,1]? and using equation 1 to generate the
first about a simple feedforward network, like a multilayedlesired outputy(t). The parameters, b, c, d, e were changed
perceptron (MLP). Theoretical analysis of MLPs state th&very 1000 steps for training and every 100 steps for testing
any function can be approximated to arbitrary precision Bf FWNN performance. The variables were presented to the
an MLP provided enough nodes in the network topology. Foetwork with a time lag on the desired output. For simplicity
a fixed topology, if we hold the weights of an MLP fixedthe input to the FWNN can be written asz(t) y(t —1) ]*
then it is only able to approximate a single function. If thwhere z(t) = [ x1(t) x2(t) ]. Please note that the input
approximated function is treated as a "memory” then an MLI® a combination of the new randomly chosg(t) and the
with fixed weights can only hold one memory. Thus for thgesired output from thprevioustime stepy(t—1). The FWNN
MLP one set of weights translates into one memory. had two recurrent hidden layers, with 30 and 10 nodes each.

But now consider the FWNN that has recurrent connectionBe network operation can be summarized in the following
The work by Prokhorov et al. [8] and Feldkamp et al. [9quations.
shows that large families of systems can be approximated by N0

. = sigWi[z(t)y(t — 1)
a single FWNN. If we now equate the concept of a memory to

the the ability to adapt to a specific system then the weights +Wrio1(t — 1) + by) _ 2)
in a FWNN encodes a set of memories. But now one can 02(t) = 8ig(Whq01(t) + Wreoa(t —1) +b2) (3)
expand the concept of memory to not just mean the adaptation  3(t) = W,,04(t) (4)

to a specific system but but to a family of systems (e.g. theh
guadratic maps, Henon attractors, etc.). Thus a memoreis
information needed to model a family of systems.

This now in turn brings up another important aspect
these FWNNSs, context. These FWNNs are able to recall t
information from memory. All the work cited so far shows al
impressive efficiency in being able to recall from memory th
information needed to adapt to a system being presentee to
FWNN. One cannot help but think that the recall mechanis

eresig() is a bipolar sigmoidal function. The output of the

NN wasy(t) which is the estimate of the desired output
(t). The FWNN was trained using multistreamed extended

%@Imaﬂ filtering details of which can be found in [8] and
0]. By way of qualitative description, the network is able
take a few observations, about ten to twenty, and with

ose observations reconfigure its internal state to impfem

e appropriate mapping; that is, it implements the mapping

implemented by FWNNs could shed significant light on th hich generated the observed data points. Extending from

way neural systems can so efficiently resolve context. F;‘li. previous discussion about memory; it could be said that

simply, if an FWNN has memory of a particular family oft N tralned_ FW.NN simply _rer_nembered Fhe mapping or made
approximation from similar memories. Performance of

t , th tati f ber f that f X . I ;
Systems, et Upon presentation ot a memberirom tha am@? trained FWNN is shown in Figure 1 where the trained

of systems, it is able to place the presented system into . ;
context of the family of systems. Then using informatioﬁetwork was shown a new desired mapping every one hundred

from the memory of the family of systems it adapts to th|éerations. Using d.ata from. th?s network an analysis was
presented system. There is significant benefit in underis;tgndperformed on the n:\put ac'uva_tlon of each of the nodes_ of
how FWNNs accomplish thigontextual memorygapability the network. In particular, the input to the nodes of the first

since it seems to be a needed building block for constructi}ﬁetq}/er 1S ma.de up of four components \th'Ch can be seen in
machines that display more general intelligence. eguation 2: the new random values foft), the previous

Finally, though, the training of FWNNs is computationall esired outpuy(t—})_, the recurred mformatlonl (t—1) from
expensive[8] even with the use of more advanced methot{J: layer gnd the b'dﬁ_' Because the input to the network was
for training RNNSs, backpropagation through time (BTT) witﬁ N compmed vectq[r z(t) y.(t N 1) ] some work had to be
extended Kalman filtering (EKF) and multistreaming[10]. lgong o isolate the input activation attrlbgtable to 'eaah ph
is reasonable to believe, though, that understanding nh\rerinthe Input. Conceptually_, one (_:OUId rewrite equation 2 in the
workings of a trained FWNN would lead to more ef‘ficienIo”OWIng way to make it clear:

methods for creating them. Tin(t) = Wi, ()T (5)
I1l. M ETHODS AND RESULTS Yin(t) = Win,y(t—1) (6)

