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Abstract: We present a framework for the training of time-lagged recur-
rent networks that has been used for a wide variety of both abstract prob-
lems and practical applications. Our method is based on rigorous computation
of dynamic derivatives, using various forms of backpropagation through time
(BPTT), a second-order weight update scheme that uses the extended Kalman
filter, and data delivery mechanics designed for sequential weight updates with
broad coverage of the available data. We extend our previous discussions of
this framework by discussing various alternative forms of BPTT. In addition,
we consider explicitly the issue of dealing with and optimizing network initial
states. We discuss the initial state problem from the standpoint of making
time-series predictions.

1.1 INTRODUCTION

Extended Kalman filter multi-stream training is a synthesis of training tech-
niques that forms a practical and quite general approach to neural network
training. The method is comprised of the following elements: 1) gradient cal-
culation by backpropagation through time; 2) weight updates based on the
extended Kalman filter; and 3) data presentation using multi-stream mechan-
ics.

With this synthesis, our group and others have dealt with many different
types of problems involving temporal systems. In most cases, such problems
have had a mixed character, in which there are one or more primary input
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variables and other inputs which, taken together, provide context. A typical
problem might involve prediction, estimation, classification [1, 2], or control
[3, 4]. The systems we have encountered have mostly been driven, rather than
autonomous. In the present paper, however, we will also consider autonomous
systems, in order to focus on network state initialization, a subject largely
ignored in most previous work.

Much of our work has made use of time-lagged recurrent networks, usually
in the form of recurrent multilayer perceptrons (RMLP), which are a natural
synthesis of feedforward multilayer perceptrons and single-layer fully recurrent
networks. In dealing with autonomous systems, especially those which are
sensitive to initial states, it may be advantageous to make use of externally
recurrent networks, because the network state variables are not hidden. The
methods we describe apply just as well to such networks.

Recurrent networks are often found to be hard to train. In addition to
compounding the usual problems encountered in training feedforward networks,
including poor local minima, recurrent networks exhibit the recency effect: the
tendency for recent weight updates to cause a network to forget what it has
learned in the past. This tendency also exists in the training of feedforward
networks, but in that case easily applied countermeasures exist. For example,
one may scramble the order of presentation of input-output pairs or employ
batch learning (in which an update may be based on all examples). Such
methods are cumbersome to employ in training recurrent networks, because
the temporal order of the data sequences is important. Although recurrent
networks can be trained with batch weight updates, sequential training methods
have practical advantages, because feedback on progress of the training process
is provided more often, especially for very large data sets. We also are convinced
that the stochastic nature of sequential updates often gives rise to better results.

Since recurrent networks are dynamical systems and have well defined state
variables, it seems reasonable that the question of how to initialize these state
variables would have received a great deal of critical attention. Remarkably,
this does not seem to have been the case. In our own work, for example,
by dealing largely with stable systems and suitable procedures (see Section 4)
that minimize the effect of the network initial state, we have been able almost
entirely to bypass such questions, without compromising the quality of network
training. However, in a few applications such initialization has assumed some
importance. In particular, if a recurrent network is expected to exhibit good
performance immediately after execution begins, its initial state may be critical.

If data are scarce, a proper treatment of network initial states might enable
all data to be used to advantage in training. This is in contrast to our standard
procedure, in which we defer updates until the startup transient of the network
is expected to have dissipated, to avoid distorting the network weights on the
basis of errors due more to incorrect network state variables than to incorrect
weight values.

An obvious situation in which the initial state is important is a network
modeling an autonomous system. A chaotic system is an extreme case, because



MULTI-STREAM KALMAN TRAINING 3

the initial state affects the entire evolution of the network. Here, of course,
an accurate long-term model is out of the question, but even the short-term
accuracy of a recurrent network model can depend significantly on the choice
of initial state.

Finally, we contend that a method of dealing with initial states should permit
networks with hidden states, such as RMLPs or recurrent networks in state-
space form with nontrivial output functions, to be used in situations where
only externally recurrent networks are presently considered. In time-series pre-
diction, for example, it is usual to construct the state of a recurrent network
from the measured series values. Even if this is valid, it may be that the evolu-
tion of the actual state of the generating system is more simply described than
is the evolution of the system output, especially if the output function is not
invertible.

