Chapter 1

Dynamical Recurrent
Networks in Control

Danil V. Prokhorov, Gintaras V. Puskorius, and Lee A.
Feldkamp

1.1 Introduction

We discuss in this chapter the application of dynamical neural networks to con-
trol. We describe our approach to training of such networks and summarize our
experience accumulated through extensive computer simulations and experi-
mentation with time-lagged recurrent networks used as components of a control
system. In the past we have experimented with both real control systems and
simulations thereof. In this chapter, for the sake of reproducibility, we adopt the
setting of neurocontrol systems developed and tested in simulation. We provide
two examples to illustrate our approach.

Simulation studies offer ideal opportunities to shape our understanding and
command of neural network techniques. This philosophy is particularly ap-
propriate for understanding dynamical neural networks. We restrict attention
to time-lagged recurrent neural networks (TLRNN), with recurrent multilayer
perceptrons (RMLP) as a special case. TLRNN’s admit an arbitrary pattern
of connectivity between nodes of a network, whereas RMLP’s have a layered
connectivity pattern. From a structural point of view, TLRNN’s can subsume
many conventional signal processing structures, e.g., tapped delay lines, finite
impulse response (FIR) and infinite impulse response (IIR) filters. At the same
time, TLRNN’s can represent dynamic systems with strongly hidden states and
possess universal approximation capabilities for dynamic systems similar to the
capabilities of feedforward neural networks used for static mapping [Lo, 1993].
We suspect that internal recurrence may be more effective than output-to-input
(external) recurrence. It seems preferable to place the recurrence closer to where
it occurs in the dynamic system under control (plant in control parlance), e.g.,

23

24 CHAPTER 1. DRN IN CONTROL

before the output transform. In addition, internal states are not forced to be
equal to some specific values. This tends to make the network better at iter-
ated predictions than a similarly trained network with external recurrence only.
Furthermore, we have shown that a properly trained fixed-weight TLRNN can
act as a stabilizing controller for multiple distinct and weakly related systems,
without explicit knowledge of system identity. We consider this last observa-
tion as particularly intriguing since it suggests that such a TLRNN effectively
embeds characteristics of an adaptive system.

Recurrent networks are often regarded as difficult to train. Although our
effective training procedures for TLRNN can be carried out with relative ease,
we agree that difficulties observed in training are real. Common pitfalls are poor
local minima and the recency effect, the tendency for recent weight updates to
cause a network to forget what it has learned in the past. It is a reflection of
the stability-plasticity dilemma faced by any neural network [Grossberg, 1982].
While the recency effect is also present in training feedforward networks, it is
substantially more difficult to counter in training TLRNN’s, where the temporal
order of data sequences must be preserved. We nevertheless employ sequential
training procedures for weight updates (pattern-by-pattern, rather than batch,
updates) because of benefits associated with their stochastic nature. To avoid
the recency effect, we have developed a special technique called multi-streaming.
In essence, a single multi-stream update provides a “quasi-batching” mechanism
that allows the weight update procedure to synthesize properly a composite
update based on two or more instances. We emphasize that the resulting update
is not a simple average of individual updates, and we discuss the details of multi-
streaming in Section 1.4.3.

This chapter consists of the following sections. Section 1.2 introduces equa-
tions necessary for the execution of a TLRNN (forward propagation of signals).
Section 1.3 describes elements of training, composed of derivative calculations
and weight update methods. We briefly discuss two methods of calculating
derivatives in TLRNN and emphasize the importance of obtaining meaning-
ful derivatives. One method is called real-time recurrent learning (RTRL), the
other backpropagation through time (BPTT) or truncated BPTT, denoted as
BPTT(h). We prefer BPTT(h) because it is simpler to implement and requires
much less computational effort than RTRL. Although we mention two weight
update methods, first-order (such as gradient descent) and second-order, we use
sequential second-order weight updates based on the extended Kalman filter
(EKF) algorithm. Supplemented by multi-streaming (see Section 1.4.3), this
method is one of the best modern methods of weight updates for TLRNN’s.

We describe our basic approach to controller synthesis in Section 1.4. First,
we discuss the specific elements of controller training. We show how recur-
rence originates naturally in any closed-loop control system, even if all of its
components are feedforward neural networks. In general, this demands using
more than one-time-step BPTT for best results. We mention the advantages
of a recurrent neurocontroller, some of which are illustrated in Section 1.5. We
adopt a modular approach that relies on a set of well tested functions (we use
the C language, though other programming languages can certainly be used).

1.2. DESCRIPTION AND EXECUTION OF TLRNN 25

Each of the functions represents a particular procedure required to carry out a
typical controller training session. For example, we have a separate function to
propagate signals forward through a network given its description (architectural
information and weights). Another function handles derivative calculations and
BPTT. Yet another is used for EKF-based weight updates. We “wire” the
required functions together for a specific problem of controller synthesis, which
begins with development of a plant model. For a plant model, we can use either
the generating equations directly or train an identification neural network. In
either case, we may obtain the sensitivity signals that are required to train a
controller. We conclude Section 1.4 by discussing our multi-stream technique.

Examples of controller training for nontrivial systems are given in Sections
1.5 and 1.6, followed by concluding remarks in Section 1.7.

1.2 Description and Execution of TLRNN

Let the TLRNN (Figure 1.1) consist of n.nodes nodes, including n_in nodes
which serve as receptors for the external inputs, but not including the bias
input, which we denote formally as node 0. The latter is set to the constant
1.0. The array I contains a list of the input nodes; e.g., I is the number of the
node that corresponds to the jth input, in;. Similarly, a list of the nodes that
correspond to network outputs out, is contained in the array O. We allow for
the possibility of network outputs and targets to be advanced or delayed with
respect to node outputs by assigning a phase 7, to each output. In most cases
these phases are zero. Node i receives input from n_con (i) other nodes and has
activation function f;(-); n_con(i) is zero if node i is among the nodes listed
in the array I. The array c specifies connections between nodes; c; ; is the node
number for the jth input for node i. Inputs to a given node may originate at
the current or past time steps, according to delays contained in the array d, and
through weights for time step ¢ contained in the array W(¢). Summarizing, the
jth input to node i at time step ¢ is the output of node c; ; at time ¢t —d; ; and
is connected through weight W; ;(¢).

Prior to beginning network operation, all appropriate memory and internal
states are initialized to zero. At the beginning of each time step, we execute
the following buffer operations on weights and node outputs (in practical imple-
mentation, a circular buffer and pointer arithmetic may be employed). In the
pseudocode below, dmax is the largest value of delay represented in the array
d and h is the truncation depth of the backpropagation through time gradient
calculation that is described in Section 1.3.1.

for i = 1 to nmodes {

for iy = t-h-dmax to t-1 {
W (i)
Yi(it)

W(i; +1)
yi(is + 1)

—~
—_
N =
— ~—

} /% end iy loop */

26 CHAPTER 1. DRN IN CONTROL

.
.

o
N[N |R[WIN[(R|R[N R[N, [|W[(N]R[B W[N] ==
NO|NAR|OIWIN|IC|WIN|(O|WIN|O|WINIR|OIWIN|IFR|IO]O
[Sl[=l[=][=][=][=}[=][=] [=]=] =] =] (=] =] 3l J (=] [=}] 3] _}[=] [=] §=1

Figure 1.1: Schematic illustration of an RMLP, denoted as 1-2R-3-1R. The first
hidden layer of two nodes is fully recurrent (2R in the notation), the second
hidden layer (three nodes) is feedforward, and the output node is recurrent (1R
in the notation). The small boxes denote unit time delays. The table contains
elements of the connection and delay arrays. Entries for index i are absent
for the bias (treated as node 0) and the network input (node 1), since neither
receives input from any other node. Bias connections are present, as indicated
in the connection table, but are not drawn. Note that recurrent connections
have unit delays. The elements of the input and output arrays are: I; = 1 and
O1 = 7. Here activation functions of all the network nodes are assumed to be
the same bipolar sigmoids. In general, we may have another table to specify the
activation functions.

1.2. DESCRIPTION AND EXECUTION OF TLRNN 27

} /* end i loop */
Then, the actual network execution is expressed as

for i = 1 to n_in {

y(t) = ing(t) (1.3)
}
for i = 1 to nmnodes {
if ncon(i) > 0 {
n_con(i)
vit) = £i(D Wiitye., (t —dij)) (1.4)
j=1
}
}
for p = 1 to n_out {
outp(t +7) = yo,(t) (1.5)

}

This description is often called an ordered network since the execution order
of all nodes is clearly defined. Interestingly, the description does not explicitly
involve the concept of layers; the layered structure (if desired) is imposed im-
plicitly by the connection pattern. Pure delays can be described directly, so
that tapped delay lines on either external or recurrent inputs are conveniently
represented. We note that the state of the network can be compactly denoted as
y(t —), where) is a set of delays {0,1,...,dmax}. For example, if dmax = 2,
then the state at time ¢ may be specified by y(¢), y(t — 1), and y (¢ — 2).

Let us summarize the notation introduced in this section. We mark all
nonscalar quantities as bold letters.

Y, Yi Array of network node activations and a particular element.

W, W; ; Array of weights of the network (weights of individual connec-
tions are denoted via the subscript).

C,Cij Connectivity table and particular element.

d,d;; Array of delays and one of its element.

LI Array of indexes of nodes assigned external inputs in.

0,0; Array of indexes of nodes used as outputs out.

28 CHAPTER 1. DRN IN CONTROL

1.3 Elements of Training

Two crucial elements of training are discussed here. We describe methods for
obtaining derivatives, and then discuss weight update approaches and our pre-
ferred approach. Derivative calculations for dynamic recurrent networks have
already been reviewed in Chapter ?? and are specialized to the present context
here.

1.3.1 Derivative Calculations

As mentioned above, the two main approaches to obtaining derivatives are real-
time recurrent learning (RTRL) and backpropagation through time (BPTT) or
its truncated version BPTT(h) [Williams and Peng, 1990].

The RTRL algorithm was proposed in [Williams and Zipser, 1989] for a fully
connected recurrent layer of nodes. The name RTRL is derived from the fact
that the weight updates of a recurrent network are performed concurrently with
network execution. The term “forward method” is more appropriate to describe
RTRL, since it better reflects the mechanics of the algorithm. Indeed, in RTRL,
calculations of the derivatives of node outputs with respect to weights of the
network must be carried out during the forward propagation of signals in a
network.

The computational complexity of RTRL scales as the fourth power of the
number of nodes in a network (worst case of a fully connected TLRNN), with
the space requirements (storage of all variables) scaling as the cube of the num-
ber of nodes [Williams and Zipser, 1995]. Furthermore, RTRL for a TLRNN
requires that the dynamic derivatives be computed at every time step for which
that TLRNN is executed. Such coupling of forward propagation and deriva-
tive calculation is due to the fact that in RTRL both derivatives and TLRNN
node outputs evolve recursively. This difficulty is independent of the weight up-
date method employed, and it may hinder practical implementation on a serial
computer processor with limited speed and resources.

We have made extensive use of forward methods of derivative calculation
[Narendra and Parthasarathy, 1990, Puskorius and Feldkamp, 1994]. Some time
ago, however, we replaced the forward method with a form of truncated back-
propagation through time (BPTT(h)) [Williams and Peng, 1990, Werbos, 1990].
By executing BPTT(h) at every time step with a suitably chosen truncation
depth h, we obtain derivatives that closely approximate those of the forward
method with greatly reduced complexity and computational effort. In a con-
troller training problem, the truncation depth required for sufficiently accurate
derivatives depends on the nature of the plant and on the desired controller
efficacy.

BPTT(h) offers a number of potential advantages relative to forward meth-
ods. First, the computational complexity scales as the product of h with the
square of the number of nodes. The required storage is also less than that of
RTRL; it is proportional to the product of the number of nodes and the trun-
cation depth h. Second, BPTT(h) may lead to a more stable computation of

1.3. ELEMENTS OF TRAINING 29

dynamic derivatives than do forward methods because it utilizes only the most
recent information in a trajectory. Third, the use of BPTT(h) permits train-
ing to be carried out asynchronously with the TLRNN execution. This feature
enabled us to test our approach on real automotive hardware, as applied to
on-vehicle controller training described in [Puskorius et al., 1996].