Prokhorov provided data from a trained FWNN, in partic- Ti(t) = Wgioi(t —1) ) (7)
ular the one presented in [8]. The network was trained to 01(t) = sig(@Tin(t) +Tin(t) +Fin(t) +01)  (8)
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Fig. 1. Performance of trained FWNN as reported in [8]. The rddsi
mapping was changed (i.e. new parameter values for equatiemety 100
iterations. Notice the rapid increase in error, h@jét) —y(t)), which occurs
every hundredth iteration and quickly subsides as the n&twecognizes
which mapping to implement.

Fig. 2. Type | node behavior from the first layer. The four parghow the
input and output behavior from a single node on the first lay@wing Type
| behavior. Type | behavior is characterized by the elimpratf input from
Z(t) which can be seen in the lower left panel. From upper left veetoright
the panels show the components of input to the node #o(n), 7,,, (t) and
Tin(t) as well as the output of the node frada(t).

where the weight matri¥V;,, from equation 2 is broken into ) 2

two smaller matrice$V;,,, andW;,, which isolate those input :
from Z(t) andy(t — 1), respectively. Similarly equation 3 can ' '
be rewritten in the following way to isolate the input actiea 0 0

of each node attributable to output from the first hidden daye
and from recurred information:

a(t) — Wthal (t) (9) 0 200 400 600 800 0 200 400 600 800
To (t) = Wpgo0o (t — 1) (10) 2 — 2
02(t) = sig(agt)+7a(t) + ba) (12) . .

Accordingly, data was generated from the trained FWNN and o | 0 u W

the values of the variables defined in equations 5 through
11. Analysis of these variables revealed interesting featu
with respect to the internal processing that allowed the FWNN 20— 0 a0 TR ——
to model the family of quadratic functions. In particuldnet

weights of the first hidden layer specialized themselve$iab t Fi9- 3. Type Il node behavior from the first layer. The four gianshow the
input and output behavior from a single node on the first |ay@wing Type

they either re_cep_tive to input from(t) or fro_m y(t —1), @S | behavior. Type Il behavior is characterized by the elintiia of input from
can be seen in Figure 2 and 3. For simplicity, those nodes @m) which can be seen in the upper right panel as well as the eswinput

the first |ayer which are onIy receptive to input frqy(‘t _ 1) which shows fixed point equilibrium t_)ehavior which can bersiethe upper
. left panel. From upper left to lower right the panels show ¢bheponents of

are referred to as Type | nodes and the nodes on the first a5y 1o the node fronF, (¢), 7, () and:, (1) as well as the output of the
which are only receptive to input from(¢) are referred to as node froma (t).
Type Il nodes. While this specialization with respect to inigu
interesting, the more intriguing aspect of the learned bieha
is the contribution made by recurrence on the Type Il nodesdes had output behavior near zero indicating training had
which can be seen in the upper left panel of Figure 3. Thed to the functional elimination of these nodes. The other
recurrent input shows fixed point equilibrium behavior withwo nodes had fixed point output behavior which looked very
the fixed point shifting every one hundred steps, corresipgnd similar to the upper left panel of Figure 3.
to the shift in desired mapping. Operationally, this reentr  The second layer also had very interesting behavior. Again,
input on Type Il nodes worked to shift the bias on the nodeyo types of nodes with distinct behaviors were identified an
an observation to be further explored soon. are referred to here as Type lll and Type IV nodes. Figure