We have organized the remainder of this paper as follows. Section 2 presents
briefly the recurrent network architecture in the form of an ordered network
and defines its evolution. In Section 3, we begin discussion of the training
method by describing the calculation of the gradients required for network
weight training, presenting two variations of BPTT. Section 4 presents the
EKF multi-stream method. Section 4.1 describes how gradients are used in a
second-order weight update procedure, based on the extended Kalman filter,
while Section 4.2 describes multi-stream training. Section 5 describes a typical
modeling application, based on experimental data. Section 6 illustrates the
training of both network weights and initial states, using a simple three-state-
variable system. We point out how derivatives required for optimizing network
initial states arise naturally in BPTT and describe our proposed mechanics for
initial state training. In Section 7 we continue discussion of network initial
states, demonstrating the extent to which a network’s modeling performance
can depend on how it is initialized. We present a homogeneous multi-stream
training process for a combined network that handles both state initialization
and evolution. In Section 8, we illustrate the training process in the context
of extended prediction of a time series with several state variables. Section 9
extends our discussion by considering application-specific structured networks.
We illustrate the approach by applying it to the time-series competition prob-
lem. Finally, in the last section we summarize and make some concluding
remarks.

1.2 NETWORK ARCHITECTURE AND EXECUTION

For compactness of presentation, we use the ordered network [5] formalism to
define both the architecture and execution of recurrent networks. This formal-
ism can describe the basic RMLP form, which consists of one or more layers
of computational nodes, as in a standard feedforward network or MLP. In each
layer we either have full recurrence (every node is connected through unit time
delays to every node) or no recurrence. The ordered network description can
also handle sparse connection patterns, as illustrated in Figure 1.1, and is well
suited to networks with tapped delay lines, whether internal or external.



The forward equations for an ordered network with n_in inputs and n_out
outputs may be expressed very compactly in a pseudocode format. Let the
network consist of n_nodes nodes, of which n_in serve as receptors for the
external inputs. The bias input, which we denote formally as node 0, is not
included in the node count. The bias input is set to the constant 1.0. The
array I contains a list of the input nodes; e.g., I; is the number of the node
that corresponds to the jth input, in;. Similarly, a list of the nodes that
correspond to network outputs out, is contained in the array O. We allow
network outputs and targets to be advanced or delayed with respect to node
outputs by assigning a phase 7, to each output. For example, if we wish to
associate the network output p with the output of some system five steps in
the future, we would have 7, = 5. Node 7 receives input from n_con(i) other
nodes and has activation function f;(-); n_con(i) is zero if node i is among
the nodes listed in the input array I. The array c specifies connections between
nodes; ¢; ; is the node number for the jth input of node i. Inputs to a given
node may originate at the current or past time steps, as specified by delays
contained in the array d, and through weights for time step ¢ contained in the
array W (t).

Most commonly, we take the activation function f;(-) to be either linear or a
bipolar sigmoid, though we also make use of other functions, such as products
and sinusoids, for special purposes.

Prior to beginning network operation, all appropriate memory is initialized.
Normally, such memory will be set to zero. In some cases, as we discuss later,
memory that corresponds to the network initial state may be set to specified
values.

At the beginning of each time step, we execute the following buffer oper-
ations on weights and node outputs (in practical implementation, a circular
buffer and pointer arithmetic may be employed). Here dmax is the largest
value of delay represented in the array d, and h is the truncation depth of the
backpropagation through time gradient calculation described in the following
section.

for i = 1 to n.nodes {
for iy = t-h-dmax to t-1 {

—~

.
o~

~—

Wis + 1) (1.1)
yi(ie) = wilie +1)
I

The actual network execution is expressed as

for i = 1 to n_in {

yi(t) = ing(?) (1.3)

for i = 1 to nmodes {
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if ncon(i) > 0 {

n_con(i)
yit) = fi( Z Wi i()ye,, (t — dij)) (1.4)
1}
for p = 1 to nout {
out,(t+7,) = yo,(t) (1.5)

Note that the expressions for network execution do not explicitly invoke the
concept of layers; a layered structure, when desired, is imposed implicitly by
the connection pattern. Pure delays can be described directly, so that tapped
delay lines on either external or recurrent inputs are conveniently represented.
Alternatively, an explicit representation of the states that arise from delay lines
may be realized by defining nodes that correspond to delayed values. The choice
between these representations may be made on the basis of convenience.