We describe here the mechanics of the particular form of BPTT(h) we
have most commonly employed. (Description of other forms can be found in
[Williams and Zipser, 1995, Feldkamp and Prokhorov, 1998, Feldkamp et al., 1998].)
We use the Werbos notation in which F'z denotes an ordered derivative of some
quantity g with respect to . In this form of BPTT, F’z denotes the ordered
derivative of the output of network node p with respect to z. (The reader is
cautioned not to confuse the form of BPTT(h) described in this chapter with
other forms [Williams and Zipser, 1995]. In particular, the form of BPTT often
referred to by Werbos [Werbos, 1990] is what may be denoted as BPTT(oc0). It
is recovered when BPTT is performed only at the very end of a long trajectory.)

To derive the backpropagation equations, the forward propagation equations
are considered in reverse order. From each equation we derive one or more back-
propagation expressions, according to the principle that if a = g(b, ¢), then Eb
+:%ﬂ%aﬁF&+:%ﬁ%.ﬂthwmgn%%Mﬁ#:ﬂmM%%mm
the quantity on the right hand side is to be added to the previously computed
value of the left hand side. In this way, the appropriate derivatives are dis-
tributed from a given node to all nodes and weights that feed it in the forward
direction, with due allowance for any delays that might be present in each con-
nection. The simplicity of the formulation reduces the need for visualizations
such as unfolding in time or signal-flow graphs. Of course, the pseudocode below
can be invoked only after the completion of forward propagation at time step .

for p = 1 to nout {
for i = 1 to nnodes {
for k = 1 to ncon(i) {

FWix = 0 (1.6)
} /* end k loop */
for iy = t to t-h-1 {
Flyi(i) = 0 (1.7)
} /* end iy loop */
} /% end i loop */
P
Fyo,(t) = Fb ., (1.8)

& (1) tgt,, (t + 1) — outy (i + 1)
for ip = 0 to h {

o= t—ip (1.10)

30 CHAPTER 1. DRN IN CONTROL

for i = nmnodes to 1 {
if ncon(i) > 0 {
for k = ncon(i) to 1 {

io= cin (1.11)

iy = i1 —dig (1.12)
Flyj(ia) += 7% Fly(in)Win(in) f (vi(i1)) (1.13)
FWin + =y (i2)Fyi(in) f (vilin)) (1.14)

} /* end k loop */

} /% end i loop */
} /* end i loop */
} /* end p loop */

Here (1.6), (1.7), and (1.8) serve to initialize the derivative arrays. In train-
ing a single network, we have F¥ . = 1 in (1.8), expressing the fact that
dyo, (1)
Byop (t)
date described in the next section, where the desired value of network output
out,(t + 1) = yo,(t) is denoted as tgt,(t + 7,). The actual backpropagation
occurs in expressions (1.13) and (1.14), which derive directly from the forward
propagation expression (1.4). The derivative of the activation function f(x)
with respect to its argument x is denoted as f'(z). We have included a discount
factor v in expression (1.13), though it is often set merely to its nominal value
of unity.

= 1. The error &,(t) computed in (1.9) is used in the weight up-

1.3.2 'Weight Update Methods

Calculation of the derivatives F*w is one of the elements necessary for training a
TLRNN. Another element is a weight update method. We can broadly classify
weight update methods according to the amount of information used to perform
an update. We write the general update equation as

wt+1) = w(t)+d(), (1.15)

where the direction vector d(t) is determined according to some rules. We ob-
tain the well known gradient descent if d(t) = —n(t)F_qw(t). Here ¢ is a chosen
cost function (frequently, a sum of squared errors), and 7(t) is the (positive-
valued) learning rate, which can generally be time-varying. Naturally, gradient
descent is the simplest among all first-order methods of minimization for differ-
entiable functions, and is the easiest to implement. However, it uses the smallest
amount of information for performing weight updates. An imaginary plot of to-
tal error versus weight values, known as the error surface, is highly nonlinear
in a typical neural network training problem, and the total error function may
have many local minima. Relying only on the gradient in this case is clearly

1.3. ELEMENTS OF TRAINING 31

not the most effective way to update weights. Although various modifications
and heuristics have been proposed to improve the effectiveness of the first-order
methods, their convergence still remains quite slow due to the intrinsically ill-
conditioned nature of training problems [Haykin, 1999]. Thus, we need to utilize
more information about the error surface to make the convergence of weights
faster.

In differentiable minimization, the Hessian matrix, or the matrix of second-
order partial derivatives of a function with respect to adjustable parameters,
contains information that may be valuable for accelerated convergence. For in-
stance, the minimum of a function quadratic in the parameters can be reached
in one iteration, provided the inverse of the nonsingular positive definite Hes-
sian matrix can be calculated. While such superfast convergence is only possible
for quadratic functions, a great deal of experimental work has confirmed that
much faster convergence is to be expected from weight update methods that use
second-order information about error surfaces. Unfortunately, obtaining the in-
verse Hessian directly is practical only for small neural networks [Bishop, 1995].
Furthermore, even if we can compute the inverse Hessian, it is frequently ill-
conditioned and not positive definite, making it inappropriate for efficient min-
imization. For TLRNN’s, we have to rely on methods which build a positive
definite estimate of the inverse Hessian without requiring its explicit knowl-
edge. Such methods for weight updates belong to a family of second-order
methods. For a detailed overview of the second-order methods, the reader is re-
ferred to [Haykin, 1999]. If d(¢) in (1.15) is a product of a specially created and
maintained positive definite matrix, sometimes called the approximate inverse
Hessian, and the vector —n(t)F_qw(t), we obtain the quasi-Newton method. Un-
like first-order methods which can operate in either pattern-by-pattern or batch
mode, most second-order methods employ batch mode updates. In pattern-
by-pattern mode, we update weights based on a gradient F_qw(t) obtained for
every instance in the training set, hence the term instantaneous gradient. In
batch mode, the index ¢ is no longer applicable to individual instances, and it
becomes associated with a training epoch. Thus, the gradient F_qw(t) is usually
a sum of instantaneous gradients obtained for all training instances during the
epoch t, hence the name batch gradient. The approximate inverse Hessian is
recursively updated at the end of every epoch, and it is a function of the batch
gradient and its history. Next, the best learning rate n(t) is determined via
a one-dimensional minimization procedure, called line search, which scales the
vector d(t) depending on its influence on the total error. The overall scheme is
then repeated until the convergence of weights is achieved.

Relative to first-order methods, most effective second-order methods utilize
more information about the error surface at the expense of many additional
calculations for each training epoch. This often renders the overall training time
to be comparable to that of a first-order method. Moreover, the batch mode
of operation results in a strong tendency to move strictly downhill on the error
surface. As a result, weight update methods that use batch mode have limited
error surface exploration capabilities and frequently tend to become trapped

32 CHAPTER 1. DRN IN CONTROL

in poor local minima. This problem may be particularly acute when training
TRLNN’s on large and redundant training sets containing a variety of temporal
patterns. In such a case, a weight update method that operates in pattern-by-
pattern mode would be better, since it makes the search in the weight space
stochastic. In other words, the training error can jump up and down, escaping
from poor local minima. Of course, we are aware that no batch or sequential
method, whether simple or sophisticated, provides a complete answer to the
problem of multiple local minima. A reasonably small value of root-mean-
squared (RMS) error achieved on an independent testing set, not significantly
larger than the RMS error obtained at the end of training, is a strong indication
of success. Well known techniques, such as repeating a training exercise many
times starting with different initial weights, are often useful to increase our
confidence about solution quality and reproducibility.

Achieving an acceptable solution while preserving accelerated convergence
of second-order methods requires a compromise weight update method. Such a
method is the extended Kalman filter (EKF) algorithm, discussed next.

The Kalman Recursion

We have made extensive use of training that employs weight updates based on
the extended Kalman filter method first proposed by [Singhal and Wu, 1989].
Unlike the aforementioned weight update methods that originate from the differ-
entiable function optimization framework, this method treats supervised learn-
ing of a TLRNN as an optimal filtering problem. (For background mate-
rial on the Kalman filter, see [Anderson and Moore, 1979, Haykin, 1996].) Its
solution recursively utilizes information contained in the training data from
the very beginning of the training process operating in the pattern-by-pattern
mode. Weights of the TLRNN are interpreted as states of a dynamical system
[Singhal and Wu, 1989] (not to be confused with state vector y of the TLRNN).
This system consists of the state evolution equation in the form of a one-step
time delay operator and the observer in the form of a TLRNN. The weights
must be estimated, and the improved estimates become weights of the TLRNN
for the next application of the Kalman recursion.

In much of our work, we have made use of a decoupled version of the EKF
method [Puskorius and Feldkamp, 1994, Puskorius and Feldkamp, 1991], which
we denote as DEKF. Decoupling was crucial for early practical application of
the method, when speed and memory capabilities of workstations and personal
computers were severely limited. At the present time, many problems are small
enough to be handled without decoupling, i.e., with global EKF, or GEKF. In
many cases, full coupling brings benefits in terms of quality of solution and
overall training time. The increased time required for each GEKF update,
however, remains a potential disadvantage in real-time applications.

For generality, we present the decoupled Kalman recursion; GEKF is re-
covered in the limit of a single weight group (9 = 1). The weights in W are
organized into g mutually exclusive weight groups; a convenient and effective
choice, termed node decoupling, has been to group together those weights that

1.3. ELEMENTS OF TRAINING 33

feed each node. Whatever the chosen grouping, the weights of group ¢ are
denoted by w;. The corresponding derivatives Ffwi of network outputs with
respect to weights w; are placed in n_out columns of H;.

To minimize at time step ¢ a cost function B = Y, ££(t)7S()&(t), where
S(t) is a nonnegative definite weighting matrix and &(¢) is the vector of errors,
the DEKF equations are as follows [Puskorius et al., 1996]:

-1

A*(1) = Wlt)l + zg:H;(t)TPj(t)H; @1 (1.16)
Ki(t)= Pi(t)Hf(t);V(t)a (1.17)
wilt + 1) = wilt) + K (D€ (1), (118)
Pi(t+1)=P;(t) - K:OH;(t)TP;(t) + Qi(t) . (1.19)

In these equations, the weighting matrix S(¢) is distributed into both the deriva-
tive matrices and the error vector: H(t) = H;(t)S(t)2 and £*(t) = S(t)2&(¢).
The matrices H} () thus contain scaled derivatives of network outputs with re-
spect to the ith group of weights; the concatenation of these matrices forms a
global scaled derivative matrix H*(¢). A common global scaling matrix A*(¢) is
computed with contributions from all g weight groups through the scaled deriva-
tive matrices Hj (t), and from all of the decoupled approximate error covariance
matrices P;(t). A user-specified learning rate n(t) appears in this common ma-
trix. For each weight group ¢, a Kalman gain matrix Kj(t) is computed and
is then used in updating the values of the group’s weight vector w;(¢) and in
updating the group’s approximate error covariance matrix P;(t). Each approxi-
mate error covariance update is augmented with the addition of a scaled identity
matrix Q;(t) that represents the effects of artificial process noise.

Similar to the quasi-Newton methods, the matrix P in GEKF acts as an
approximation to the inverse Hessian. In the limit of zero artificial process
noise in GEKF, a simple relationship exists between two matrices P from the
beginning (P;) and the end (P.) of the same training epoch (i.e., the complete
pass through all training instances) and the Gauss-Newton approximation H of
the Hessian [Prokhorov and Feldkamp, 1998]:

H = Pl-P,l. (1.20)

In practice, the EKF recursion is typically initialized by setting the ap-
proximate error covariance matrices to scaled identity matrices, with a scaling
factor of 100 for nonlinear nodes and 1000 for linear nodes. At the beginning
of training, we generally set the learning rate low (the actual value depends on
characteristics of the problem, but n = 0.1 is a typical value), and start with a
relatively large amount of process noise, e.g., Q;(0) = 10~21. We have previously
demonstrated that taking Q to be nonzero accelerates training, helps to avoid
poor local minima during training, and tends to maintain the necessary prop-
erty of nonnegative definiteness for the approximate error covariance matrices
[Puskorius and Feldkamp, 1991]. As training progresses, we generally decrease

34 CHAPTER 1. DRN IN CONTROL

the amount of process noise to a limiting value of approximately Q;(t) = 10~°I,
and increase the learning rate to a limiting value no greater than unity. The
training dynamics depend on which form of BPTT is used for derivative calcu-
lations (the values stated above are largely based on our experience with the
form of BPTT described in Section 1.3.1). In addition, we have also found that
occasional reinitializations of the error covariance matrices, along with resetting
of initial values for the learning rate and process noise terms, may benefit the
training process. Finally, one should note that initial choices for the learning
rate and error covariance matrices are not independent: a multiplicative increase
in the scaling factor for the approximate error covariance matrices can be can-
celed by reducing the initial learning rate by the inverse of the scaling factor
(the relative scalings of the learning rate and error covariance matrices affect
the choice of the artificial process noise term as well). The reader is referred to
[Puskorius and Feldkamp, 1999] for a more detailed discussion of these issues.

