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Abstract— In approximate dynamic programming, we can
represent our uncertainty about the value function using
a Bayesian model with correlated beliefs. Thus, a decision
made at a single state can provide us with information about
many states, making each individual observation much more
powerful. We propose a new exploration strategy based on
the knowledge gradient concept from the optimal learning
literature, which is currently the only method capable of
handling correlated belief structures. The proposed method
outperforms several other heuristics in numerical experiments
conducted on two broad problem classes.

I. INTRODUCTION

In classical dynamic programming, the infinite-horizon
value V (S) of a state S ∈ S can be found by iteratively
solving a version of Bellman’s equation [1], given by

V n (S) = max
x∈X

IE
[
C (S, x,W ) + γV n−1 (S′) |S

]
, (1)

for every S ∈ S. Here, C (S, x,W ) is a possibly random re-
ward obtained by taking action x out of state S and observing
some random information W , and S′ = SM (S, x,W ) is the
next state of the dynamic program. This and other classical
DP algorithms are discussed in [2].

In many realistic applications, the size of the state space
S is too large to allow us to solve (1). For example,
consider an energy storage problem in which the spot price
of energy is modeled using a stochastic differential equation
(see e.g. [3]). The price is part of the state variable, and it
is continuous, making it impossible to solve (1) for every
St ∈ S. In such situations, we can employ techniques
referred to under the names of reinforcement learning [4],
neuro-dynamic programming [5], or approximate dynamic
programming [6]. Such techniques typically compute an
approximate observation

v̂n = max
x

C (Sn, x) + γV n−1
(
SM,x (Sn, x)

)
, (2)

for the particular state Sn of the dynamic program in the
nth time step. The function V n is an approximation of V ,
and SM,x is a deterministic function mapping Sn and x
to the post-decision state Sx,n. The concept of the post-
decision state was first introduced by [7] and is extensively
discussed by [6]; it allows us to handle problems where
the expectation in (1) is difficult to compute. After solving
(2), the observation v̂n is used to update our approximation
of the value of the previous post-decision state Sx,n−1
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using stochastic approximation methods [8], and the next
state Sn+1 = SM,W

(
Sx,n,Wn+1

)
is obtained from some

external process or via simulation.
A fundamental problem of approximate dynamic program-

ming is known as exploration vs. exploitation. The choice of
x that solves (2) is the decision that seems to be optimal un-
der the most recent value function approximation. However,
because the approximation is inaccurate, it may be desirable
to make a different decision simply to learn something
about a part of the state space that would otherwise remain
unexplored, in the hope that this information will enable us to
make better decisions in the future. There exist many general
heuristics for exploration, such as ε-greedy policies or the
soft-max method [4], as well as interval estimation [9].

The exploration/exploitation problem is also studied in the
literature on optimal learning. Simple information collection
problems such as ranking and selection [10] and multi-armed
bandits [11] take place in a setting where there are finitely
many reward processes with unknown stationary means. It
is possible to perform “measurements” of individual pro-
cesses to obtain noisy samples of the mean rewards. Each
sample changes existing estimates of the means, which can
be represented using a Bayesian belief structure. The goal
is to efficiently allocate a finite measurement budget to
discover the highest mean reward (ranking and selection)
or to maximize the discounted sum of rewards (multi-armed
bandits).

There have been several attempts to incorporate optimal
learning techniques into exploration strategies for dynamic
programming. Much of the work in this area focuses on
Bayesian models for unknown transition probabilities in
Markov decision processes, typically involving the Dirichlet
prior distribution; an early study of this problem can be found
in [12]. The work by [13] makes an explicit connection to
multi-armed bandits for this setting. Other heuristics for the
same problem include the value of information exploration
technique by [14] and the BEETLE algorithm of [15], as
well as work by [16] and [17]. The bias and variance of the
value function approximations resulting from this method is
studied by [18].

Another approach, first advanced by [19], is to place a
Bayesian prior on the value V (S) itself, rather than on spe-
cific problem parameters such as transition probabilities. The
main appeal of this approach is its generality, as the value
function can be viewed as encoding all of the uncertainty in
the problem. The resulting Bayesian Q-learning method is
more easily computable than the difficult calculations used
in the studies on unknown transition probabilities. However,
this work does not consider the correlations between values



of different states. For example, in the energy storage prob-
lem, we would expect the values of two states to be close
together if the prices associated with those states are similar.

