
Toyota Prius HEV neurocontrol

Danil Prokhorov

Abstract— I propose a neural network controller for im-
proved fuel efficiency of the Toyota Prius hybrid electric vehicle.
The approach is based on recurrent neural networks and an
effective combination of off-line and on-line training methods
including the extended Kalman filter and the simultaneous
perturbation stochastic approximation (SPSA). The proposed
approach is quite general and applicable to other control
systems.

I. INTRODUCTION

Hybrid powertrains have been gaining popularity due to
their potential to improve fuel economy significantly and
reduce undesirable emissions. Control strategies of the hybrid
electric vehicle (HEV) are more complex than those of
the internal combustion engine-only vehicle because they
have to deal with multiple power sources in sophisticated
configurations. The main function of any control strategy
is power management. It typically implements a high-level
control algorithm which determines the appropriate power
split between the electric motor and the engine to mini-
mize fuel consumption and emissions, while staying within
specified constraints on drivability, reliability, battery charge
sustenance, etc.

Computational intelligence techniques have previously
been applied to HEV power management by various authors.
A rule-based control was employed in [1]. Fuel economy
improvement with a fuzzy controller was demonstrated in [2],
relative to other strategies which maximized only the engine
efficiency. An intelligent controller combining neural net-
works and fuzzy logic which could adapt to different drivers
and drive cycles (profiles of the required vehicle speed over
time) was studied in [3]. Recently a neurocontroller was
employed in a hybrid electric propulsion system of a small
unmanned aerial vehicle which resulted in significant energy
savings [4].

The references cited above indicate a significant potential
for improving HEV performance through more efficient
power management based on application of computational
intelligence (CI) techniques. Though the Toyota HEV Prius
efficiency is quite high already, there is a potential for further
improvement, as illustrated in this paper.

Unlike traditional hybrid powertrain schemes, series or
parallel, the Prius hybrid implements what is called the power
split scheme. This scheme is quite innovative and has not
been studied extensively yet from the standpoint of applica-
tion of CI techniques. The Prius powertrain uses a planetary
gear mechanism to connect an internal combustion engine,
an electric motor and a generator. A highly efficient engine

Danil Prokhorov is with Toyota Technical Center, a division of Toyota
Motor Engineering and Manufacturing North America (TEMA), Ann Arbor,
MI 48105, e-mail: dvprokhorov@gmail.com

Fig. 1. The Prius car and the main components of the Toyota hybrid
system.

can simultaneously charge the battery through the generator
and propel the vehicle (Figure 1). It is important to be able
to set the engine operating point to the highest efficiency
possible and at sufficiently low emission levels of undesirable
exhaust gases such as hydrocarbons, nitrogen oxides and
carbon monoxide. The motor is physically attached to the
ring gear. It can move the vehicle through the fixed gear ratio
and either assist the engine or propel the vehicle on its own
for low speeds. The motor can also return some energy to the
battery by working as another generator in the regenerative
braking mode.

As in the previous work [5], [6], I employ recurrent
neural networks (RNN) as controllers and train them for
robustness to parametric and signal uncertainties (known
bounded variations of physical parameters, reference trajec-
tories, measurement noise, etc.). I intend to deploy the trained
neurocontroller with fixed weights. It is still desirable to
have a possibility to influence the closed-loop performance
in case some degree of adaptivity is needed, e.g., when an
intermittent fault in the system occurs which temporarily
makes significant changes in its performance (until repairs
are made). It may be not helpful to adapt weights of the
controller because 1) it would compromise its already trained
weights, i.e., its long-term memory, which is undesirable

1-4244-1380-X/07/$25.00 ©2007 IEEE

Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

in the intermittent fault case, and 2) adaptation in strongly
nonlinear systems can cause bifurcations. I prefer to augment
the fixed-weight RNN controller with a conceptually simple
direct adaptive control scheme.