Concluding our discussion of elements of training, we wish to summarize the
notation introduced in this section.

Fx Array of ordered derivatives of quantity ¢ with respect to x.
FfWi, k Ordered derivative of the output of node p with respect to W ;.
& Instantaneous error for node p between the desired output tgt,

and its actual value outp.
w Vector of network weights.
i Learning rate.

Approximate error covariance matrix.

H Matrix of derivatives of network outputs with respect to network
weights.
Q Covariance matrix for process noise.

1.4 Basic Approach to Controller Synthesis

Our current approach is based on using a set of modular functions. We first
develop a plant model using either the generating equations directly (if avail-
able; see Example 1) or a differentiable identification (ID) network trained to
predict plant outputs for a number of time steps. Then we combine the con-
troller network with the ID network and plant to form a closed-loop system.
In this configuration, the correct calculation of total derivatives with respect
to controller weights is somewhat intricate. Once the derivatives are obtained,
weights may be updated using EKF.

1.4. BASIC APPROACH TO CONTROLLER SYNTHESIS 35

1.4.1 Specifics of Controller Training

We describe controller training in the simulation setting, so that the plant is
not a physical system but rather is given to us as a set of difference equa-
tions. We do not restrict our consideration to any particular type of difference
equations. We are interested in addressing a fairly general class of control prob-
lems, which makes it impossible to use constructive methods of canceling or
subtracting plant nonlinearities. We work with multi-input/multi-output non-
linear plants whose states are coupled with each other and with the imposed
control signals. The states may also have different delays for different controls.
Additional complications may include various unmeasured output and para-
metric disturbances, a possibly non-unique plant inverse, constraints on input
and outputs, and plant states that are not directly accessible for measurement.
Although we wish to keep our simulations realistic, with complexity represen-
tative of real-world problems, we can exploit abilities not possible with physical
systems, such as virtually unlimited execution, arbitrary instantiation of plant
states, or modification of plant parameters.

We follow the framework for neurocontrol established in [Narendra and Parthasarathy, 1990,
Narendra and Parthasarathy, 1991], and we adopt the viewpoint of model-reference
control, with the controller being a TLRNN. An example of the general con-
trol structure for model-reference control is shown in Figure 1.2. The plant is
connected to the controller whose goal is to make the plant outputs track the
desired (or reference) signals. The plant evolves as a function of the input vector
¥1,.(t) and its internal state y,; (¢ — €2,;) (not shown in the figure), where Q,; is
the set of delays, introduced in Section 1.2, reflecting all delays present in the
plant. The input vector y1,, (t) consists of control signals yo., (t) (outputs of the
controller) and any other external variables including unmeasured disturbances.
The plant output may also be corrupted by measurement noise.

The controller receives the time-delayed output of the plant along with the
reference signals y,_(¢), which are also inputs to a reference model (see below).
The feedback loop is closed through a time delay operator z=%. The appropri-
ate delays are applied component-wise to elements of the vector yo,, (t). The
controller produces the vector yo_,(t) as a function of the input vector yi_, (¢),
its internal state y.,.(t — Q.,), and the vector of controller weights w,..

The desired output yo,,, (t) of the plant is given by the output of a stable
reference model which is specified as a function of the reference signals yr,_ (t)
and the internal state y,., (t — Q) of the reference model. The goal is to train
the controller network so that the errors £(t) = yo,..(t) — yo,, (t) are minimized
over time. The simplest possible reference model is just the time delay operator,
2~4 providing appropriate time shifts of components of the vector yi,_(¢) in
order to correctly compute &(t). Such shifts are necessary to reflect causality
and properly account for internal delays always present in the plant.

We notice that the architecture of Figure 1.2 is recurrent even if the con-
troller network is feedforward (i.e., has no internal state) due to the feedback
loop. Indeed, a subset of the controller network inputs is an implicit function of
controller outputs from previous time steps. Apart from the plant equations, we

36 CHAPTER 1. DRN IN CONTROL

z <

YOpt(t)
el CONTROL L ER e ey~ D] ANT e

—
Y1 £0) Yo () ¥1 {1 v &(1)
Yirm(REFERENCE Yorm()
» MODEL

Figure 1.2: Block diagram of model reference control. The notation yo,,y1,,
and y. is used to distinguish between different elements of the diagram (out-
puts, inputs and state variables, respectively). The symbol * stands for plant,
controller, identification network, or reference model. Implicit in this diagram
are various disturbances and noise always present in real control systems.

can interpret the entire closed-loop system as a heterogeneous TLRNN. Con-
troller network training thus amounts to training a subset of weights of that
TLRNN. This viewpoint neatly bypasses the following conceptual difficulty:
while the plant’s desired behavior is known from the outputs of the reference
model, the controls leading to that behavior are not known a priori, but must
be inferred indirectly.

In order to compute controller weight updates with dynamic gradient meth-
ods, we must estimate the total (ordered) derivatives of plant outputs, and often
those of controller outputs, with respect to the weights of the controller network.
As mentioned in Section 1.3.1, we use truncated backpropagation through time
BPTT(h) for this purpose. Sensitivities of plant outputs to changes in the
weights of the controller network, however, are not available unless another com-
ponent is added to the closed-loop system of Figure 1.2. This new component is
called the plant model, which provides estimates of the differential relationship
of plant outputs with respect to plant inputs, previous plant outputs, and prior
internal states of the plant. The plant model usually runs concurrently with the
plant, receiving the vector of control signals yo_, (t) produced by the controller
and the time-delayed outputs of the plant. The plant model outputs are then
estimates of the corresponding plant outputs. The resulting closed-loop con-
trol system can be regarded as an example of indirect model-reference control
[Narendra and Parthasarathy, 1990].

Of course, a suitable plant model must be created before it may be used.

1.4. BASIC APPROACH TO CONTROLLER SYNTHESIS 37

Two alternatives exist for a plant model when the controller is being devel-
oped in simulation. One alternative is to use a copy of the plant’s (generating)
equations as the plant model. To exercise this option, however, one must be
certain that the generating equations are differentiable so that BPTT(h) can
be applied. Another alternative is to train a neural network to identify the
relationship between plant inputs and outputs; we call the resulting model an
identification (ID) network. We are more concerned with accurate estimation
of the differential relationship between the plant inputs and outputs (sensitivi-
ties) than with proximity of the absolute values of the model’s outputs to their
respective targets. We have found that it is usually not required that the ID
network be an accurate model of the plant; rather, it is important that the rel-
evant derivatives and their temporal aspects be reasonably accurate. Thus, we
sacrifice short-term plant output prediction accuracy in favor of a more accurate
temporal relationship; a TLRNN is therefore a frequent choice.

Based on our experience, it is clear that obtaining correct derivatives for
controller training generally requires some depth h > 0 in BPTT(h). Indeed, it
may be shown that BPTT(0) fails to yield the correct (optimal) result for a very
simple linear quadratic regulation problem [White and Sofge, 1992] regardless of
training strategy. Another simple example, given in [Prokhorov and Feldkamp, 1997],
requires BPTT(2) for successful training. A reasonable lower limit on the value
of h is the larger of the total number of recurrent nodes in the controller network
or the maximum relative degree of the plant.

1.4.2 Modular Approach

In Section 1.2 we spelled out forward and backward equations for a TLRNN.
We also mentioned that controller training is akin to updating weights of a part
of a heterogeneous TLRNN describing the entire closed-loop system. While
representing the whole closed-loop system as a single TLRNN is possible and
may even be convenient (e.g., if all the components of the closed-loop system
can be represented as neural networks), we prefer to keep the components as
separate entities. In our modular approach, each component is described by a
separate function. Forward propagation of signals for a structure functioning in
discrete time is compactly denoted as

y«(t) = FP.(y.(t—%)), (1.21)

where the set Q, is introduced to reflect causality (see Section 1.2). As in
a programming language, we term FP, a function, (1.21) being a convenient
notation for the pseudocode (1.1)-(1.5) of the TLRNN execution (see Section
1.2), and use the subscript * to label components of the closed-loop system. The
forward propagation functions for the plant, controller, identification network,
and reference model are denoted as FP,;, FP.., FP;4, and FP,,, respectively.
We do not include weights w, as explicit inputs to FP,, because it is clear from
the notation which weights are to be used. The set 2, includes delays which
are determined individually for each node of a TLRNN (as in (1.4) or (1.12)).

38 CHAPTER 1. DRN IN CONTROL
The pseudocode (1.7)-(1.14) of Section 1.3.1 is denoted by
[FY.(t - Q.),F*W.] = BPTT. (F‘_’y*(t)) . (1.22)

The initialization in (1.6) is performed only once for each time step, and that
in (1.8) is provided by the argument to the function BPTT,. Of course, any
implementation of the function BPTT, also requires specifying w, and y.(t —
Q.) as well as the truncation depth h; for simplicity, we regard these as implicit
in the function call. Here we set h = 0 since the reverse time loop (for iy in the
pseudocode of Section 1.3.1) is handled explicitly (see below). The superscript
q denotes the quantities for which derivatives are sought.

We introduce the notation EKF, to represent the Kalman recursion (1.16)-
(1.19) (see Section 1.3.2):

w.(t+1) = EKF, (w*(t),Fi‘w*,g(t),n(t),Q(t)) , (1.23)

where q is a vector of quantities for which explicit targets are provided. For
instance, q may be a combined vector of plant outputs and control signals.
n (1.23), the approximate error covariance matrix P (see (1.19)) is not speci-
fied explicitly, but it should certainly be provided to make any implementation
possible.

For a complete modular description, it is useful to define one more function,

y«(t1) = set(y.(t2)) (1.24)

which acts as a “smart” link between different functions FP, or BPTT,. Time
indexes t; and %o represent appropriate times. In the case of forward propaga-
tion, it allows us to connect appropriate outputs of one or more functions FP,
to appropriate inputs of the receiving FP,. In the case of backpropagation, the
function set(-) permits the assignment of the output of one BPTT, function to
initialize another BPTT, function.

We illustrate our modular description for a typical controller training below.

for t = tipit tO tfina {

Yi.(t—1) = set (yopt(ot — 1), 51, (t— 1)) (1.25)
Vi, (t—1) = set (yo pt — 1)) (1.26)
Yer(t—1) = FPe (ycr(= Qe — 1)) (1.27)
v (t) = set(yo,(t— 1)) (1.28)
yr.(t) = set(yo.(t—1)) (1.29)
ypr(t) = FPpu (ype(t — Q) (1.30)
yia(t) = FPy(yia(t — Qia)) (1.31)
Yrm(t) = FPrn (Yrm(t — Qm)) (1.32)

1.4. BASIC APPROACH TO CONTROLLER SYNTHESIS 39

for i = 0 to h {

[ngid(t — Qg — i), Fiwis| = BPTTy (ny,»d(t - z')) (1.33)
Flyo. (t—1—i) = set (nglid (t — i)) (1.34)

[F(_lycr(t —Qu—1-4),Fw.| = BPTT,, (Fﬁ‘yw(t 1 i)) (1.35)
Flyo.(t—1—i) = set (F‘_lylcr (t—1- z')) (1.36)

} /* end i loop */
Werlt+1) = EKFop (wep(t). Fowe, €(8),0(0. Q1) (1.37)
} /* end t loop */

Equation (1.26) demonstrates teacher-forcing of the plant model (ID network)
by relevant plant outputs at every time step. In the control framework of Naren-
dra and Parthasarathy this is also called the series-parallel model of the plant.
Alternatively, (1.26) is removed if we choose the parallel model. In general, the
series-parallel and parallel models represent alternative ways of system simula-
tion. While the series-parallel model must be aligned at every time step with
the evolution of the plant outputs, the parallel model does not require such an
alignment. Preference for one model over the other is naturally based on plant
behavior and complexity.