Our own approach is based on the same idea of placing
a Bayesian belief structure on the value function. However,
we adopt the correlated prior model from [20]. Correlations
allow us to obtain information about many states from a
single decision, and thus learn more quickly in fewer obser-
vations. We propose a new exploration strategy for dynamic
programming based on the knowledge gradient (KG) method.
This method was developed by [21] and [22] for ranking
and selection, and extended by [23] and [24] to the multi-
armed bandit problem. It consists of choosing the decision
that yields the greatest value from a single measurement,
and can yield easily computable decision rules with good
numerical performance, even for more complex objective
functions [25].

Section II describes the mathematical model for correlated
beliefs about the value function. Section III presents our
knowledge gradient policy for making decisions in approxi-
mate dynamic programming. In Section IV, we compare the
KG policy to other exploration strategies on two classes of
problems, namely inventory management and energy storage.
The experiments provide encouraging results in support of
the KG policy.

II. BAYESIAN MODEL WITH CORRELATED
BELIEFS

Consider an infinite-horizon dynamic programming prob-
lem with state space S, action space X , and discount factor
γ ∈ (0, 1). For notational convenience, we will assume that
the reward C (S, x) is a deterministic function of state and
action. The objective function is assumed to be the usual
MDP objective,

sup
π

∞∑
n=0

γnC (Sn, Xπ,n (Sn)) ,

where Xπ,n is a decision rule associated with a policy
π. The post-decision state Sx,n = SM,x (Sn, x) is also
obtained deterministically from Sn and x, whereas the next
pre-decision state Sn+1 = SM,W

(
Sx,n,Wn+1

)
may be

determined randomly. Let Sx denote the set of possible post-
decision states. For now, we assume that both S and Sx are
finite sets; we will show how this assumption can be relaxed
in Section IV-B.

Let R (Sx) be the total infinite-horizon discounted reward
that we would receive if we were to start in the post-decision
state Sx ∈ Sx, then follow an optimal policy. Because
transitions between pre-decision states are random, R (Sx)
is a random variable. The value of the state is obviously the
mean of this random variable, that is, V (Sx) = IER (Sx).
For the remainder of this study, V will be a function of the
post-decision state rather than the pre-decision state.

Assumption 1: R (Sx) has a normal distribution with un-
known mean V (Sx) and known variance λ (Sx).

The work by [19] also assumes normality, justifying it with
a central limit argument. We make the stronger assumption

that λ (Sx) is known. In practice, this is not the case, and
the parameter λ (Sx) would be set to a user-defined constant.
The issue of choosing this constant is discussed below.

We now place a multivariate Gaussian prior with mean
vector V 0 and covariance matrix Σ0 on the value func-
tion. That is, we assume that IEV (s) = V 0 (s), and
Cov (V (s) , V (s′)) = Σ0 (s, s′) for possible post-decision
states s, s′ ∈ Sx. The prior mean V 0 (s) is entirely analogous
to the initialization of the value function approximation in
the approximate dynamic programming literature. The prior
variances reflect our beliefs about the uncertainty of V 0. The
covariances can be thought of as a measure of the similarity
of two states; our examples in Section IV give one possible
way to initialize them. We do not require prior independence
in the beliefs about different states, an assumption that is
made in [19].

This belief structure will evolve as we make decisions. Let
Fn be the sigma-algebra generated by the first n states we
visited and the first n decisions we made. We say that we
are “at time n” when this occurs. The notation IEn denotes
the expectation given Fn. Our next assumption will give us
a simple way to update our beliefs.

Assumption 2: It is possible to obtain a sample
R̂ (Sx,n) ∼ N (V (Sx,n) , λ (Sx,n)) independently of
all past samples after making a decision at time n.

This assumption is again carried over from [19]. It is a
standard assumption in the optimal learning literature, but
does not hold in approximate dynamic programming. We
cannot obtain unbiased samples of the true value of a state;
the best we can do to update our approximation of V (Sx,n)
is a biased sample of the form

v̂n+1 = max
x

C
(
Sn+1, x

)
+ γV n

(
SM,x

(
Sn+1, x

))
. (3)

In practice, we simply use v̂n+1 in lieu of R̂, keeping in
mind that this observation may not satisfy the assumptions
of the Bayesian model. We can choose a value for the
variance parameter λ (Sx) that reflects our notion of the
possible range or spread of values for the observations v̂.
Since the observations depend on previous value function
approximations (constants from our point of view), this
quantity will typically be smaller than the prior variances
in Σ0.