This paper is structured as follows. In the next section I
describe main elements of the off-line training. The approach
permits me to create an RNN controller which is ready for
deployment with fixed weights. In Section III I discuss the
proposed on-line training which features a combination of the
fixed-weight controller and an adaptive controller trained on-
line to supplement the first controller outputs. I then describe
my experiments in Section IV, followed by conclusions and
directions for future work.

II. OFF-LINE TRAINING

I adopt the approach of indirect or model based control
development for off-line training. The Prius simulator is
highly complex, distributed software which makes training
a neurocontroller directly in the simulator difficult. I imple-
mented an approach in which the most essential elements
of the simulator are approximated sufficiently accurately by
a neural network model. The NN model is used to train a
neurocontroller by effectively replacing the simulator. The
trained neurocontroller performance is then verified in the
simulator.

The use of differentiable NN for both model and controller
makes possible application of the industrially proven training
method. I describe here only the main elements of the
method, referring the reader to other references for its more
comprehensive account [5], [7].

Truncated backpropagation through time (BPTT(h), where
h stands for the truncation depth) offers potential advantages
relative to forward methods for obtaining sensitivity signals
in NN training problems. First, the computational complexity
scales as the product of h with the square of the number of
nodes (for a fully connected NN). The required storage is
proportional to the product of the number of nodes and the
truncation depth h. Second, BPTT(h) often leads to a more
stable computation of dynamic derivatives than do forward
methods because its history is strictly finite. Third, the use of
BPTT(h) permits training to be carried out asynchronously
with the RNN execution. This feature enabled testing a BPTT
based approach on a real automotive hardware as described
in [7].

After the derivatives are computed via BPTT(h), I can
update the NN weights. Unlike weight update methods
that originate from the field of differentiable function op-
timization, the extended Kalman filter (EKF) method treats
supervised learning of a NN as an optimal filtering problem.
The NN weights w are interpreted as states of the trivially
evolving dynamic system, with the measurement equation
described by the NN function h:

w(t + 1) = w(t) + ν(t) (1)
yd(t) = h(w(t), i(t),v(t− 1)) + ω(t) (2)

The weights w may be organized into g mutually exclusive
weight groups. This trades off performance of the training

method with its efficiency; a sufficiently effective and com-
putationally efficient choice, termed node decoupling, has
been to group together those weights that feed each node.
Whatever the chosen grouping, the weights of group i are
denoted by wi. The corresponding derivatives of network
outputs with respect to weights wi are placed in Nout

columns of Hi.
To minimize at time step t a cost function E =∑
t

1
2ξ(t)T S(t)ξ(t), where S(t) is a nonnegative definite

weighting matrix and ξ(t) is the vector of errors, ξ(t) =
yd(t) − y(t), where y(t) = h(·) from (2), the decoupled
EKF equations are as follows [7]:

A∗(t)=


 1

η(t)
I +

g∑

j=1

H∗
j (t)

T Pj(t)H∗
j (t)



−1

(3)

K∗
i (t)= Pi(t)H∗

i (t)A
∗(t) (4)

wi(t + 1) = wi(t) + K∗
i (t)ξ

∗(t) (5)
Pi(t + 1) = Pi(t)−K∗

i (t)H
∗
i (t)

T Pi(t) + Qi(t) (6)

In these equations, the weighting matrix S(t) is distributed
into both the derivative matrices and the error vector:
H∗

i (t) = Hi(t)S(t)
1
2 and ξ∗(t) = S(t)

1
2 ξ(t). The matrices

H∗
i (t) thus contain scaled derivatives of network outputs

with respect to the ith group of weights; the concatenation
of these matrices forms a global scaled derivative matrix
H∗(t). A common global scaling matrix A∗(t) is com-
puted with contributions from all g weight groups through
the scaled derivative matrices H∗

j (t), and from all of the
decoupled approximate error covariance matrices Pj(t). A
user-specified learning rate η(t) appears in this common
matrix. (Components of the measurement noise matrix R
are inversely proportional to η(t).) For each weight group i,
a Kalman gain matrix K∗

i (t) is computed and is then used
in updating the values of the group’s weight vector wi(t)
and in updating the group’s approximate error covariance
matrix Pi(t). Each approximate error covariance update is
augmented by the addition of a scaled identity matrix Qi(t)
that represents additive data deweighting.