In this chapter, we do not consider concurrent adaptation of the plant model
and controller. We assume that the ID network weights w;,; are fixed at all
times. However, we can utilize the derivatives Fjwid obtained naturally dur-
ing backpropagation through the ID network (see (1.33)) if its adaptation is
required.

The pseudocode above certainly does not represent a computer program
ready for use. For example, though implied, calculations of the vector £(¢) nec-
essary for (1.37) are not illustrated. We provide only the essential arguments in
function calls (1.21)-(1.23), leaving for the reader to supply any other arguments
required for a specific implementation.

1.4.3 Multi-Stream Training

The multi-stream procedure [Feldkamp and Puskorius, 1994] was devised to cope
with the sometimes conflicting requirements of training. Consider the standard
TLRNN training problem: training on a sequence of input-output pairs. If the
sequence is in some sense homogeneous, then one or more linear passes through
the data may well produce good results. In many training problems, especially
those in which exogenous inputs are present, the data sequence is heterogeneous.
For example, regions of rapid variation of inputs and outputs may be followed
by regions of slow change. Or a sequence of outputs that centers about one level

40 CHAPTER 1. DRN IN CONTROL

may be followed by one that centers about a different level. For any of these
cases, in a straightforward training process the tendency always exists for the
network weights to be adapted unduly in favor of the most recently presented
data (see Chapter ??). This recency effect is analogous to the difficulty that
may arise in training feedforward networks if the training data are repeatedly
presented in the same order.

For feedforward networks, an effective solution is to scramble the order of pre-
sentation; another is to use a batch update algorithm. For recurrent networks,
the direct analog of scrambling the presentation order is to present randomly
selected sub-sequences, making an update only for the last input-output pair
of the sub-sequence (when the network would be expected to be independent
of its initialization at the beginning of the sequence). A full batch update in-
volves running the network through the entire data set, computing the required
derivatives that correspond to each input-output pair, and making an update
based on the entire set of errors.

The multi-stream procedure largely circumvents the recency effect by com-
bining features of both scrambling and batch updates. Like full batch methods,
multi-stream training is based on the principle that each weight update should
attempt to satisfy simultaneously the demands from multiple input-output pairs.
It retains, however, the useful stochastic aspects of sequential updating and re-
quires much less computation between updates. We now describe the mechanics
of multi-stream training.

In a typical training problem, we deal with one or more files, each of which
contains a sequence of data. Breaking the overall data set into multiple files
is typical in practical problems, where the data may be acquired in different
sessions for distinct modes of system operation or under different operating
conditions.

In each cycle of training, we choose a specified number Ny of randomly
selected starting points in a chosen set of files. Each such starting point is the
beginning of a stream. The multi-stream procedure consists of progressing in
sequence through each stream, carrying out weight updates according to the
set of current points. Copies of recurrent node outputs must be maintained
separately for each stream. Derivatives are also computed separately for each
stream, generally by BPTT(h) as discussed above. Because we generally have
no prior information with which to initialize the recurrent network, we typically
set all state nodes to values of zero at the start of each stream. Accordingly,
the network is executed but updates are suspended for a specified number N, of
time steps, called the priming length, at the beginning of each stream. Updates
are performed until a specified number N; of time steps, called the trajectory
length, have been processed. Hence N; — N, updates are performed in each
training cycle.

If we take Ny = 1 and N; — N, = 1, we recover the order-scrambling pro-
cedure described above; N; may be identified with the sub-sequence length.
On the other hand, we recover the batch procedure if we take N equal to the
number of time steps for which updates are to be performed, assemble streams
systematically to end at the chosen IV, steps, and again take IV; — N, = 1.

1.4. BASIC APPROACH TO CONTROLLER SYNTHESIS 41

In general, apart from the computational overhead involved (see below), we
find that performance tends to improve as the number of streams is increased.
Various strategies are possible for file selection. If the number of files is small,
it is convenient to choose N, equal to a multiple of the number of files and to
select each file the same number of times. If the number of files is too large to
make this practical, then we tend to select files randomly. In this case, each set
of N} — N, updates is based on only a subset of the files, so it seems reasonable
not to make the trajectory length IV; too large.

An important consideration is how to carry out the EKF update procedure.
If first-order gradient updates were being used, we would simply average the up-
dates that would have been performed had the streams been treated separately.
In the case of EKF training, however, averaging separate updates is incorrect.
Instead, we treat this problem as that of training a single shared-weight network
with Ng X n_out outputs. From the standpoint of the EKF method, we are sim-
ply training a multiple output network in which the number of original outputs
is multiplied by the number of streams. The nature of the Kalman recursion
is then to produce weight updates which are not a simple average of updates
that would be computed separately for each output, as is the case for a simple
gradient descent weight update.

In single-stream EKF training (see Section 1.3.2), we place derivatives of
network outputs with respect to network weights in the matrix H constructed
from n_out column vectors, each of dimension equal to the number of trainable
weights, Ny,. In multi-stream training, the number of columns is correspond-
ingly increased to N X n_out. Similarly, the vector of errors € has N; X n_out
elements. Apart from these augmentations of H and &, the form of the Kalman
recursion is unchanged.

The multi-stream method has the following computational implications. The
sizes of the approximate error covariance matrices P; and the weight vectors w;
are independent of the chosen number of streams. The number of columns
of the derivative matrices H}, as well as of the Kalman gain matrices Kj,
increases from n_out to Ny X n_out, but the computation required to obtain
H} and to compute updates to P; is the same as for Ny separate updates. The
major additional computational burden is the inversion required to obtain the
A* matrix, whose dimension is N, times larger. Even this tends to be small
compared to the cost associated with propagating the P; matrices, as long as
Ns x n_out is smaller than the number of network weights (GEKF) or the
maximum number of weights in a group (DEKF).

The multi-stream procedure clearly has many practical uses for controller
training. For example, multi-stream EKF can be used in conjunction with
BPTT(h) as a means to avoid the recency phenomenon. In this scenario, two
or more trajectories of the plant outputs and associated control signals (as gen-
erated by a single controller for a given plant) for different regions of operation
are processed by the multi-stream procedure to generate one change of weights.
This procedure is then iterated. This scheme is most conveniently employed
when the plant can easily be driven (e.g., by a reference input) to various re-
gions of operations.

42 CHAPTER 1. DRN IN CONTROL

Multi-stream EKF controller training provides the capability to train a sin-
gle neurocontroller for best compromise over a range of systems, e.g., to handle
plant-to-plant variability. The procedure is used to generate a robust controller
by simultaneously accessing multiple instances of a plant. A set of identical
controller networks (which may also be viewed as a single shared-weight net-
work) is used to control several plants. The plants are somehow chosen to
span the expected range of plant parameter variations. In the training pro-
cess, several trajectories, one from each system (comprised of the controller,
an ID network, and a corresponding plant), are gathered, separate dynamic
gradients are computed for each of the streams, and these gradients are then
processed simultaneously with the EKF weight update method to generate a
new weight vector w, for the single controller network employed for all plant
variations. This procedure is iterated until an effective compromise controller
emerges. We have demonstrated in simulation the use of multi-stream DEKF
for training robust engine idle speed neurocontrollers in the fashion just de-
scribed [Feldkamp and Puskorius, 1994]. Another illustration of the utility of
multi-streaming is given in Section 1.5. Concluding this section, we note that
training controllers with multi-streaming implies the same modifications to the
standard Kalman recursion (1.16)-(1.19) as those mentioned above.

1.5 Example 1

This section consists of four parts. Section 1.5.1 introduces an example control
synthesis problem. Sections 1.5.2 and 1.5.3 discuss this problem for two cases
which differ in the amount of information assumed to be available. Section 1.5.4
describes some improvements to the controller’s performance and summarizes
the results.

1.5.1 MIMO Control Problem

The plant for this example is a third-order system with two inputs and two
outputs described by the state equations

ypt1(t) = ypu (t — L)sin (aype2(t — 1))

+ (Oé3 + Ypt1 (t— l)ypt4 (t) t)) Ypta (t)

1+ yztl (t— 1)912);54(

+ (a.Syptl (t - 1) + %) yptS (t) 3 (138)
Ypt2(t) = yp3(t — 1) (a7 + agsin (agyps(t — 1)))

a1oYpis(t — 1)
L+yps(t—1)°

Ype3(t) = (a1 + arasin (@izypn (t — 1)) Ypes (1), (1.40)

(1.39)

1.5. EXAMPLE 1 43

Param. Value Param. Value Param. Value Param. Value

aq 0.9 Qg 1.0 Qs 2.0 Qay 1.5
Qs 1.0 Qg 2.0 az 1.0 ag 1.0
Qg 4.0 Q10 1.0 a11 3.0 a19 1.0
13 2.0

Table 1.1: Nominal values of parameters a for the MIMO plant of
[Narendra and Mukhopadhyay, 1994].

where yui1, yYpt2 and yp3 are components of the plant state vector, and the
plant inputs ypa and yps are set equal to the control signals. The first two
components of the state vector, y,+1 and y,¢2, are taken to be the plant outputs.
The goal is to develop a neurocontroller such that the plant outputs follow two
independent reference model outputs, yo,,,, and yo as closely as possible.

This multiple-input /multiple-output (MIMO) control problem was originally
proposed by [Narendra and Mukhopadhyay, 1994]. They studied five cases of
the problem formulation with constant values of the parameters cc. These cases
differ by the amount of information about the plant available to the control
designer. For example, in one case all state variables were accessible and the
plant equations were known. In the most complicated case, a neurocontroller
was developed using only input-output data, the plant equations treated as
unknown.

rm27

Table 1 contains nominal values of the plant parameters a. We modify
the problem by introducing uncertainty in the values of a. More specifically,
we allow each components of a to be a random variable uniformly distributed
around its nominal value in the range £20%. We then consider the two cases
of the original problem formulation mentioned above, i.e., the case in which all
state variables are accessible and plant equations are known, and the case in
which only input-output data is available. In both cases, our controller synthesis
approach can be termed t¢raining for robustness [Feldkamp and Puskorius, 1994].
First, we specify or train a plant model. Next, we initiate multi-stream controller
training using a particular reference model and a training strategy. We test the
resulting controller on many plants with different parameters e and various
reference signals.