Under Assumption 2, we can use standard Bayesian up-
dating equations [20] to obtain a new set of beliefs

V n+1 (s) = V n (s)

+
R̂ (Sx,n)− V n (Sx,n)

λ (Sx,n) + Σn (Sx,n, Sx,n)
Σn (s, Sx,n) (4)

with covariances given by

Σn+1 (s, s′) = Σn (s, s′)

− Σn (s, Sx,n) Σn (Sx,n, s′)
λ (Sx,n) + Σn (Sxn , Sx,n)

(5)

for all s, s′ ∈ Sx. In this manner, we can change our beliefs
about any post-decision states that were previously believed
to be correlated with Sx,n. Consequently, we do assume



posterior independence, as [19] does. In the correlated model,
a single observation becomes much more powerful than in
the independent model.

III. THE KNOWLEDGE GRADIENT POLICY FOR
EXPLORATION

In the ranking and selection literature, a measurement
decision fixes the type of observation we will get (by
specifying a particular reward process), and thus determines
the way that we will update our beliefs once we see the
observation. In approximate dynamic programming, once we
have reached the pre-decision state Sn+1, we know that the
next observation will be viewed as a sample of the value of
Sx,n, the previous post-decision state. The choice of which
post-decision state to observe was made at the previous pre-
decision state Sn. Thus, when we make a decision at state
Sn, we are implicitly deciding the type of observation that
we will receive.

One possible way to make decisions at time n is

xn = arg max
x

Qn (Sn, x) (6)

where

Qn (Sn, x) = C (Sn, x) + γV n
(
SM,x (Sn, x)

)
.

This is the usual “pure exploitation” policy, which assumes
that our current value function approximation is accurate and
optimizes based on it. We now present a new policy, based
on the method of knowledge gradients, that incorporates
exploration into the decision rule by considering the value
of information obtained from a single decision.

In [23], the knowledge gradient (KG) concept is described
as “choosing the measurement that would be optimal if it
were our last chance to learn.” Suppose that we are at state
Sn at time n, and the next decision will be the last to impact
our beliefs, that is, V n

′
= V n+1 for all n′ > n+1. Under this

assumption, the optimal action can be found by computing

x∗,n = arg max
x

C (Sn, x) + γIEnxV
n+1

(
SM,x (Sn, x)

)
(7)

where IEnx is given Fn and the decision x at time n. Equation
(7) is similar to the usual approximate Bellman’s equation
from (2), but incorporates the fact that the value function
approximation will change after action x is taken into the
decision-making. Bellman’s equation was first used in this
learning context by [26]. The KG idea assumes that V n+1

will be our final approximation starting at time n + 1, and
allocates the time-n decision to maximize the improvement
made by the resulting change from V n to V n+1.

The change will only occur after we transition from Sx,n

to Sn+1 and use (3) to update our approximation. With this
in mind, we expand the Q-factor of action x in (7) as

Q∗,n(Sn, x) = C (Sn, x) + γIEnxV
n+1

(
SM,x (Sn, x)

)
= C (Sn, x)

+ γ
∑
Sn+1

P
(
Sn+1|Sx,n

)
IEnx max

x′
Qn+1

(
Sn+1, x′

)

The only reason to follow an exploration strategy is to collect
information that may affect our value function approxima-
tion. If the approximation becomes fixed at time n + 1, it
is impossible to collect any new information, and we should
follow a pure exploitation policy beginning with state Sn+1.