I employ a multi-stream version of the algorithm above.
A concept of multi-stream was proposed in [8] for improved
training of RNN via EKF. It amounts to training Ns copies
(Ns streams) of the same RNN with Nout outputs. Each copy
has the same weights but different, separately maintained
states. With each stream contributing its own set of outputs,
every EKF weight update is based on information from all
streams, with the total effective number of outputs increasing
to M = NsNout. The multi-stream training may be espe-
cially effective for heterogeneous data sequences because
it resists the tendency to improve local performance at the
expense of performance in other regions.

Figure 2 illustrates how the neurocontroller is trained in
our off-line training. After the NN model of the plant is
trained, I run the closed-loop system forward for h time
steps. I then backpropagate through the temporal chain of
the closed-loop system copies from step k + h to step k
while computing derivatives of a performance measure with

respect to neurocontroller weights. The EKF update is initi-
ated once the derivatives are computed. The entire process
(going forward, collecting derivatives, updating weights) is
repeated many times by stepping through a trajectory until
an acceptable performance is achieved. More details can be
found in [5].

C C

MR(k)

...

...

C

M M

Rd(T)

-

R(T)

e(T)

t=k t=k+1 t=k+h-1 t=k+h=T

Fig. 2. Pictorial representation of unfolding the closed-loop system
consisting of neurocontroller C and plant model M. The variables predicted
by the model R are compared with their desired values Rd, generating
the error e. While this is done only for the last step of the unfolding,
the unfolding process itself is repeated many times, starting from t =
k + 1, k + 2,

III. ON-LINE TRAINING

In [9] I discussed two options for augmenting the fixed-
weight RNN controller trained as described in the previous
section with another NN for on-line adaptation. One of the
options is to use a J critic in a scheme shown in Figure 3
(see, e.g., [10] for more details on adaptive critics).

+

J

Z-1

RNN
controller

(fixed weights)
Plant

NN critic
(weight
adaptation)Recurrent

node
outputs

u

Observations

Fig. 3. An augmentation of the robust recurrent neurocontroller with fixed
weights by the J critic for improved adaptive control of the plant. The critic
network uses the same inputs as the robust neurocontroller, its output u, plus
all outputs of the state nodes of the robust neurocontroller. The adaptive
correction ∆u of control u (dashed line) is computed by backpropagating
through the critic, i.e., ∆u = −µ∂J/∂u.

Figure 4 shows another option for on-line adaptation with
a special NN. This special NN is an adaptive portion of the
combined neurocontroller, which is to be trained by a suitable
method. The advantage of this option over Figure 3 is that

+

∆u

Z-1

RNN
controller

(fixed weights)
Plant

Adaptive
controllerRecurrent

node
outputs

u

Observations

Combined neurocontroller

Fig. 4. Proposed combination of the robust recurrent neurocontroller with
fixed weights and an adaptive controller for improved control of the plant.
The adaptive controller can be another NN which uses the same inputs as
the robust neurocontroller, its output u, plus all outputs of the state nodes
of the robust neurocontroller. Unlike Figure 3, the adaptive correction ∆u
of control u is computed directly, thereby avoiding possible arbitrariness in
choosing the learning rate µ (see the caption of Figure 3).

bounded control corrections ∆u are computed directly, rather
than via backpropagation through the critic.