Training is performed with a reference model driven by a skyline training
pattern [Puskorius and Feldkamp, 1994] (a piece-wise constant reference trajec-
tory), generated by

{ /* Reference model driven by skyline reference signals */
if (k4 = 0) { k; = rand(10,50), 7 = rand(-1.5,+1.5) }
if (ks = 0) { k2 = rand(10,50), 7, = rand(-1.5,+1.5) }

Yl (t) =n
YL (t) =T
YOrm1 (t) Ylim (t - 1)

44 CHAPTER 1. DRN IN CONTROL

YOrm2 (t) = Yo (t - 2)
kl = kl -1
k2 = k2 -1

}

where rand(l,u) is a function call to a uniform random number generator re-
turning a value between ! and u (integer for rand(10,50) and real for rand(-
1.5,+1.5)). The vectors r = [r1,72]7 and k = [ky, k2] should be stored,
and the skyline equations require k; and ks to be initialized to zero. The
variables y1,,(t) and y1,.,(t) are used as controller inputs, and the variables
YO,y (1) and yo,,..(t) are used to compute the error vector £(t). Different de-
lays between each control signal and each plant output are reflected in the
reference model, taking into account causality and relative degrees for each out-
put [Narendra and Mukhopadhyay, 1994]. If the first and second components
of &(t) correspond to outputs yp1(t) and yp(t), respectively, then & (t) =
YOum1 (1) — Ypt1 (t) and &(t) = Yo,z (1) — Ypea(t).-

1.5.2 State Variables Accessible and Plant Equations Known

We assume here that the controller is an RMLP. To enable controller train-
ing and obtain total derivatives of the plant outputs with respect to controller
weights, we employ here a copy of the plant equations. We choose five copies,
where each copy has the same values of a as the corresponding plant. We
arrange training into five streams (N; = 5), one stream for each plant-model-
controller system. Each stream consists of a length N; of 200 time steps with
its own unique reference trajectory formed by the skyline reference signals (see
Section 1.4.3 for notation). The priming length N, is 10 time steps. In the
description of the training strategy below, we define one epoch as consisting of
N; x (Nt — Np) = 950 weight updates. At the beginning of each epoch, we
generate a different pair of skyline reference signals for each stream. Our typ-
ical training strategy for BPTT(9) and GEKF is to train for 300 epochs with
n = 0.001 and Q = 10721, then 300 epochs with n = 0.01 and Q = 10~°I, and
300 more epochs with n = 0.1 and Q = 10~*I. We conclude training with 500
additional epochs with n = 1 and Q = 10~°I (1400 epochs total). Training is
carried out with the skylines (see Section 1.5.1). During the first 10 epochs of
training, a fixed trajectory of skyline reference signals is used for each stream.
This is done to reduce the chance of instability when controller weights have
not yet been subjected to enough training. We begin training on five differ-
ent plants whose parameters are drawn from the uniform distribution specified
above. We keep the same five plants for 20 epochs, then obtain a new set of five
plants drawn from the same distribution and continue training on them, and so
on. Not changing plant parameters for some number of epochs is a reasonable
compromise between the amount of learning performed on a particular plant
with a variety of skylines and the total number of plants presented during train-
ing. 350 distinct plants are used during the course of training. Once training is
completed, we test the resulting controller on 10,000 additional plants using a

1.5. EXAMPLE 1 45

different set of reference signals [Narendra and Mukhopadhyay, 1994]:

{ /* Reference signals for testing */
r1 = 0.75 sin(%t) + 0.75 sin(%%)

50 10
rg = 0.75 sin(3) + 0.75 sin(3)

}

Our experiments indicate that the performance of recurrent controllers is
substantially superior to that of feedforward controllers. Figure 1.3 (left panel)
shows a histogram of the RMS test error distribution for the same 10,000 plants
for the 5-20-10-2L feedforward controller (shorthand notation corresponding to
a network with 5 inputs, 20 nodes in the first hidden layer, 10 nodes in the
second hidden layer, and 2 linear outputs) and for the 5-10R-10-2L recurrent
controller, trained using the same strategy. The statistics of these two RMS
error distributions are: mean errors g = 0.247 and 0.179, standard deviations
o = 0.0524 and 0.0374, maximum RMS errors RMSE,.x = 0.558 and 0.379, and
minimum RMS errors RMSE;;, = 0.134 and 0.118; the first and second values
correspond to the feedforward and recurrent controllers, respectively. The two
distributions are well separated, and the distribution for the recurrent controller
is clearly preferable.

1.5.3 State Variables Inaccessible and Plant Equations Un-
known

In the case of control using input-output data when plant equations are un-
known, we need to develop a sufficiently good ID network. We begin by gather-
ing input-output pairs for training an ID network. For the plant with nominal
parameters «, we generate a trajectory composed of 5000 pairs (in, out), where
in = [ypn (t — 1), ype2(t — 1), yo.. ()], out = [ypn (t), ype2(t)]. The control sig-
nals yo., (t) are generated as the skyline reference signals above, except that
their durations are much shorter (rand(1,5)) and the maximum amplitudes are
0.8 and 0.3 for the first and second control signals, respectively. In spite of the
relatively narrow range of control signal changes, the outputs yp1 (t) and ype(t)
exhibit rapid fluctuations in the ranges (-16.0, 20.0) and (-3.0, 1.5), respectively.

We train a 4-10R-10-2L network using node decoupled EKF with five streams
of 1000 points each, using the following strategy. We first train for 100 epochs
with » = 0.01 and Q = 1072I. The next 100 epochs utilize n = 0.1 and
Q = 107°I. We complete training with 100 more epochs using n = 1 and
Q = 10~*I. During training, the RMS error dropped to 1/7 of its original level.
To determine when to stop the training process, we used the standard technique
of measuring performance for an independent validation set.

We now provide a detailed modular description for controller synthesis. It
is illustrated for the case when both the controller and the ID network are the
same architecture, 4-10R-10-2L. The input nodes of these RMLP’s are indexed
1 through 4, whereas the output nodes have indexes 25 and 26. The vector q

46 CHAPTER 1. DRN IN CONTROL

6000 T T T T 6000 T T T T

5000 - 1 5000

4000 4 4000
12} _ |2
z £
8 8
o o
© 3000 . © 3000
[} [
Q Qo
£ £
3 =)
P4 M b4

!

2000 2000

1000 1 1000
0 1 =L O
0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6

RMS error RMS error

Figure 1.3: Distribution of the RMS error values for the feedforward controller
(white) and the recurrent controller (black) during testing on 10,000 plants.
The left panel shows the RMS error distribution for controllers synthesized in
the full state feedback case (Section 1.5.2). The right panel illustrates the RMS
error distribution for controllers trained with the ID network (Section 1.5.3).
For the feedforward controller trained with the ID network, six plants (0.06% of
total) had their RMS errors larger than 0.6 and were left out of the histogram.

1.5. EXAMPLE 1

consists of y,¢1 and ypeo. The set Q, is {0, 1}.

for t = tinit tO trinal {

I:ngid (t — Qid — i),

q .
F_yc7-25(t —1—1

q
F_yer26 (t -

q .
[F—YCr(t — Qe —1- ’L),
ijid25 (t —1—
ijidQG (t —1—

} /* end i loop */
we(t+1) =

} /* end t loop */

—l—i))

= ypra(t —1)

= ype2(t — 1)

= YL (t—1)

= YLt —1)

= ypra(t —1)

= ypr2(t — 1)

= FPu (yer(t — Qer — 1))

= Yer2s (t - 1)

= ycr26(—1)

= FPia(yia(t — Qia))

= Yer2s (t 1)

= Yer26 (t 1)

= FPpi (yp(t -))

= FPrm (Yrm(t — Qrm — 1))

= YO, (1) — Ypr1 (1)

= YOrmi (1) — Ype2(t)

Ffw,»d} — BPTTu (ny,»d(t - z'))
) = Flyigs(t—1)

1—i) = Flyau(t—1i)

Ff‘ww] — BPTT,, (Fﬁ‘ycr (t
) = Flyen(t—1-1)
) = Flyen(t—1-4)

EKF.r (wer (1), Fowor, £(1),1(0), Q(1))

47

In the modular description above, calls to the function set(-) are replaced
by appropriate assignments between the nodes of the networks and the plant
outputs. We also illustrate how to calculate components of the error vector £(t)
for each stream (see (1.55) and (1.56)).

48 CHAPTER 1. DRN IN CONTROL

We carry out training for robustness as described in Section 1.5.2. The
differences are related to the training strategy and the use of an ID network.
We choose to restrict to 0.1 for the last 500 training epochs for reasons we
mention below. Regarding the use of the ID model, we point out a crucial
difference between the setting of Section 1.5.2 and the current experiment. In
Section 1.5.2, each copy of the plant equations used as the plant model has the
same values of a as those of the corresponding perturbed plant. Here we use
the same ID network with fized weights for the entire training session.

For comparison, we also train a 4-20-10-2L feedforward controller for robust-
ness using the same settings and training strategy. Our preliminary experiments
showed that the training process may become unstable if the learning rate is
increased to n = 1. We were unable to destabilize training of the recurrent con-
troller, but for proper comparison we decided to restrict the maximum learning
rate for its training as well.

As in Section 1.5.2, our results show that recurrent controllers are substan-
tially superior to feedforward controllers in terms of robustness to perturbations
of plant parameters. Figure 1.3 (right panel) shows a histogram of the RMS
test error distribution for the same 10,000 plants for the 4-20-10-2L feedforward
controller and for the 4-10R-10-2L recurrent controller trained using the same
strategy with BPTT(9). The statistics of the two RMS error distributions are:
p=0.253 and 0.221, ¢ = 0.0611 and 0.0374, RMSE,ox = 0.729 and 0.400, and
RMSE;;, = 0.161 and 0.144, corresponding to the feedforward and recurrent
controllers, respectively.

It is also instructive to train a recurrent controller on the nominal plant only,
using the same training strategy as for the controllers trained for robustness, and
then test it on many different plants. On the nominal plant, this controller has
an RMS error of 0.082, compared to 0.158 for the recurrent controller trained
for robustness. On the other hand, the recurrent controller trained only on the
nominal plant has significantly higher probability for failure in the robustness
test. On 10,000 randomly generated plants, its maximum RMS error is 0.543,
growing to 0.923 in a test with one million plants, as compared to 0.443 for the
recurrent controller trained for robustness. Here we observe a tradeoff between
robustness to plant variations and the minimum tracking error achievable on a
given plant. Similar observations were made for the feedforward controller.

Concluding this section, we would like to point out that obtaining an ac-
ceptable ID network of the nominal plant does not appear to be a challenging
task. Our ID network turned out to be sufficiently accurate to enable training
of controllers for robustness. Of course, it would be possible to train an ID net-
work specialized to each plant and used in the multi-stream training framework.
The computational and logistical complexity of such an experiment, however,
is staggering since a separate ID network would have to be trained for every
new plant drawn from the distribution. Training just a small number of ID
networks for a selected set of plants may be a viable alternative. This would
be similar to system identification of a plant capable of operating in several dis-
tinct modes, and these modes could be singled out for identification and control
purposes. Another alternative is to train a “universal” ID network, with the

1.5. EXAMPLE 1 49
plant parameters a as additional inputs.

1.5.4 Further Testing, Improvements and Summary of the
Results

The controllers obtained in Sections 1.5.2 and 1.5.3 were subjected to further
testing on more difficult reference signals crafted to test the degree of decou-
pling between the two outputs. Figures 1.4 and 1.5 illustrate the behavior of the
outputs of the nominal plant controlled by the recurrent and feedforward con-
trollers, respectively, in the case of full state feedback control (five inputs to each
controller). Each output must follow its own reference signal as closely as pos-
sible. Each reference signal trajectory consists of 10 segments of 100 time steps.
Only the second segment coincides with reference signals previously used for
testing. The results obtained with the feedforward controller in the closed loop
are substantially inferior to those obtained with the recurrent controller (RMS
errors 0.369 and 0.208, respectively). Statistics of the RMS error distribution
obtained for these 1000-step reference signals and 10,000 plants drawn from the
same uniform distribution as before become even more saliently in favor of the
recurrent controller: y = 0.444 and 0.278, 0 = 0.0848 and 0.0549, RMSE,,x =
0.872 and 0.571, and RMSE,;;;, = 0.249 and 0.169, for the feedforward and
recurrent controllers, respectively.

We also tested the controllers obtained in Section 1.5.3 on the 1000-step
reference signals used above. Figure 1.6 shows behavior of the nominal plant
controlled by the four-input recurrent controller, with an RMS error of 0.272.
Spikes and high-frequency oscillations are quite apparent, and it is desirable to
suppress them. Although we tested the four-input feedforward controller, we do
not show these results due to poor quality (the controller nearly lost stability
on the last segment; high-frequency oscillations of outputs on other segments
were increased as well).

We were able to reduce the number of spikes while improving the overall
robustness of the resulting recurrent controller by employing a different set of
reference signals and a slightly modified training strategy. After the first 100
epochs, we switched from skylines to uniformly distributed random noise in the
range £1.5. We encountered frequent loss of stability when using a learning rate
n larger than 0.01, so we modified the training strategy as follows. The first
400 epochs we trained with n = 0.001 and Q = 107%I, then 500 epochs with
n = 0.01 and Q = 10731, 500 more epochs with 7 = 0.01 and Q = 10~*I, and
the final 600 epochs with n = 0.01 and Q = 10—°I (2000 epochs total). Thus
we trained on a total of 500 distinct plants. The rest of the training strategy
(the number of streams, the choice of generating a new set of plant parameters
every 20 epochs, etc.) remained the same. The test performance of the resulting
controller is shown in Figure 1.7, with an RMS error of 0.230.