The quantity Qn+1
(
Sn+1, x′

)
, however, depends on

V n+1
(
SM,x

(
Sn+1, x′

))
, which was updated using (4) be-

tween time n and time n + 1. It can be shown [20] that
the conditional distribution of V n+1 (s) given Fn and the
decision x at time n, can be written as

V n+1 (s) ∼ V n (s) +
Σn (s, Sx,n)√

λ (Sx,n) + Σn (Sx,n, Sx,n)
· Z

where Z ∼ N (0, 1). Note that the random variable Z is not
indexed by s. In fact, it is common to all the conditional
distributions of V (s) for s ∈ Sx, reflecting the correlation
in our beliefs. As a result, we can write

IEn max
x′

Qn+1
(
Sn+1, x′

)
= IE max

x′
(anx′ + bnx′Z) (8)

where

anx′ = C
(
Sn+1, x′

)
+ γV n

(
SM,x

(
Sn+1, x′

))
, (9)

bnx′ = γ
Σn
(
SM,x

(
Sn+1, x′

)
, Sx,n

)√
λ (Sx,n) + Σn (Sx,n, Sx,n)

. (10)

Due to the correlations, the vector bn could have all non-zero
values even if SM,x

(
Sn+1, x′

)
6= Sx,n for all x′.

From the work by [20], it is known that

IE max
x′

(anx′ + bnx′Z) =
(

max
x′

anx′

)
+
∑
y∈A

(
bny+1 − bny

)
f (− |cy|) (11)

where A is the set of all y for which we can find numbers
cy−1 < cy for which y = arg maxx′ anx′ + bnx′z for z ∈
(cy−1, cy), with ties broken by the largest-index rule. These
cy are the same as the quantities cy used in (11). The points
in the set A are renumbered in order of increasing bnx′ . The
function f is defined to be f (z) = zΦ (z) + φ (z), where φ
and Φ are the standard Gaussian pdf and cdf, respectively.

Define the knowledge gradient to be the difference

νKG,n
(
Sx,n, Sn+1

)
= IE max

x′
(anx′ + bnx′Z)−max

x′
anx′

=
∑
y∈A

(
bny+1 − bny

)
f (− |cy|) .

This quantity is the expected improvement achieved in our
estimate of maxx′ Qn+1

(
Sn+1, x′

)
by taking action x out

of state Sn. Since anx′ = Qn
(
Sn+1, x′

)
, we can now write∑

Sn+1

P
(
Sn+1|Sx,n

)
IEnx max

x′
Qn+1

(
Sn+1, x′

)
=

∑
Sn+1

P
(
Sn+1|Sx,n

)
max
x′

Qn
(
Sn+1, x′

)
+

∑
Sn+1

P
(
Sn+1|Sx,n

)
νKG,n

(
Sx,n, Sn+1

)



We can then write∑
Sn+1

P
(
Sn+1|Sx,n

)
max
x′

Qn
(
Sn+1, x′

)
= V n (Sx,n)

because V n is meant to approximate the value of a post-
decision state. Consequently, (7) becomes

x∗,n = arg max
x

C (Sn, x) + γV n (Sx,n)

+ γ
∑
Sn+1

P
(
Sn+1|Sx,n

)
νKG,n

(
Sx,n, Sn+1

)
. (12)

This decision rule is very similar to the pure exploitation de-
cision rule in (6), except that an uncertainty bonus in the form
of a weighted sum of KG factors is added to Qn (Sn, x).
This bonus will tend to be larger if the components of Σn

are larger, indicating more uncertainty, but it will also tend
to reward decisions with higher Qn (Sn, x). Thus, the KG
factor attempts to strike a balance between exploration and
exploitation. Decisions with reasonably high Q-factors and
high uncertainty may be preferred by the KG policy over the
pure exploitation decision.

An algorithm for computing the KG factors exactly can
be found in [20]. It is necessary to note that the com-
putational cost of computing the right-hand side of (8) is
O
(
M2 logM

)
, where M is the size of an and bn. In our

setting, the length of an and bn depends on the size of
the action space, but not on the size of the state space.
Thus, although the KG computation can be fairly costly, our
algorithm will scale to problems with large state spaces, as
long as the action space is not too large.

In order to compute (12) exactly, we require the transi-
tion probabilities P

(
Sn+1|Sx,n

)
. If these probabilities are

unknown or difficult to compute, we can compute (12)
approximately by simulating K transitions out of Sx,n. Then,∑

Sn+1

P
(
Sn+1|Sx,n

)
νKG,n

(
Sx,n, Sn+1

)
≈ 1

K

K∑
k=1

νKG,n
(
Sx,n, Sn+1

k

)
(13)

where Sn+1
k = SM,W

(
Sx,n,Wn+1 (ωk)

)
for K different

sample paths ωk. We use this technique in our experiments
in Section IV-B.