For training the adaptive NN, I resort to the simultaneous
perturbation stochastic approximation (SPSA) method [11].
A popular form of the gradient descent-like SPSA uses two
cost evaluations independent of parameter vector dimension-
ality to carry out one update of each adaptive parameter. Each
SPSA update is

Wnext
i = Wi − aGi(W) (7)

Gi(W) =
Cost+ − Cost−

2c∆i
(8)

where W is a weight vector of the adaptive controller, Cost±

is a cost function to be minimized, ∆ is a vector of sym-
metrically distributed Bernoulli random variables generated
anew for every update step (e.g., the i-th component of ∆
denoted as ∆i is either +1 or −1), c is size of a small
perturbation step, and a is a learning rate. The notation
Cost± corresponds to the Cost values obtained for the
weight perturbations W ± c∆.

Each SPSA update requires that two consecutive values of
the Cost function be computed. This means that one SPSA
update occurs no more often than once every other time step.
It may also be helpful to let the Cost function represent
changes of the cost over a short window of some number of
time steps τ , in which case each SPSA update would be even
less frequent. In the example below Cost is the windowed
sum of cost(t), or differences between desired and actual
quantities of interest, e.g., plant outputs. This allows the plant
additional time to react to changing W.

My pivotal and realistic assumption is that all signals
in the closed-loop system are bounded, which assures the
bounded input bounded output (BIBO) stability. This is
critical, especially in the case of on-line training. Depending
on the application, the range of possible changes in ∆u may
need to be restricted for reasons of safety.

All-weight training in a nonlinear NN may result in output
bifurcations, i.e., small changes of the weights may cause
dramatic changes of the NN output. During continuous on-
line training of the adaptive controller its bifurcations may
be undesirable. In such a case only an output subset of the
controller weights may have to be trained, as it is done in
the so-called echo state network (ESN) [12].

IV. EXPERIMENTS

I first train a NN model to enable off-line training the
neurocontroller as discussed in Section II. To do supervised
training of the NN model in Figure 5, I gather the input-
output pairs from 20 diverse drive cycles generated in the
Prius simulator. I trained a 25-node structured RNN for
3000 epochs using the multi-stream EKF with g = 1 in
(3) [5] and attained the training RMSE of 5 · 10−4 (the
largest generalization RMSE was within 20% of the training
RMSE).

The closed-loop control system for training the NN con-
troller is shown in Figure 5. The converter determines the
required values of the speed ωd

r and the torque T d
r at the

ring gear of the planetary mechanism to achieve the desired
vehicle speed specified in the drive cycle. This is done on the
basis of the Prius model of motion. The constraint verifier
assures satisfaction of various constraints which must hold
for the engine, the motor and the generator speeds and
torques in the planetary gear mechanism, i.e., ωe and Te,
ωm and Tm, ωg and Tg , respectively.

The first control goal is to minimize the average fuel
consumed by the engine. However, fuel minimization only
is not feasible. The Prius nickel-metal hydride battery is the
most delicate nonlinear component of the system with long-
term dynamics due to discharging, charging and temperature
variations. It is important to avoid rapid and deep discharges
of the battery which can drastically reduce its life, requiring
costly repairs or even battery replacement. Thus, the second
goal of the HEV control is to maintain the battery State Of
Charge (SOC) throughout the drive cycle in the safe zone.
The SOC can vary between 0.0 (fully discharged) and 1.0
(fully charged), but the safe zone is typically above 0.4.

I combine the two control goals to obtain cost(t) =
λ1sf

2(t)+λ2(t)(SOCd(t)−SOC(t))2, where sf(t) stands
for specific fuel or fuel rate consumed by the engine at
time t, λ1 = 1, and λ2(t) ∈ [10, 50] due to about one
order of magnitude difference between values of sf and
those of SOC. The desired SOCd(t) is constant in our
experiments for simplicity. I encourage the controller to
pay approximately the same level of attention to both sf
and SOC, although the optimal balance between λ1 and
λ2 is yet to be determined. I also penalize reductions of
the SOC below SOCd five times heavier than its increases
to discourage the controller from staying in the low-SOC
region for long. Thus, λ2(t) = 10 if SOC(t) ≥ SOCd, and
λ2(t) = 50 if SOC(t) < SOCd.