1.3 GRADIENT CALCULATION

After the forward propagation at time step ¢, we compute gradients in prepa-
ration for the weight update step. We make use of various forms of truncated
backpropagation through time (BPTT(h)) [5, 6]. With the truncation depth
h suitably chosen, this method produces accurate derivatives with greatly re-
duced complexity and computational effort as compared to forward methods
such as real-time recurrent learning (RTRL). In the limit ~ = 0, BPTT reduces
to ordinary static backpropagation.

We describe here the mechanics of two variations of BPTT(h). The first
of these, which we term “traditional BPTT,” produces derivatives that are
directly comparable to those of RTRL, producing total or ordered derivatives
of the current network outputs (or errors) with respect to its weights. The
other variation, “aggregate BPTT,” produces total derivatives of the sum of
squared errors over a time horizon equal to the truncation depth.

We use the Werbos notation in which F'z denotes an ordered derivative of
some quantity ¢ with respect to x. To derive the backpropagation equations,
the forward propagation equations are considered in reverse order. From each
we derive one or more backpropagation expressions, according to the principle
that if a = g(b, c), then Eb+ = %F_qa and Fle+ = %F_qa. We use the C-
language notation “+ =" to indicate that the quantity on the right hand side is
added to the previous value of the left hand side. In this way, the appropriate
derivatives are distributed from a given node to all nodes and weights that feed
it in the forward direction, with due allowance for any delays that might be
present in each connection. The simplicity of the formulation reduces the need
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Figure 1.1 Schematic illustration of a sparsely connected RMLP. If both recurrent layers
were fully connected, the network would be denoted as 1-2R-3R-1RL. The first hidden layer
is fully recurrent, the second hidden layer is partially recurrent, and the output node is
recurrent. Nodes 2-6 are bipolar sigmoids, and the recurrent output node is linear. The
small boxes denote unit time delays. Bias connections are present, as indicated in Table 1.1,
but are not shown.

for visualizations such as unfolding in time or signal-flow graphs.

1.3.1 'Traditional BPTT

In traditional BPTT, F’z denotes the ordered derivative of network output
node p with respect to z. (It is convenient for application of the Kalman up-
date formalism to focus on derivatives of outputs, rather than derivatives of
errors.)

for p = 1 to nout {
for i = 1 to nmodes {
for iy = t to t-h-1 {

Flyi(i) = 0 (1.6)
}} /% end i and iy loops */

Flyo,(t) = 1 (1.7)
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Table 1.1 Connection, delay, and activation function table for the ordered network of
Figure 1.1. The jth connection to node i is given by c¢; j; the corresponding delay is given
by d; ;. Entries for index 4 are absent for nodes 0 and 1, since neither receives input from
any other node. Note that recurrent connections have unit delays. The elements of the
input and output arrays are: [y = 1 and Oy = 7.

Ci,j diyj activation

(e}

bipolar sigmoid

bipolar sigmoid

bipolar sigmoid

bipolar sigmoid

bipolar sigmoid

(S}
QU WO N W WD WN R WND R WD | S

0
0
1
1
0
0
1
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
1

NO U R ODUWNODUTEWNODWNOO WNEFEOWDND

7 linear

Ep(t) = tgt,(t+7p) —outy(t + 7p) (1.8)

for ip = 0 to h {
o= t—ip (1.9)

for i = nnodes to 1 {
if ncon(i) > 0 {
for k = ncon(i) to 1 {

J = Gk (1.10)

iy = iy —dig (1.11)



Flyj(ia) += ~A%*Fly;(in)Win(ir) fi(yi(ir)) (1.12)
FXWie += y;(i2)Foyi(in) fl(yi(in)) (1.13)
end k loop */

~
*

* end i loop */
* end i, loop */
* end p loop */

(S S S
NN N

Here (6) serves to initialize the derivative array, while (7) expresses the fact
dyo, (t

e 2l
described in Section 4. The actual backpropagation occurs in expressions (12)
and (13), which come directly from the forward propagation expression (4).
We have included a discount factor v in expression (12), though it is often
set merely to its nominal value of unity. The desired value of network output
out,(t +7,) = yo,(t) is denoted as tgt, (t + 7).