Finally, the KG rule given in (12) is designed for online
problems, where we are solving the dynamic program in
real time. In this setting, we are collecting the rewards
C (Sn, xn) as we make decisions and train the value function
approximation. However, many applications take place in an
offline setting, where we first use ADP to train our value
function approximation offline, and generate the random
transitions from Sx,n to Sn+1 in a simulator. The final
approximation obtained from this procedure can then be
evaluated by first fixing it in place of the true value function
in Bellman’s equation, then running the resulting policy in
real time and observing the result, or estimating the average
performance of the policy through simulation. In this offline

setting, it is more logical to use an offline version of (12)
given by

x̃∗,n = arg max
x

∑
Sn+1

P
(
Sn+1|Sx,n

)
νKG,n

(
Sx,n, Sn+1

)
,

(14)
reflecting the distinction between the offline KG rule of [22]
and the online KG rule of [24].

IV. NUMERICAL EXAMPLES

We analyzed the performance of the KG policy on an
inventory management problem and an energy storage prob-
lem. Two types of competing policies were considered:

Bayesian Q-learning (BQL). The Bayesian Q-learning
policy of [19] computes the expected gain from learning the
true value of the Q-factor Q (S, x) = C (S, x) + γV (Sx).
The gain function used for this computation assumes in-
dependence of Q-factors. We tested this policy under our
correlated Bayesian model, that is, our beliefs were updated
using (4) and (5), but the decisions were made under the
original independence assumption.

Epsilon-greedy (EG). The ε-greedy policy described in [4]
chooses the pure exploitation decision (6) with probability
1−ε and picks an action at random the rest of the time. The
parameter ε was tuned separately for the online and offline
settings. The policy was tested both under our correlated
Bayesian model, and in a traditional ADP setting where
stochastic approximation with a stepsize rule αn = k

k+n
with k = 25 is used to smooth the observation v̂n with the
previous approximation V n−1

(
Sx,n−1

)
.

A. Inventory Management

Suppose that the demand Dn for a product on the nth
day follows a Poisson distribution with parameter µ = 25.0,
and that daily demands are independent. Suppose that the
price Pn on day n takes a value in the set {7.5, 11.0, 15.0}
and evolves according to a Markov chain with transition
probability matrix

P =

 0.3 0.6 0.1
0.25 0.5 0.25
0.1 0.7 0.2

 .

Let Rn be the amount of inventory held at time n. We assume
that Rn can be any integer from 0 to 99. The state of the
inventory problem can be written as Sn = (Rn, Pn, Dn).
After choosing an order quantity xn, we move to a post-
decision state Sx,n = (Rx,n, P x,n) where

Rx,n = Rn + xn,
P x,n = Pn.

We assume that xn can be any integer between 0 and 49. Let
c = 10.0 be the cost of ordering one unit of product, and let
h = 5.0 be the holding cost. The single-period reward can
be written as

C
(
Rx,n−1, Pn, Dn

)
= Pn ·min

(
Dn, Rx,n−1

)
− cxn

− h ·max
(
Rx,n−1 −Dn, 0

)
.



Fig. 1. True value functions for the inventory problem.

The transition to the next pre-decision state is made via
the equation Rn+1 = max

(
Rx,n −Dn+1, 0

)
. The variables

Dn+1 and Pn+1 evolve as described above. Our objective
is to maximize the infinite-horizon discounted reward with a
discount factor of γ = 0.99. In this problem, the size of the
post-decision state space Sx is 3 · 100 = 300, and the size
of the action space is 50.

In this problem, it is necessary to learn the demand and
price distributions without ordering too much inventory, due
to the high holding cost. It is possible to compute the true
value function exactly using (1), because the state space
is small and the transition probabilities can be computed
exactly using the Poisson cdf. Fig. 1 shows the true value
functions for all three price levels.