Ultimately, I would also like to minimize emissions of the
harmful gases. In this paper emission reduction is influenced

indirectly through reducing the fuel consumption because
they are often strongly correlated.

The RNN controller has 5-10R-2 architecture, i.e., five
inputs, ten recurrent nodes in the fully recurrent hidden layer,
and two bipolar sigmoids as output nodes. The RNN receives
as inputs the required output drive speed ωd

r and torque
T d

r , the current engine fuel rate sf , the current SOC and
the desired SOC SOCd (see Figure 5; the desired fuel rate
is implicit, and it is set to zero). (Additional inputs could
be the coolant or the battery temperatures, but I have not
experimented with adding these to the inputs yet.) The RNN
produces two control signals normalized in the range of ±1.
The first output is the engine torque τe, and the second output
is the engine speed we which become Te and ωe, respectively,
after passing through the constraint verifier.

NN
controller

NN
model

Co
ns

tra
in

t
ve

rif
ier

SOC(t-1)

SOCd(t)

sf (t-1)

T tr
d ()

r
d t()

SOC(t)

sf (t)

te(t)

we(t)

Te(t)
we(t)
Tg(t)
wg(t)
Tm(t)
wm(t)

0 100 200 300 400 5000

10

20

30

40

50

60

Drive cycleConverter Vehicle
desired
speed

w

Fig. 5. Block diagram of the closed-loop system for training the NN
controller. The converter determines the required values of speed ωd

r and
torque T d

r at the ring gear of the planetary mechanism to achieve the desired
vehicle speed profile. The constraint verifier makes sure not only that the
torques and speeds are within their specified physical limits but also that
they are consistent with constraints of the planetary gear mechanism. The
trained NN model takes care of the remaining complicated dynamics of the
plant. The feedback loop is closed via SOC and the fuel rate sf , but the
required ωd

r and T d
r are guaranteed to be achieved through the appropriate

design of the constraint verifier.

The RNN controller is trained off-line using the multi-
stream EKF algorithm described in Section II. I train accord-
ing to the 5-stream EKF algorithm and BPTT(h) with h = 20
in which each stream is assigned to a particular instantiation
of the NN model (each stream has a slightly different copy of
the NN model to imitate parametric and signal uncertainties
in the Prius system). Every stream is assigned to its own 50-
point segment of the reference trajectory (drive cycle), with
the starting point chosen at random. I also choose SOCd(0)
randomly from the range [0.5, 0.8] and keep it constant for
the entire drive cycle. All parameters of every NN model
and drive cycles are redrawn every 20 training epochs, each
epoch consisting of processing all 250 points for all streams.
I train for 1200 epochs total (about 60000 weight updates)
with η = 0.01 and diag(Q) = 10−4I (these are reasonably

effective values for the training control parameters; I have
not optimized them for the best performance yet).

When training of the NN controller from Figure 5 is
finished, I can deploy it inside the high-fidelity simulator
which approximates well behavior of the real Prius and all
its powertrain components. The same simulator is also used
to perform the simulated on-line training, as discussed in Sec-
tion III. As expected, I observed some differences between
the neurocontroller performance in the closed loop with the
NN model and its performance in the high-fidelity simulator
because the NN model and the verifier only approximate
the simulator’s behavior. My results below pertain to the
simulator, rather than its NN approximation.

The basic idea of the current Prius HEV control logic
is discussed in [13]. When the power demand is low and
the battery SOC is sufficiently high, the motor powers the
vehicle. As the power demand and vehicle speed increase,
or the SOC reduces below a threshold, the engine is started.
The engine power is split between propelling the vehicle
and charging the battery through the generator. As the power
demand continues to grow, the engine might not be able to
stay within its efficiency limits. In those cases the motor
can provide power assist by driving the wheels to keep the
engine efficiency reasonably high, as long as the battery can
supply the required power. During decelerations the motor is
commanded to operate as a generator to recharge the battery,
thereby implementing regenerative braking.