1. The error &,(t) computed in (8) is used in the weight update

1.3.2 Aggregate BPTT

In aggregate BPTT, F’z denotes an ordered derivative of 7'(t) = =& iot(t) =

(th _o7™ (&,(t—h+iy ))?)2. Thus, we inject a normalized error at each step
of the backpropagation through time (see expression (17) below).

for p = 1 to n_out {
for i = 1 to nnodes {
for iy = t to t-h-1 {

Flyi(is) = 0 (1.14)
}} /% end i and iy loops */
&(t) = tgt,(t+ 1) —outy(t+ 1) (1.15)

for ip = 0 to h {

i o= t—ip (1.16)

Flyo,(t) += &(i1)/Epror(t) (1.17)
for i = n_nodes to 1 {

if ncon(i) > 0 {

for k = n_con(i) to 1 {

J = Gk (1.18)

iy = i1 —dig (1.19)

Flyi(is) += % Fly(in) Wik (ir) fl(yi(ia)) (1.20)

EWir += y;(i2)Fyi(in) fl(yi(in)) (1.21)
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} /* end k loop */

} /% end i loop */
} /% end i loop */
} /* end p loop */

Another variation of BPTT differs from aggregate BPTT only in the respect
that backpropagation to the weights, as in (21), is performed only for iy = t—h.
This variation produces derivatives that are equivalent to those of the “temporal
backpropagation” scheme of Wan and correspond to the derivatives that are
sought by using derivative adaptive critics. As some issues regarding the use
of such derivatives in conjunction with Kalman updates remain to be resolved,
we do not consider this particular variation here.

1.4 EKF MULTI-STREAM TRAINING
1.4.1 The Kalman Recursion

We have made extensive use of training that employs weight updates based on
the extended Kalman filter method first proposed by Singhal and Wu [7]. In
most of our work, we have made use of a decoupled version of the EKF method
[3, 8], which we denote as DEKF. Decoupling was crucial for early practical
use of the method, when speed and memory capabilities of workstations and
personal computers were severely limited. At the present time, many problems
are small enough to be handled with what we have termed global EKF, or
GEKF. In many cases, the added coupling brings benefits in terms of quality
of solution and overall training time. However, the increased time required for
each GEKF update is a potential disadvantage in real-time applications.

For generality, we present the decoupled Kalman recursion; GEKF is re-
covered in the limit of a single weight group (¢ = 1). The weights in W are
organized into g mutually exclusive weight groups; a convenient and effective
choice has been to group together those weights that feed each node. Whatever
the chosen grouping, the weights of group ¢ are denoted by w;. The correspond-
ing derivatives Ffwi are placed in n_out columns of H;.

To minimize a cost function E = >, $£(t)1'S(¢)€(t), where S(t) is a non-
negative definite weighting matrix and &€(t) is the vector of errors at time step
t, the recursion equations for group i are as follows [4]:

JEE |
A*(t) = |_—I +y H;(0)'P;(t)H; (t)J ;
j=1

n(t)
(1.22)
Ki(t)=P;()H;(H)A"(?), (1.23)
wi(t+1) = wi(t) + Kj ()€ (1), (1.24)
Pi(t + 1) = Py(t) — K; ()H; (1) Pi(t) + Qi) -

(1.25)
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In these equations, the weighting matrix S(t) is distributed into both the deriva-
tive matrices and the error vector: H*(t) = H;(t)S(t)z and £"(t) = S(t)2£(¢).
If traditional BPTT has been used, the error vector £(t) has elements &,(t); in
the case of aggregate BPTT, we use &, 10¢(t) instead. See [9] for a discussion of
Kalman training with various error functions.

We concatenate the matrices HY (¢) to form a global scaled derivative matrix
H*(t). We compute a common global scaling matrix A*(¢) with contributions
from all g weight groups, through the scaled derivative matrices H’;(t), and
from all of the decoupled approximate error covariance matrices, P;(t). A
user-specified learning rate, 7(t), appears in this common matrix. For each
weight group 4, the Kalman gain matrix K} (¢) is computed and is then used
in updating the values of the group’s weight vector w;(¢) and in updating the
group’s approximate error covariance matrix P;(¢). Each approximate error
covariance update is augmented with the addition of a scaled identity matrix,
Q;(t), that represents the effects of artificial process noise.

The EKF recursion is typically initialized by setting the approximate error
covariance matrices to scaled identity matrices. We usually choose a scaling
factor of 100 for nonlinear nodes and 1000 for linear nodes. At the beginning
of training, we generally set the learning rate low (the actual value depends
on characteristics of the problem, but n = 0.1 is a typical value), and start
with a relatively large process noise parameter, e.g., Q;(0) = 1072I. We have
previously demonstrated that artificial process noise accelerates training, helps
to avoid poor local minima during training, and tends to keep approximate
error covariance matrices nonnegative definite, as required [8]. As training
progresses, we generally decrease Q;. The training dynamics depend on which
form of BPTT is used for derivative calculation (the above stated values are
based largely on our experience with traditional BPTT).