We initialize our Bayesian model by letting V 0 (s) =
11000 for every s. The initial covariances are set using a
power-exponential function:

Σ0 (s, s′) = 5002e
−0.01

[
(r−r′)2

+(p̃−p̃′)2
]
. (15)

For a state s = (r, p), the quantity p̃ is set to 0, 1 or
2 depending on whether p is low, medium or high. The
coefficient 5002 signifies that we believe V (s) to be in
the interval V 0 (s) ± 2 · 500. The covariance between two
states is larger if those states are close together in terms of
price and inventory levels. The sample variance was set to
λ (s) = 1502, and the starting state was chosen such that
R0 = 0 and P 0 was the medium price.

Each policy was run for 150 iterations. This was repeated
with 103 different sample paths, which were divided into lots

TABLE I
MEANS AND STANDARD ERRORS FOR THE INVENTORY PROBLEM.

Offline objective Online objective
Mean Avg. SE Mean Avg. SE

Optimal 10794.75 3.31 — —
Offline KG 10639.28 3.45 -1644.99 59.90
Online KG 10188.41 3.16 3961.38 31.44
BQL 10632.58 3.10 3819.69 46.15
Bayes EG 10586.56 3.29 3328.39 35.28
ADP EG 9626.17 3.22 2448.67 23.98

Fig. 2. Value function approximations obtained by offline KG.

Fig. 3. Value function approximations obtained by online KG.

of 50 to obtain approximately normal samples of the average
online objective value achieved by each policy. The policies
were then evaluated in an offline setting by simulating the
average final value function approximations obtained from
the online runs on 105 sample paths, which were divided
into lots of 1000. Table I reports the means and average
standard errors obtained for both the online and offline values
of the different policies. Online results are unavailable for the
optimal policy because it is found via value iteration, where
we loop over all states instead of training the value function
approximation as we move forward through time.

The KG policies achieve the best performance in their
respective settings. Offline KG performs poorly in the online
setting, but obtains the best value function approximation.
Online KG yields the best online performance, but loses
to Bayesian Q-learning and ε-greedy policies offline. The
Bayesian Q-learning policy of [19] performs competitively
against KG, though KG wins by a relatively small margin.
The performance of offline KG is within 1.5% of optimality.

Figs. 2-6 show the final value function approximations
obtained from each policy, used to evaluate the policies
offline. Offline KG is the only policy that captures the



Fig. 4. Value function approximations obtained by Bayesian Q-learning.

Fig. 5. Value function approximations obtained by Bayesian ε-greedy.

general shape of the value function as having a clear global
maximum, and the only one to discover that certain states
have values greater than 11000. The other policies obtain
approximations with small local peaks, and do most of
their exploration on states corresponding to lower inventory
levels (< 50). The approximations for higher inventory levels
mostly remain at their starting values of 11000. Fig. 6 shows
the approximations obtained by the ADP ε-greedy policy
for the value of ε with the best offline performance. This
policy is able to capture some of the difference between price
levels (which the other policies were unable to do), but still
achieves poor performance in both online and offline cases.

B. Energy Storage

We also considered an energy storage problem with a
continuous state variable. Suppose that we have five sodium-
sulfur batteries, each with an energy capacity of 7 MWh and
a power of 1 MW, meaning that 1 MWh per battery can be
discharged in one hour. The spot price Pn is assumed to
follow a geometric Ornstein-Uhlenbeck process [27]. When
time is discretized into hours, this means that

log
Pn+1

P 0
− log

Pn

P 0
= −α log

Pn

P 0
+ σZn+1 (16)

Fig. 6. Value function approximations obtained by ADP ε-greedy.

for Zn+1 ∼ N (0, 1). We used values of α = 0.0633 and
σ = 0.2 in our experiments, as well as an initial price P 0 =
30. Let Rn denote the current charge level (in MWh) of the
batteries; we assume that Rn is an integer between 0 and
35. In the value function approximation, the scaled log-price
log Pn

P 0 is discretized into 18 intervals of width 0.25 between
−2 and 2. The state of the problem is Sn = (Rn, Pn) and
the post-decision state is given by

Rx,n = Rn + xn,

P x,n = Pn.

The random transition to the next pre-decision state consists
of updating the price using (16). Thus, the size of Sx is
18 · 36 = 648. We assume that demand is infinite; thus, our
revenue depends only on Rn and the amount xn that we wish
to charge or discharge. The decision xn is integer-valued and
can be as low as −5 and as high as +5. The single-period
reward is given by

C (Pn, xn) = −Pnxn.