The input behavior shown in Figures 2 and 3 is represef-and 5 show the values as defined in equations 9 to 11 for
tative of the behavior of most nodes on the first hidden layer. Type Il and a Type IV node, respectively. Type Ill nodes
Specifically, 16 nodes showed Type | behavior and 10 showsidow the elimination of all output signal from the node as
Type Il behavior. The remaining four nodes had near zeoan be seen in the bottom panel of Figure 4. Here the FWNN
weights for all inputs, bothz(t) andy(t — 1). Two of these training has resulted in nodes that are functionally dotman

-1 -1




having not operational impact on the network. Type IV noddke problem. As a result, it was hypothesized that a much sim-
show prominent input and output behavior and are respansibler approach to FWNN adaptation could be synthesized. The
for the processing behavior of the second layer. In additiostrongest clue for this came from the analysis of Prokhorov
Type IV nodes do not show any specialized behavior like fixezt al. Prokhorov et al. in [8] suggests a strong connection
point equilibrium as can be seen in Type Il nodes or shifts o the work of Back and Chen in [11]. In particular they
the range of values being used as can be seen in Type | nostage: ™...it appears possible to extend the results afrtecal
(specifically the upper panels of Figure 2). The ten nodes amalysis in [Back and Chen 1998], which treats the abilitga of
the second layer were evenly split between Type |1l and Tymingle network with output-to-input recurrence to appnaxie

IV behavior.
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multiple systems to the case of RMLP.”
In 1998, Back and Chen used a hybrid system framework to
show that recurrent networks could be used to implement fixed
weight systems which modeled multiple systems. The work
provided only hints as to the general construction process f
such networks. Among those hints were included a construc-
tion process which focused on shifting the biases of a stdnda
multi-layer perceptron (MLP). Put simply, the authors alise
that for two different sets of biases, holding all other virggy
the same, the MLP will approximate two distinct models.
Subsequently, the authors indicate bias-shifting as aadetr
getting a fixed weight neural network to approximate several
systemg. The question of exactly how to adjust those biases in
response to changes in desired model is not directly adeitess
As observed before, the input from the recurrent connestion
for Type Il nodes, seen in the upper left panel of Figure
3, seems to perform this bias shifting. It seems almost too

Fig. 4. Type Il node behavior from the second layer. Thedtpanels show convenient that the Type Il nodes also eliminate any inpurnfr

input and output behavior for a single node from the secowdrlahowing
Type Il behavior. The upper two panels show the input cobantions from

y(t — 1) so that they are specialized to transformif(g) into

a(t) and7(2). The bottom panel shows the output from the node. Type w(t). Thus it also seems logical to hypothesize that the Type
nodes are characterized by the elimination of output fromnitee.
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| nodes carry out the function of observing the sequence of
inputs and internal states to identify shifts in desired piiag
and, most importantly, to assign a set of fixed point outputs
which shift the biases of Type Il nodes thereby changing the
mapping being approximated by the network.

It also seemed convenient that the Type Ill nodes on the
second layer had no output and therefore were not directly
involved in generatingy(¢) or even in providing recurrent

00
i —a] information to the Type IV nodes. The exact operation of
m ‘ the Type IV nodes still needs further analysis but it was
o | hypothesized that the recurrence in the second layer wddked
2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ counterbalance information coming from the first layer such
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i ‘ that the Type IV nodes of the second layer operate as standard
feedforward nodes or bias-shifted feedforward nodes. This
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hypothesis has not yet been verified but it will simply be
assumed for the reformulation of fixed weight networks to
be discussed next.

From the analysis so far it seems clear that there are

Fig. 5. Type IV node behavior from the second layer. The tiiaels show essentially two components of the trained FWNN producing

input and output behavior for a single node from the secogdrlahowing
Type IV behavior. The upper two panels show the input coatigms from

the adaptation in the fixed weight network. The first com-

at) and7(2). The bottom panel shows the output from the node. Type nponent can be thought of as a context discernment network
are responsible for processing on the second layer of thveonlet

(CDN). This seems to be the most significant contribution
of the recurrent connections, especially within the firgeta