The statistics of the RMS error distribution obtained for the four-input
recurrent controller trained on random reference signals for the 1000-step test
reference signals and 10,000 randomly perturbed plants are substantially better
than those of the recurrent controller trained on skylines, perhaps due to the

50 CHAPTER 1. DRN IN CONTROL

100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600 700 800 900 1000

N
T
i

Controls
o
1

|
N

100 200 300 400 500 600 700 800 900 1000
t

Figure 1.4: Performance of the recurrent controller during testing in the full
state feedback case. The actual plant outputs, y,;1 (middle panel) and yp
(upper panel), are shown as dashed lines. The desired outputs, yo,,., and yo,,.,,
are drawn as solid lines. For clarity, the two outputs of the controller (lower
panel) are shifted, the lower curve (the first control) by -1.0 and the upper curve
(the second control) by +1.0.

1.5. EXAMPLE 1 o1

| , IU ., .u.u i

_27 ‘ ‘ ‘ ‘ 4 “ ;HJ\M |
100 200 300 400 500 600 700 800 900 1000

| \‘L h } Al
Wi a 1" ‘ I
“v ‘”'\l i i - = =

-2 i V ! A
100 200 300 400 500 600 700 800 900 1000

ypl
o

N
i

Controls
o
1

M A

100 200 300 400 500 600 700 800 900 1000
t

Figure 1.5: Performance of the feedforward controller during testing in the full
state feedback case. The layout is the same as in the previous figure.

52 CHAPTER 1. DRN IN CONTROL

yp2

100 200 300 400 500 600 700 800 900 1000

ypl

| W
_1 ‘ ",~ -

100 200 300 400 500 600 700 800 900 1000
t

Figure 1.6: Test performance of the recurrent controller trained using the ID
network. The actual plant outputs, y,1 (lower panel) and y,.» (upper panel),
are shown as dashed lines. The desired outputs, yo, ., and yo are drawn as
solid lines.

rm1l rm2 7

1.5. EXAMPLE 1 93

yp2

100 200 300 400 500 600 700 800 900 1000

ypl

100 200 300 400 500 600 700 800 900 1000
t

Figure 1.7: Test performance of the recurrent controller trained with random
reference signals using the ID network. The actual plant outputs, y,:1 (lower
panel) and yp2 (upper panel), are shown as dashed lines. The desired outputs,
YO,; and yo, . are drawn as solid lines.

greater amount of excitation present in completely random reference signals
relative to skyline signals. These statistics are also similar to those obtained for
the recurrent controller in the full state feedback case: y = 0.303 and 0.278, 0 =
0.0479 and 0.0549, RMSE,,x = 0.550 and 0.571, and RMSE;, = 0.206 and
0.169, for the recurrent controllers trained with the random reference signals
and in the full state feedback case, respectively.

We have carried out many training experiments for recurrent and feedfor-
ward controllers in both cases. Our conclusions are summarized below.

It is not very challenging to train a very good controller (recurrent or feed-
forward) on a plant with any specific set of parameters «, either nominal or
drawn from the range +20% around nominal (see Figure 1.8 for typical test
results). Such a controller, however, has unacceptable performance when tested
for robustness (the mean error is usually larger and the RMS error distribution
is at least two or three times wider than for a controller trained for robustness).
When trained on a particular plant and tested on the same plant, a recurrent
controller generally results in plant behavior with more spikes than that ob-

54 CHAPTER 1. DRN IN CONTROL

yp2

100 200 300 400 500 600 700 800 900 1000

ypl

100 200 300 400 500 600 700 800 900 1000
t

Figure 1.8: Test performance for the 5-20-10-2L feedforward controller trained
with skylines on the nominal plant. The test is carried out on the same plant.
The actual plant outputs, ypu (lower panel) and y,t2 (upper panel), are shown
as dashed lines. The desired outputs, yo. ., and yo are drawn as solid lines.

rml rm2 7

tained with a feedforward controller. This should not be very surprising, since
the closed-loop system including a recurrent controller has many more degrees
of freedom than a system with a feedforward controller.

We are aware of a certain degree of arbitrariness in our choice of the controller
network architecture (numbers of nodes and layers) and training parameters.
The latter includes elements of the training strategy (lengths of training epochs
with chosen values of n and Q, numbers of streams and their lengths) and
particular ways of choosing plants and reference signals. We can partially justify
our choice of the network architecture and training parameters. For example,
our training strategy (increasing the learning rate n while decreasing diagonal
elements of the matrix Q during training), along with various forms of skyline
reference signals, has been reliable and worked well, not only in this example
application, but also in other problems we have dealt with in the past.

Our experiments convincingly indicate that training using only one stream
does not give rise to a robust controller, because of the recency effect. In this
case, even longer training does not help. Utilizing more than five streams may

1.6. EXAMPLE 2 35

improve the RMS error statistics (particularly, maximum RMS errors), as does
an increased size of controller network or longer truncation depth in BPTT(h).
Such improvements, however, do not appear to be dramatic, and they all come
at a price of a (sometimes substantial) increase in training time. We find that
proper comparison of training strategies differing in the total number of plant
variations presented to the controller requires prorating the total number of
training epochs accordingly. For instance, 5-stream training requires twice as
many epochs as does 10-stream training to achieve about the same level of
performance in testing, all other training parameters being equal.

Introducing full recurrence into the second layer of the recurrent controller
appears only to result in greater occurrences of spikes and high-frequency oscil-
lations on smooth test signals. On the other hand, networks smaller than the
one chosen (e.g., a controller 4-8R-5R-2L) resulted in at least 50% larger RMS
errors than the best numbers presented here.

To train for robustness, we chose individual plants at random from the as-
sumed range around the nominal values of the parameters a. We did not
analyze the properties of individual plants with different sets of a with the
intention of selecting several plants for further multi-stream training (i.e., to
select a “magic” combination of plants). In our training sessions, we changed
the reference signals every epoch while keeping five distinct sets of o constant
for 20 epochs (five streams). Our intention was to provide a reasonable balance
between the variety of reference signals and the variety of plants presented in
the course of training. We allowed the controller to get a good handle on the
plants’ behavior on various reference trajectories before the next set of plant
variations was generated (every 20 epochs; see Section 1.5.2). The robustness
test revealed poor results when the five plants were sampled from the uniform
distribution either too often (e.g., every epoch) or too seldom (e.g., every 100
epochs), while the other training parameters remained the same. In the for-
mer case, however, good results could still be obtained provided that training
continued for much longer.

The results presented here confirm our previous observations about the supe-
rior robustness properties of recurrent neurocontrollers trained with EKF-based
techniques [Feldkamp and Puskorius, 1994]. The technique for training for ro-
bustness described here represents a successful method for reducing the standard
deviation of the RMS error distribution as well as decreasing the probability of
worst case behavior. Nevertheless, it is entirely possible that there exists a re-
current neurocontroller architecture and a set of training parameters that will
deliver results better than those presented here.

1.6 Example 2

In this section, we consider the problem of financial portfolio optimization from
the perspective of neurocontrol. In particular, we demonstrate that the meth-
ods described earlier in this chapter can be applied to the development of
financial trading systems in which there is no explicit step that forecasts fi-

56 CHAPTER 1. DRN IN CONTROL

nancial time series; rather, forecasts are formed implicitly by a controller in
the form of an RMLP. We build here on the work of [Moody and Wu, 1997,
Moody et al., 1998] in the following ways: (1) we utilize dynamic neural net-
works with internal states as controllers; (2) we demonstrate the application
of the on-line, second-order EKF training methods to the synthesis of trading
strategies; and (3) we provide details regarding training and network architec-
tures.

This section consists of four parts. Section 1.6.1 introduces the problem of fi-
nancial portfolio optimization and its profit performance function. Section 1.6.2
discusses general issues required for successful application of the EKF algorithm
for training a neurocontroller as a trading system. Section 1.6.3 describes results
of our simulations. We conclude with a few thoughts on possible extensions of
the proposed approach in Section 1.6.4.

1.6.1 Financial Portfolio Optimization

For the sake of simplicity, we consider an example of two assets, one of which
is risk-free and has a fixed return, such as a government bond, and the second
of which can be characterized as risky (i.e., an asset whose temporal evolution
appears to be largely stochastic but may have some deterministic component),
such as a stock. We assume an objective of maximizing profitability with little
regard for the risk incurred (however, risk can be addressed as shown below).
Following [Moody and Wu, 1997, Moody et al., 1998], we consider a multiplica-
tive model of profitability in which accumulated wealth is completely reinvested
at each time period, where the control decision is the fraction of accumulated
wealth to be invested in the risky asset, with the remainder invested in the
risk-free asset. (Moody et al. develop a formalism that allows for multiple risky
assets to be simultaneously considered.) In addition, the profit performance
function includes a term that models the impact on profitability due to transac-
tion costs. On the other hand, we will ignore tax implications and will assume
that the trading strategy does not impact market dynamics (i.e., the evolution
of the risky asset’s price series is not affected by the trading system’s actions).

We denote the values at time ¢ of the risk-free bond and risky security as
27 (t) and z(t), respectively. Similarly, we define the instantaneous returns for
these two assets as /(1) = 2/ (t) /27 (t—1) =1 =rf and r(t) = 2(t)/2(t — 1) — 1,
where the risk-free bond has a constant return and the risky security has a
return governed by the evolution of its price series. At any given time, we make
a decision, u(t) € [0,1], that allocates a fraction of accumulated wealth to the
risky security with the remaining fraction 1 — wu(¢) allocated to the risk-free
asset. In addition, we assume that there is a cost associated with reallocation
that is a function of the absolute difference between two successive allocations:
|u(t) — u(t — 1)|. Denoting the total return at time ¢ by R(t), the accumulated

1.6. EXAMPLE 2 a7

wealth at time T is given by

T
wW(T) = W) [{1+Rr@)}
T
= WO {1+ Q-ut—-10)r +ut-1)r@)}
x {1 =68 |u(t) —u(t — 1)}, (1.64)

where we begin at time ¢ = 0 with wealth W (0), and where the transaction
cost rate is given by 4. Note that this profit model does not allow for short
sales. It thus implies a relatively conservative strategy (a short sale would be
characterized by values of control u(t) less than zero).

This model has a number of interesting implications. First, the instantaneous
total return R(t) is a function of two successive controls, u(t) and u(t — 1), due
to the presence of trading costs (in the absence of trading costs, the instanta-
neous return R(t) is only a function of the preceding control u(t — 1)). This
implies that any trading decision must explicitly take into account trading de-
cisions made at preceding points in time; this is a form of friction, and makes
portfolio optimization a problem of dynamic, nonlinear optimization. It is also
noteworthy that, due to the assumption that the risky asset’s dynamics are not
affected by an individual trading system’s actions, it is not necessary to train
an ID network or develop some other analytical expression that performs one-
time-step-ahead forecasts of the price series or returns, since these series can be
considered to be exogenous to the system of interest. Instead, it is necessary
only to understand how the trading system’s actions affect the overall objective
of maximizing wealth, and this is given by equation (1.64). Thus, this type of
portfolio optimization can be viewed as a problem of open-loop, rather than
closed-loop, control.

The overall system can be described in block-diagram form as shown in
Figure 1.9. The wealth calculator takes as input the current return for the risky
security, r(t), as well as the control signal, u(t), which determines how the simple
portfolio is to be rebalanced, and computes the total accumulated wealth, W(t).
We have assumed that the wealth calculator remembers the previous values
of control, risky asset return, and wealth. In addition, the wealth calculator
has knowledge of the risk-free asset’s rate of return and the transaction cost
rate. The trading system may be viewed as a dynamic system which processes
a stream of returns for the risky asset to generate a stream of control signals;
additional information such as the actual price or the change in wealth may also
be useful as inputs. This trading system ultimately has embedded knowledge
of both trading costs and the return rate of the risk-free asset. In addition,
the trading system must have knowledge of its previous actions, and it must
develop some predictive capability for the risky asset’s price series. We utilize
dynamic neural networks as controllers to address both the need to account for
trading costs as well as to develop implicit forecasts for the risky asset’s price
movements.

o8 CHAPTER 1. DRN IN CONTROL

"® Trapinesystem| YO weaLtH cacutator| WO

(CONTROLLER) (PLANT)

A

Figure 1.9: A block diagram representation of a simple, two-asset portfolio
optimization system.

In the next sections we discuss our approach to trading with neurocontrollers.
It is difficult to compare our approach with that of [Moody and Wu, 1997,
Moody et al., 1998] in quantitative terms. It is not obvious as to whether
Moody et al. are only using trading system networks with external input-to-
output recurrence, or whether their systems explicitly utilize networks with
internal dynamics. Furthermore, they provide little information as to what sig-
nals are used as inputs to the neural network trading system, and what temporal
representation these signals take.