A positive decision corresponds to charging the battery,
which incurs a cost, whereas discharging the battery produces
revenue. We assume that there are no other costs in the
problem; thus, the main challenge of the problem is to learn
the price distribution and understand when the price is low
enough to buy or high enough to sell.

While the value function approximation uses a discretized
state space, we keep track of the continuous price as we step
forward through time. We simulate Pn using the continuous

TABLE II
MEANS AND STANDARD ERRORS FOR THE STORAGE PROBLEM.

Offline objective Online objective
Mean Avg. SE Mean Avg. SE

Offline KG 208.39 0.33 -260.59 16.86
Online KG 68.10 0.24 155.30 6.01
BQL 133.65 0.31 76.03 1.87
Bayes EG 85.65 0.31 67.10 3.00
ADP EG 154.47 0.35 7.09 2.57



Fig. 7. Value function approximations obtained by offline KG.

Fig. 8. Value function approximations obtained by online KG.

transition function given in (16), and discretize the price
when it is necessary to call the value function approximation.
This issue is discussed in [6]. For our purposes, the signifi-
cance of the continuous price is that we can no longer solve
the problem exactly using (1), nor can we compute the exact
KG factors in (12). We use the approximate KG factor from
(13) with K = 20. The value function approximation was
initialized to a high value with V 0 (s) = 104. The actual
performance values obtained from the policies were much
smaller; Sec. 4.7 of [6] discusses the benefits of optimistic
initial estimates. The initial covariances were set using (15)
with a coefficient of 10002 in front. The sample noise was
taken to be λ (s) = 2002.

Table II reports the results obtained for the different
policies in both offline and online settings. In the storage
problem, the KG approach appears to have a clear advantage.
Offline KG outperforms all other policies by a convincing
margin in the offline case, while performing poorly online;
similarly, online KG achieves the worst offline result, but sig-
nificantly outperforms the competition online. The Bayesian
Q-learning policy does not maintain the competitive perfor-
mance that we observed for the inventory problem.

Fig. 9. Value function approximations obtained by Bayesian Q-learning.

Fig. 10. Value function approximations obtained by Bayesian ε-greedy.

Figs. 7-11 show the value function approximations ob-
tained by each policy for the lowest, middle and highest
prices (out of 18 price levels in all). Offline KG makes the
biggest distinction between price levels. The value appears
to increase with the charge level for each price. This is
expected, because the problem has no holding cost, and it
is possible to hold on to energy instead of selling it, so
it is always better to have more in storage. However, the
value of a low charge level will be lower if the price is
higher. If the batteries are empty and the price is high, it will
take several time steps to charge them, resulting in multiple
missed opportunities to sell. By the time the batteries are
full, the price process is likely to have reverted to the mean.

As before, the other policies do most of their exploration
on states with low charge levels. The lack of exploration is
particularly noticeable in the case of the ADP policy. The
lowest and highest price levels occur with low probability;
the price process spends most of its time around the middle.
Thus, states with these extreme price levels are rarely visited.
As a result, the ADP policy never changes its estimate of the
values of such states. The Bayesian policies, however, use
correlated learning to update these estimates.



Fig. 11. Value function approximations obtained by ADP ε-greedy.

Our experiments on the storage problem provide reassur-
ing evidence that the KG policy still performs well when the
KG factors cannot be computed exactly, requiring us to use
the approximation from (13). The results suggest that KG
can retain its usefulness in situations where the distribution
function of the random component Wn+1 of the transition
function SM,W is difficult to compute, but random transitions
can still be simulated.

V. CONCLUSION

We have proposed a new Bayesian model for approximate
dynamic programming in which our beliefs about the values
of different states are allowed to be correlated. The model
builds on work by [19], but makes fewer assumptions and
allows us to obtain much more information out of a single de-
cision. We have also proposed a policy for making decisions
in this model based on the knowledge gradient approach
from the optimal learning literature. Variations of the KG
idea allow us to handle both offline and online problems.
We have conducted experiments on two important problem
classes. The results indicate that the KG policy yields better
performance given the same number of iterations as other
techniques, even when the KG factors are computed approx-
imately. We believe that the KG method, used in conjunction
with a correlated learning model, is a promising approach
to the issue of exploration vs. exploitation in approximate
dynamic programming.
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