It is hard to make this baseline strategy optimal for such
a complex powertrain. A strategy based on a data-driven
learning system presents an opportunity to improve over the
baseline strategy because of its ability to discern differences
in driving patterns and take advantage of them for improved
performance.

I compare our RNN controller trained for robustness with
the baseline control strategy of the Prius on many drive
cycles including both standard cycles (required by govern-
ment agencies) and non-standard cycles (e.g., random driving
patterns). The RNN controller is better by 17% on average
than the baseline controller in terms of fuel efficiency. It also
reduces variance of the SOC over the drive cycle by at least
25% on average.

Figure 6 shows an example of the neurocontroller results,
which should be compared with Figure 7. The latter depicts
the baseline controller results on the same drive cycle. The
NN controller advantage appears to be in more efficient usage
of the engine, e.g., longer idling at higher torque values. The
engine efficiency is 37% vs. 31% for the baseline controller.
An even bigger improvement is achieved in the generator ef-
ficiency: 72% vs. 49%; other component efficiencies remain
basically unchanged.

I also test the effectiveness of the proposed on-line train-
ing. I employ the combination of Figure 4 with a feedforward
NN adaptive controller trained by the SPSA method. The
SPSA training parameters a, c and τ should be chosen
such that they reduce RMS errors for many drive cycles,
a broad set of disturbances, etc. For various values of the

100
 200
 300
 400
 500
 600
 700
 800
 900
 1000
 1100

0

20

40

60

80

v
e
h
 s

p
e
e
d
 a

n
d
 S

O
C

100
 200
 300
 400
 500
 600
 700
 800
 900
 1000
 1100

-200

0

200

m
o
t
a
n
d
 g

e
n

to

r
q
u
e
s

100
 200
 300
 400
 500
 600
 700
 800
 900
 1000
 1100

-1000

0

1000

m
o
t
a
n
d
 g

e
n

s
p
e
e
d
s

100
 200
 300
 400
 500
 600
 700
 800
 900
 1000
 1100

0

200

400

e
n
g
in

e
 t
r
q
 a

n
d
 s

p
d

time

Fig. 6. Illustrative performance of the neurocontroller on a typical drive
cycle. The top panel shows the vehicle speed and SOC, the second panel
shows the motor (red) and the generator (blue) torques, Tm and 10× Tg ,
respectively; the third panel shows the motor ωm (red) and the generator ωg

(blue) speeds, and the bottom panel shows the engine torque Te (blue) and
speed ωe (red). Note that ωm = ωd

r due to the system design constraint.

SPSA training parameters obtained by trial and error I often
observe improvements between 1% and 10% with respect
to fuel efficiency values of the fixed-weight neurocontroller.
The observed improvements appear to be accompanied by
increased variance of the SOC over drive cycles, sometimes
by as much as 8%.

V. CONCLUSIONS

The contribution of this paper is two fold. First, I propose
an effective combination of off-line and on-line NN training
methods which may be applicable to various real-world
control problems. I strike a reasonable engineering balance
between off-line and on-line methods to achieve improved
results. Second, I illustrate the approach on the Toyota Prius
HEV through high-fidelity simulation, with results improved
over those of the baseline controller.