1.6.2 General Training Considerations

The optimization problem as formulated above poses certain difficulties for the
EKF-based training methodology (see Section 1.3.2). First, while the primary
objective is to maximize total wealth over time, the EKF-based methods typ-
ically apply only to the minimization of a sum of squared errors expressed as
an objective function. Thus, it is necessary to convert the wealth maximization
problem to some form of a minimization problem. A related difficulty is due
to the form of the objective function: it is multiplicative, rather than additive,
which precludes direct application of EKF training.

We address these two difficulties as follows. First, we transform the objective
function by taking the logarithm of accumulated wealth and construct a loga-
rithmic utility function (we assume with no loss of generality an initial wealth
of W(0) =1):

W(T) = logW(T)
T
=) AW

T
= Y log {1+ (1 —u(t— 1))/ +ult—1)r)}

t=1

+log {1 — 8lu(t) — u(t —1)|} (1.65)

where we denote AW(t) as the change in logarithmic wealth. Note that this
transformation converts the multiplicative expression to one which is additive,
which is more suitable for EKF training. In addition, this logarithmic utility

1.6. EXAMPLE 2 99

function, if used directly, introduces a degree of risk aversion [Moody and Wu, 1997]
(the original wealth maximization formulation is risk-neutral).

This logarithmic transformation does not indicate directly how to convert
the maximization of utility to a minimization of sum-of-squared errors for EKF-
based training. However, this may be accomplished in one of two ways. First,
we can associate with each EKF-based weight update step a small, constant
and positive error signal which implies that regardless of how well or poorly the
trading system is performing, it is desirable for the system to always do better;
this mechanism acts as a reinforcement signal that is independent of the actual
increment or decrement in accumulated wealth. Alternatively, the error signal
can be defined as the difference between some maximum achievable change in
logarithmic wealth, AWyax, and the actual change in logarithmic wealth. In
this case, the scalar error signal is still always positive, but increases as AW(t)
decreases. In either case, the derivative matrices H;(t) (see Section 1.3.2) are
constructed by computing the dynamic derivatives of AW(t) with respect to
the ith group of weight parameters for the trading system. Alternative means
of constructing error or reinforcement signals can be considered as well. For
example, if it is possible to determine that the trading system has performed
properly in maximizing the change in logarithmic wealth at any given time,
then it may be counterproductive to penalize this action by trying to adjust the
trading system’s parameters to perform better, when in fact it cannot; in this
case, an error signal of zero may be appropriate.

1.6.3 Empirical Simulations

We employ the simulated time series studied by [Moody and Wu, 1997] to inves-
tigate the applicability of training recurrent neural networks with EKF methods
for portfolio optimization. The price series is characterized as a random walk
with an autoregressive trend process. This two-parameter model is given by

p(t) = p(t—1)+B(t—1)+ kA1) (1.66)
plt) = abt—1)+~() (1.67)

2(t) = exp (%) (1.68)

where A\(t) and 7(¢) are two random normal processes with zero mean and unit
variance, and where we have chosen a@ = 0.9 and k = 0.3 for the simulation
results described below.

We follow the convention established by [Moody and Wu, 1997] and consider
the evolution and training of a trading strategy over 10,000 time steps, where
each time step represents an hourly interval in a 24-hour artificial market. We
assume a trading cost rate of 6 = 0.05 and a rate of return for the risk-free asset
of approximately 6.85% per annum (rf = 6 x 1079).

We consider the training of a neural network trader with three inputs: the
first input is the value of the change in the logarithm of wealth from the previous
time step, scaled by a factor of 50 (without scaling, the change in the logarithm

60 CHAPTER 1. DRN IN CONTROL

of wealth tends to be small); the second input is the instantaneous price of the
risky asset; and the third input is the instantaneous value of the return of the
risky asset, scaled by a factor of 100. The output of the trader is the trading
signal u(t), ranging between zero and unity. The output signal of the system
we are attempting to control is the change in logarithmic wealth, scaled by a
factor of 50. In EKF training, the error signal is given by £(t) = 1 — 50AW(t),
where we explicitly account for the scaling of the change in logarithmic wealth.

We consider the training of a recurrent controller with architecture denoted
by 3-10R-5R-1U, where the output node is a unipolar sigmoid (1U in the no-
tation). We assume at the beginning of a trajectory a naive trading strategy
that sets u(0) = 0.5; this corresponds to initializing the controller with small
random weight values. We train the controller with GEKF, where derivatives
of change in scaled logarithmic wealth are computed with truncated backprop-
agation through time with a truncation depth of 10. Note that both the wealth
calculator and the trading system are dynamic. A learning rate of n = 0.01 is
employed throughout, and we use small constant process noise, Q = 107%T (see
Section 1.3.2).

We report here on a typical simulation run. We arbitrarily start with one
unit of wealth, YW(0) = 1, and assume that the price series starts at a value of
2(0) = 1. For each time step corresponding to the evolution of the price series
we conduct one step of GEKF training.

Typical training results are shown in Figure 1.10. The bottom panel shows
the price series in logarithmic form, which is one of the neurocontroller’s inputs,
in its raw form. The middle panel shows the evolution of the trading signal over
the course of 10,000 time steps of training, when training is carried out at each
time step. Note that the trading signal takes on values between zero and unity,
but is not constrained to be saturated at either of these two extremes, and often
takes on intermediate values. Finally, we plot the logarithm of accumulated
wealth in the uppermost panel for three different training scenarios. In the
lowest (dashed) trace, training was disabled at 2000 time steps, after which the
controller was used without further update. Note that the logarithmic wealth
basically remains unchanged after time step 2000, which was due to the fact
that the neurocontroller was emitting a constant signal of u(t) = 0 for ¢ > 2000.
The middle trace demonstrates the evolution of logarithmic wealth when train-
ing is disabled at 4000 time steps. Unlike the previous case of disabling training
at 2000 time steps, we note that there is appreciable growth in logarithmic
wealth after 4000 time steps, which indicates that the neurocontroller has be-
gun to implicitly model the underlying dynamics of the price series. Finally,
the uppermost trace corresponds to the case in which training is carried out
continuously; nearly identical behavior is observed when training is disabled at
7000 or more time steps.

It is noteworthy to compare the total accumulated wealth at 10,000 time
steps to the value of the price series at the same point in time. Note that the
price series ends up at a value of approximately 0.5 units of wealth, well below its
initial value of one unit. On the other hand, the accumulated wealth at the end
of 10,000 time steps is approximately 5.5 units. To put this result into context,

1.6. EXAMPLE 2 61

" Log of Accumulated Wealth

Trading Signal

1 N .

Log of Price

11— _
0 2000 4000 6000 8000 10000
Time Steps

Figure 1.10: Typical results of training on the simulated price series. The price
series and the accumulated wealth are plotted in the bottom and top panels,
respectively, in a natural logarithmic scale. The middle panel shows the trading
signal as the system is being trained. The top panel of wealth plots shows 3
traces; the bottom two correspond to disabling training at 2000 and 4000 time
steps.

62 CHAPTER 1. DRN IN CONTROL

investing the initial unit of wealth exclusively in the risk-free asset would have
resulted in an accumulated wealth of only 1.06 units after 10,000 time steps.

In Figure 1.11, we show at a finer scale the results between time steps 5500
and 6500. Note that the trading system appears to be able to effectively identify
those periods of time when the simulated stock price starts to increase or de-
crease in value, and takes and maintains appropriate positions (e.g., the trading
system invests in the risky asset shortly after it starts to increase in value and
invests in the risk-free asset when the risky asset’s value is declining). At times,
the trading system takes intermediate positions, apparently reflecting its uncer-
tainty in anticipated future movements of the price series. It is also noteworthy
that the amount of observed switching in the trading signal is affected by the
setting of the trading cost rate, where higher cost rates result in less aggressive
strategies.

1.6.4 Possible Extensions

A number of useful extensions to this simple example can be easily developed.
First, a more meaningful portfolio of more than a single traded asset should be
considered. A general portfolio of N securities would require a neurocontroller
with N outputs, where the outputs are normalized to add up to unity; Moody
et al. [Moody and Wu, 1997, Moody et al., 1998] develop strategies for multiple
asset portfolios and demonstrate the development of a neural network trader for
a portfolio of three simulated assets, using the prices series defined above, but
with different parameter settings for each of the price series.

While we have considered here the on-line adaptation of a trading strategy
for a simulated price series with some deterministic component, a particularly
useful extension would be to use multi-stream EKF training to develop a trading
strategy off-line for many different forms of price series. In fact, one could choose
to use recorded historical price series of a variety of different securities as a basis
for a trading strategy. In addition, other information regarding fundamentals
of the corporation issuing the stock could be considered as input to provide
context; although this type of fundamental input would change infrequently, it
could be expected to be quite different from one company to another.

[Moody and Wu, 1997, Moody et al., 1998] consider a variety of alternative
optimization objective functions that provide a trade-off between risk and re-
turn. As a means of augmenting the formalism described here, one could have
a multi-objective cost function that uses both change in logarithmic utility and
portfolio volatility. This procedure would require a volatility “calculator” in
addition to the wealth calculator; such a volatility calculator can be represented
with recurrent neural networks. An off-line controller training strategy would
use as input a reference signal for some maximum value of volatility that would
be tolerated. Then, the cost function corresponding to the volatility term would
only be invoked when the volatility of returns starts to exceed the reference sig-
nal (and perhaps only for down-side risk).

1.6. EXAMPLE 2 63

Log of Accumulated Wealth

0.8— _

06— —

Trading Signal

05—

.02 Logof Price _

5600 5800 6000 6200 6400
Time Steps

Figure 1.11: A section of 1000 points from the simulated price series shown
in Figure 1.10 which demonstrates the dynamic nature of the trading system’s
actions: when the risky asset begins to appreciate in value, the trading system
invests in that asset and properly maintains that position until the asset starts
to appreciably decrease in value.

64 CHAPTER 1. DRN IN CONTROL

1.7 Conclusion

In this chapter, we have described our framework for effective application of
dynamical neural networks in control. Essential elements of this framework
were discussed. These included network execution, derivative calculations, and
weight update mechanism. We emphasized that our approach to controller syn-
thesis is fundamentally equivalent to training a heterogeneous recurrent neu-
ral network. We introduced the modular approach to make descriptions of
neurocontrol system training more compact. We presented the case for multi-
streaming and illustrated its effectiveness in an example application. While
training for robustness was historically the first application of multi-stream
EKF, other applications have been successfully attempted since (see [Feldkamp et al., 1998,
Marko et al., 1996, Feldkamp et al., 1997, Feldkamp and Puskorius, 1997],
[Feldkamp and Puskorius, 1998, Petrosian et al., 2000]).

In the first example, we utilized perhaps the simplest strategy for robustness
training, i.e., choosing plants at random from the range of their parameters. One
of our future directions is the exploration of a more directed selection scheme.

For this chapter, we adopted the setting of developing neurocontrollers in
simulations, rather than through interaction with a physical system. Of course,
a synthesized neurocontroller must be eventually deployed and tested on a real
system. It is assumed that real system variations can be captured in the process
of training for robustness (Section 1.5 of this chapter). Then a reasonable gen-
eralization may be warranted. Even so, the performance may turn out to be less
than satisfactory, and some amount of on-line (after-deployment) training may
be required. It is legitimate to ask whether our framework (or elements thereof)
can be applied for on-line training. A comprehensive answer to this question
could fill a separate chapter. Simply put, the answer is yes, but there are many
issues to be addressed in order to make parts of the framework suitable for on-
line training. Some of these issues (most notably, closed-loop stability) are not
particular to neurocontrol systems, and apply to any adaptive control system.
Others are specific to our framework (for example, further modifications required
for multi-streaming). We refer an interested reader to [Puskorius et al., 1996]
for a successful example of on-line controller training utilizing elements of the
framework described.

We also demonstrated, through the second example, application of the neur-
controller training framework to an abstract financial, rather than physical,
system. This example is contrived to illustrate that effective trading strategies
can be directly inferred, provided that there is some degree of predictability in
the underlying time series, even though an explicit step of time series prediction
is never performed. Obviously, we do not expect real financial time series to
exhibit the same level of predictability as is found in this example. Furthermore,
we expect that successful application of these ideas for real financial systems is
likely to be difficult.