In analyzing the internal working of the FWNN it isIn particular, the Type | nodes seem to perform this context
apparent that much of the training resulted in both funetiondiscernment function. By context discernment it is meant

specialization of nodes on the first and second layer as wel|

Further theoretical analysis has also been developed bl &zt Chen in

as functional elimination of S_everal nodes. This suggests fAe series of articles [12], [13] and [14] which uses the emiof multiple
overly complex network architecture was employed to solvenlinear operators instead of hybrid systems.



that the component is able to identify spatial and temporal Simple linear regression was used to solve dob, ¢, d, e,
characteristics (hereafter referred to as spatiotempbiaiac- the parameters for the system. This was done for every five
teristics) and in response to those characteristics pmdiget data points so the values of these were constantly updated.
of fixed parameters. Those fixed parameters can be thoughQaftput from this component can be seen in Figure 7. These
as context parameters. In turn, those context parameters ealues were the output of the context discernment component
be used in the second component, the multifunction netwoskd used as input to the MFN. The MFN was a MLP which
(MFN) to adjust biases as suggested by Back and Chen aadk these parameters as inputs as wellzé9 and output
apparently occurring in Type Il nodes (again, refer to thg(t). The MFN was trained to minimize squared error using
upper left panel of Figure 3). Together these two subnetsvorthe backpropagation algorithm. Training took less thawedhr
form a Context Discerning Multifunction Network (CDMN), minutes on a Pentium Ill 450MHz computer. Figure 8 shows
a reformulation of the FWNN. For clarity, Figure 6 provideghe raw error of the trained CDMN. Results compare favorably

a diagrammatic description of the concept of CDMNSs. with those of Prokhorov’s, shown in Figure 1.
Other 0: 0_:
X(t) Variables OM Oﬁ_w
(e.g. y(t-1))
A A 4 I : :

Context 0 0
Discernment 05 05

Cor teXt 0 200 400 600 800 0 200 400 600 800
Parameters !
0.5
l A 4 0
Multi-Function oS
Approximation o 200 400 600 800

Fig. 7. Context Parameters. These context parameters areatgghdérom

CDMN using a simple regression method. While not a network, the methmddes

A a functional example of estimated parameters uniquely idemgifthe spa-

v y(t) tiotemporal characteristics of the input signal. These when used by a

multifunction network which was a standard MLP.

Fig. 6. Context Discerning Multifunction Network(CDMN).BMNs have
two subnetworks, a context discernment network and a muttifon approxi-
mation network. The context discernment network looks at fiatistemporal ‘ ‘ ‘ ‘ ‘ ‘
characteristics of the incoming signals and produces a fixadevset of
parameters, called context parameters. These context paranae¢ used by
the multifunction network to adapt processing of the incorsignals.

For purposes of illustration a simple example of CDMN  * 7
functionality was assembled. A CDMN was constructed which
approximated a similar family of quadratic functions as al- o WMW
ready described before in equation 1. The CDN component
was a simple linear regression algorithm. The algorithnk too
as input the last five, y pairs (i.e.(z(t—1),y(t—1)) through
(Z(t — 5),y(t — 5))). These were assembled into a linear
equations. For simplicity let

= 4

B 9 9 3 . . . . . . .
m(Il,Ig) 7[ xi w5 xT1T2 X1 T ] (12) 0 100 200 300 400 500 600 700 800

Iteration (t)

The linear equation was as follows: Fig. 8. Result from the simple CDMN example on the quadratiction
approximation problem. The desired quadratic function isnglkd every 100
steps. Results are comparable to those of Prokhorov seemmeFL.

m(xy(t—1),z2(t=1)) | | a y(t—1)

m(z1(t — 2),z2(t — 2)) b y(t —2) The use of linear regression over a polynomial basis for
m(z1(t — 3),z2(t — 3)) c | =1 yt—3) | (13) the CDN component was done for illustrative purposes with
m(xzi(t —4),x2(t — 4)) d y(t —4) respect to the intended functionality of that component. In

m(xz1(t —5),xz2(t — 5)) e y(t —5) deed, the CDMN approach highlights the challenge of future
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