In this paper I used a neural network model of the plant.
This enabled the use of multi-stream EKF as the off-line
training method. It is also possible to employ an existing

100 200 300 400 500 600 700 800 900 1000 1100
0

20

40

60

80

v
e
h
 s

p
e
e
d
 a

n
d
 S

O
C

100 200 300 400 500 600 700 800 900 1000 1100

-200

0

200

m
o
t
a
n
d
 g

e
n

to

r
q
u
e
s

100 200 300 400 500 600 700 800 900 1000 1100
-1000

0

1000

m
o
t
a
n
d
 g

e
n

s
p
e
e
d
s

100 200 300 400 500 600 700 800 900 1000 1100
0

200

400

e
n
g
in

e
 t
r
q
 a

n
d
 s

p
d

time

Fig. 7. Illustration of the baseline controller performance. The drive cycle
and notation are the same as in Figure 6.

non-neural model of a plant and a nonlinear Kalman filter
method for neurocontrol as described in [6].

Various issues remain to be clarified with the SPSA
method. My choice of the SPSA training parameters is by no
means optimal. It may be necessary to resort to adaptation
of the SPSA training parameters themselves, depending on
the application and the current level of performance. And the
adaptive controller architecture may need to be selected in a
principled way.

REFERENCES

[1] Baumann, B. M., Washington, G N., Glenn, B. C., and Rizzoni,
G, “Mechatronic Design and Control of Hybrid Electric Vehicles,”
IEEE/ASME Transactions on Mechatronics, v.5 n.1, pp. 58–72, 2000.

[2] N. Schouten, M. Salman, N. Kheir, “Fuzzy logic control for parallel
hybrid vehicles,” IEEE Transactions on Control Systems Technology,
v.10, n.3, May 2002, pp. 460–468.

[3] Baumann, B., G. Rizzoni, and G. N. Washington,“Intelligent Control
of Hybrid Vehicles Using Neural Networks and Fuzzy Logic, SAE
Technical Paper 981061, SAE Int. Cong. and Exposition, 1998.

[4] F. Harmon, A. Frank, and S. Joshi, “The Control of a Parallel Hybrid-
Electric Propulsion System for a Small Unmanned Arial Vehicle Using

a CMAC Neural Network,” Neural Networks, v. 18, June/July 2005, pp.
772–780.

[5] D. V. Prokhorov, G. V. Puskorius, and L. A. Feldkamp, “Dynamical
neural networks for control,” in A Field Guide to Dynamical Recurrent
Networks, Edited by J. Kolen and S. Kremer, IEEE Press, 2001, pp.
257–289.

[6] D. Prokhorov, “Training Recurrent Neurocontrollers for Robustness
with Derivative-Free Kalman Filter,” IEEE Trans. Neural Networks,
November 2006, pp. 1606–1616.

[7] G. V. Puskorius, L. A. Feldkamp, and L. I. Davis, Jr., “Dynamic neural
network methods applied to on-vehicle idle speed control,” Proceedings
of the IEEE, vol. 84, no. 10, pp. 1407–1420, 1996.

[8] L. A. Feldkamp and G. V. Puskorius, “Training controllers for robust-
ness: Multi-stream DEKF,” in Proceedings of the IEEE International
Conference on Neural Networks, Orlando, 1994, pp. 2377–2382.

[9] D. Prokhorov, “Toward effective combination of off-line and on-
line training in ADP framework,” in Proceedings of the 2007 IEEE
Symposium on Approximate Dynamic Programming and Reinforcement
Learning (ADPRL), Symposium Series on Computational Intelligence
(SSCI), April 1-5, 2007, Honolulu, HI, pp. 268–271.

[10] Publications of Paul J. Werbos at www.werbos.com.
[11] J. C. Spall and J. A. Cristion, “Model-free control of nonlinear stochas-

tic systems with discrete-time measurements,” IEEE Trans. Automatic
Control, vol. 43, no. 9, September 1998, pp. 1198–1210.

[12] H. Jaeger and H. Haas, “Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless telecommunications,” Science,
April 2, 2004, pp. 78–80.

[13] D. Hermance, “Toyota Hybrid System,” SAE TOPTEC Conference
Proc., Albany, NY, May 1999.

	Main Menu
	Table of Contents
	Conference Program
	Author Index
	Search This CD-ROM
	Print This Paper
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	IJCNN CD-ROM Help