1.7. CONCLUSION 65

Projects

1. Demonstrate (e.g., in computer simulations) that close approximation of the
optimal solution in the linear quadratic regulation problem described on p. 205
of [White and Sofge, 1992] requires the use of h > 1 in BPTT(h).

2. Obtain backpropagation (dual) equations for the plant of Narendra and Mukhopad-
hyay.

3. Improve the robustness results of the recurrent controller of the first example
(see Section 1.5) and report findings to the authors.

4. Apply the approach of Section 1.6 to other time series and synthesize a suc-
cessful neural network trader. (Other training algorithms may be utilized.)

5. Apply the approach of Section 1.6 to the same time series, but sampled less
frequently (e.g., once every 10 hours in the artificial market).

6. Implement the extensions proposed in Section 1.6.4

Bibliography

[Anderson and Moore, 1979] Anderson, B. D. O. and Moore, J. B. (1979). Op-
timal Filtering. Prentice Hall.

[Bishop, 1995] Bishop, C. (1995). Neural Networks for Pattern Recognition.
Clarendon, Oxford.

[Elman, 1990] Elman, J. L. (1990). Finding structure in time. Cognitive Science,
14:179-211.

[Feldkamp and Prokhorov, 1998] Feldkamp, L. A. and Prokhorov, D. V. (1998).
Phased backpropagation: a hybrid of bptt and temporal bp. In Proceedings
of the IEEE International Joint Conference on Neural Networks, volume III,
pages 2262-2267, Anchorage, AK.

[Feldkamp et al., 1998] Feldkamp, L. A., Prokhorov, D. V., Eagen, C. F., and
Yuan, F. (1998). Enhanced multi-stream kalman filter training for recurrent
networks. In Suykens, J. and Vandewalle, J., editors, Nonlinear Modeling:
Advanced Black-Box Techniques, pages 29-53. Kluwer Academic Publishers.

[Feldkamp and Puskorius, 1994] Feldkamp, L. A. and Puskorius, G. V. (1994).
Training controllers for robustness: Multi-stream dekf. In Proceedings of
the IEEE International Conference on Neural Networks, pages 2377-2382,
Orlando.

[Feldkamp and Puskorius, 1997] Feldkamp, L. A. and Puskorius, G. V. (1997).
Fixed weight controller for multiple systems. In Proceedings of the 1997 In-
ternational Joint Conference on Neural Networks, volume I1, pages 773-778,
Houston, TX.

[Feldkamp and Puskorius, 1998] Feldkamp, L. A. and Puskorius, G. V. (1998).
A signal processing framework based on dynamic neural networks with ap-
plication to problems in adaptation, filtering and classification. Proceedings
of the IEEE, 86(11):2259-2277.

[Feldkamp et al., 1997] Feldkamp, L. A., Puskorius, G. V., and Moore, P. C.
(1997). Adaptive behavior from fixed weight networks. Information Sciences,
98:217-235.

71

72 BIBLIOGRAPHY

[Giles et al., 1990] Giles, C., Sun, G., Chen, H., Lee, Y., and Chen, D. (1990).
Higher order recurrent networks & grammatical inference. In Touretzky, D.,
editor, Advances in Neural Information Processing Systems 2, pages 380-387,
San Mateo, CA. Morgan Kaufmann Publishers.

[Grossberg, 1982] Grossberg, S. (1982). Studies of Mind and Brain: Neural
Principles of Learning Perception, Development, Cognition, and Motor Con-
trol. Reidell Press, Boston, MA.

[Haykin, 1996] Haykin, S. (1996). Adaptive Filter Theory. Prentice Hall.

[Haykin, 1999] Haykin, S. (1999). Neural Networks: A Comprehensive Founda-
tion. Prentice Hall, 2nd edition.

[Jordan, 1986] Jordan, M. I. (1986). Attractor dynamics and parallelism in a
connectionist sequential machine. In Proceedings of the Eighth Conference of
the Cognitive Science Society, pages 531-546. Lawrence Erlbaum.

0, o, J. T.-H. . dystem identification by recurrent multilayer

Lo, 1993] Lo, J. T.-H. (1993). S identification b 1til
perceptrons. In Proceedings of the World Congress on Neural Networks, vol-
ume IV, pages 589-600, Portland, OR.

[Marko et al., 1996] Marko, K. A., James, J. V., Feldkamp, T. M., Puskorius,
G. V., Feldkamp, L. A., and Prokhorov, D. (1996). Training recurrent net-
works for classification: realization of automotive engine diagnostics. In
Proceedings of the World Congress on Neural Networks, pages 845-850, San
Diego.

[Moody and Wu, 1997] Moody, J. and Wu, L. (1997). Optimization of Trading
Systems and Portfilios, pages 23-35. World Scientific.

[Moody et al., 1998] Moody, J., Wu, L., Liao, Y., and Saffell, M. (1998). Per-
formance functions and reinforcement learning for trading systems and port-
folios. Journal of Forecasting, 17:441-470.

[Narendra and Mukhopadhyay, 1994] Narendra, K. S. and Mukhopadhyay, S.
(1994). Adaptive control of nonlinear multivariable systems using neural
networks. Neural Networks, 7(5):737-752.

[Narendra and Parthasarathy, 1990] Narendra, K. S. and Parthasarathy, K.
(1990). Identification and control of dynamical systems using neural net-
works. IEEE Transactions on Neural Networks, 1(1):4-27.

[Narendra and Parthasarathy, 1991] Narendra, K. S. and Parthasarathy, K.
(1991). Gradient methods for the optimization of dynamical systems contain-
ing neural networks. IEEE Transactions on Neural Networks, 2(2):252-262.

[Petrosian et al., 2000] Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R.,
and Wunsch, D. (2000). Recurrent neural network based prediction of epilep-
tic seizures in intra- and extracranial eeg. Neurocomputing, 30:201-218.

BIBLIOGRAPHY 73

[Prokhorov and Feldkamp, 1997] Prokhorov, D. V. and Feldkamp, L. A. (1997).
Primitive adaptive critics. In Proceedings of the IEEE International Joint
Conference on Neural Networks, volume IV, pages 2263—-2267, Houston, TX.

[Prokhorov and Feldkamp, 1998] Prokhorov, D. V. and Feldkamp, L. A. (1998).
Bayesian regularization in extended kalman filter training of neural networks.
In Proceedings of the 10th Yale Workshop on Adaptive Systems, pages 77-82,
New Haven, CT.

[Puskorius and Feldkamp, 1991] Puskorius, G. V. and Feldkamp, L. A. (1991).
Decoupled extended kalman filter training of feedforward layered networks.
In Proceedings of the International Joint Conference on Neural Networks,
volume I, pages 771-777, Seattle, WA.

[Puskorius and Feldkamp, 1994] Puskorius, G. V. and Feldkamp, L. A. (1994).
Neurocontrol of nonlinear dynamical systems with kalman filter trained re-
current networks. IEEE Transactions on Neural Networks, 5(2):279-297.

[Puskorius and Feldkamp, 1999] Puskorius, G. V. and Feldkamp, L. A. (1999).
Roles of learning rates, artificial process noise and square root filtering for
extended kalman filter training. In Proceedings of the 1999 International
Joint Conference on Neural Networks, Washington D.C.

[Puskorius et al., 1996] Puskorius, G. V., Feldkamp, L. A., and Davis Jr., L. L.
(1996). Dynamic neural network methods applied to on—vehicle idle speed
control. Proceedings of the IEEE, 84(10):1407-1420.

[Sejnowski and Rosenberg, 1987] Sejnowski, T. J. and Rosenberg, C. R. (1987).
Parallel networks that learn to pronounce english text. Journal of Complex
Systems, 1:145-168.

[Singhal and Wu, 1989] Singhal, S. and Wu, L. (1989). Training multilayer per-
ceptrons with the extended kalman algorithm. In Touretzky, D. S., editor,
Advances in Neural Information Processing Systems 1, pages 133-140. Mor-
gan Kaufmann.

[Werbos, 1990] Werbos, P. J. (1990). Backpropagation through time: What it
does and how to do it. Proceedings of the IEEE, 78(10):1550-1560.

[White and Sofge, 1992] White, D. A. and Sofge, D. A., editors (1992.). Hand-
book of Intelligent Control: Neural, Fuzzy and Adaptive Approaches. Van
Nostrand Reinhold. See the example on p. 205.

[Williams and Peng, 1990] Williams, R. and Peng, J. (1990). An efficient
gradient—based algorithm for on—line training of recurrent network trajec-
tories. Neural Computation, 2:490-501.

[Williams and Zipser, 1989] Williams, R. J. and Zipser, D. (1989). A learning
algorithm for continually running fully recurrent neural networks. Neural
Computation, 1:270-280.

74 BIBLIOGRAPHY

[Williams and Zipser, 1995] Williams, R. J. and Zipser, D. (1995). Gradient-
based learning algorithms for recurrent networks and their computational
complexity. In Chauvin, Y. and Rumelhart, D. E., editors, Back-propagation:
Theory, Architectures and Applications. Lawrence Erlbaum Associates. Also
published as WILLIAMS-ZIPSER90A.

Glossary

Neurocontrol is a part of the field of neural networks dealing with theoretical
and practical issues of the application of neural networks to control of various
systems. It is usually assumed that a system to be controlled (or plant) can be
modeled, e.g., with the help of an identification neural network.

Identification (ID) network is a component of the overall control system used
for system modeling (identification). In indirect model-reference control with
neural networks, it provides sensitivity signals necessary to train a controller
network (or neurocontroller).

Model-reference control is a framework of the control theory which features a
reference model. A simple block diagram of a model-reference control system is
given in Figure 1.2 of Chapter 15. This framework was first adapted for neuro-
control by Narendra and Parthasarathy [Narendra and Parthasarathy, 1990].

Extended Kalman filter (EKF) recursion is a set of equations implementing the
extended Kalman filter (EKF) algorithm. The EKF algorithm is rooted in the
theory of optimal filtering. It can be successfully applied to training neural
networks (see Section 1.3.2 of Chapter 15).

automated deduction systems
approximation capability
backpropagation through structure
BPTS backpropagation through structure
cascade-correlation networks
causality

computational power

connectionst structure processing

contour-tree

75

Index

approximate error covariance matrix,
33, 34, 38, 41
autoregressive process, 59

backpropagation through time (BPTT)

truncated, 24, 28, 36, 59
truncation depth of, 25, 28, 37,
59

control system, 23, 35
adaptive, 64
closed-loop, 24, 36, 56
open-loop, 56
controller, 28, 34, 35, 37, 39, 52
feedforward, 36, 44, 47, 51, 53
neuro-, 24, 41, 42, 55, 57, 60,
63
recurrent, 44, 47, 48, 52, 53, 55,
59
synthesis of, 24, 25, 34, 42, 43,
46, 63

discount factor, 30
disturbances, 35

extended Kalman filter (EKF) re-
cursion, 32, 38, 41, 42, 58

Hessian matrix, 31, 33
Gauss-Newton approximation of,
33

identification (ID) network, 34, 36,
37, 48, 56

learning rate, 30, 33, 34, 47, 51, 53
linear quadratic regulation, 37, 64

model-reference control, 35

78

indirect, 36
multi-stream, 24, 39, 41, 42, 48, 53,
60, 63

neurocontrol, 23, 35, 55, 63

optimal filtering, 32
ordered
derivative, 29, 34, 36
network, 27

parallel model, 39

plant
MIMO, 35, 42
model of, 25, 34, 36, 39, 43, 47
perturbed, 47, 52

priming, 40, 44

real-rime recurrent learning (RTRL),
24, 28

recency effect, 24, 39, 41, 53

reference model, 36, 37, 43

relative degree, 37, 43

series-parallel model, 39

signal-flow graphs, 29

skyline reference signals, 43-45, 51,
53

tapped delays, 23, 27
teacher-forcing, 39

time delay operator, 26, 36
trading system, 55, 57, 58

uniform distribution, 43, 48, 51, 55

weight update method, 28, 30
first-order, 24, 30, 41
second-order, 24, 31, 55