1.4.2 Multi-Stream Training

The standard recurrent network training problem involves training on sequen-
tial input-output pairs. If the sequence is fairly homogeneous, then one or
more sequential passes through the data will probably produce good results.
In many training problems, however, the data sequence is heterogeneous. For
example, regions of rapid variation of inputs and outputs may be followed by
regions of slow change. Or a sequence of outputs that centers about one level
may be followed by one that centers about a different level. For any of these
cases, the tendency always exists for the network weights to be adapted to the
currently presented training data at the expense of performance on previous
data. This recency effect is analogous to the difficulty that may arise in training
feedforward networks if training data are presented always in the same order.

The multi-stream procedure largely circumvents the recency effect by com-
bining features of both scrambling and batch updates. Like full batch methods,
multi-stream training [10] is based on the principle that each weight update
should attempt to satisfy simultaneously the demands from multiple input-
output pairs. It retains, however, the useful stochastic aspects of sequential



MULTI-STREAM KALMAN TRAINING 11

updating and requires much less computation time between updates than does
a batch update method.

Multi-stream training can also be applied to unconventional training prob-
lems, such as training robust controllers [11], training dynamic networks to
exhibit behavior usually attributed to adaptive systems [12, 13], and encourag-
ing stability of recurrent networks used as models [10, 14].

In a typical training problem, we deal with one or more files, each of which
contains a sequence of data. Breaking the overall data set into multiple files
is typical in practical problems, where the data may be acquired in different
sessions, for distinct modes of system operation, or under different operating
conditions.

In each cycle of training, we choose a specified number N; of randomly
selected starting points in a chosen set of files. Each such starting point is the
beginning of a stream. The multi-stream procedure consists of progressing in
sequence through each stream, carrying out weight updates according to the
set of current points. Copies of recurrent node outputs must be maintained
separately for each stream. Derivatives are also computed separately for each
stream.

In the absence of prior information with which to initialize the recurrent
network, we initialize the outputs of all state nodes to zero at the start of each
stream. Correspondingly, the network is executed for a number of steps N,
the trajectory length, but updates are suspended for NV, time steps, called the
priming length, at the beginning of each stream. Hence INV; — N, updates are
performed in each training cycle. This priming scheme is based on the fact that
the outputs of a stable network, after a suitable number of time steps, will be
essentially independent of its initialization. A related quantity, IV, denotes the
number of steps for which injection of error as in expression (17) is suspended;
in most applications IV, = Ne.

Generally speaking, in return for somewhat increased computational over-
head, we find that performance tends to improve as the number of streams is
increased. Various strategies are possible for file selection. If the number of
files is small, it is convenient to choose IV equal to a multiple of the number of
files and to select each file the same number of times. If the number of files is
too large to make this practical, then we tend to select files randomly. In this
case, each set of V; — N, updates is based on only a subset of the files, so it is
reasonable not to make the trajectory length Ny too large.

An important consideration is how to carry out a consistent EKF update
procedure. To do this, we treat the training problem as that of a single shared-
weight network in which the number of original outputs is multiplied by the
number of streams. A practical limit on the number of streams may be set by
the need to invert a matrix whose dimension is Ny X n_out.

In single-stream EKF training, we place derivatives of network outputs with
respect to network weights in the matrix H constructed from n_out column
vectors, each of dimension equal to the number of trainable weights, N,. In
multi-stream training, the number of columns is correspondingly increased to
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N; x n_out. Similarly, the vector of errors £ has Ns; X n_out elements. Apart
from these augmentations of H and &, the form of the Kalman recursion is
unchanged. The Kalman recursion produces weight updates which are not a
simple average of the weight updates that would be computed separately for
each output or stream. A plausibility argument for the efficacy of these updates
is presented in [14].

1.5 A MODELING EXAMPLE

In this section we describe a typical use of multi-stream EKF to train a recurrent
network to model a physical system. To avoid proprietary issues, we shall
not discuss the context in which the data used here arise, except to say that
they were obtained from a physical system as part of an existing development
process. The object of the training exercise was to determine the extent to
which a set of easily acquired signals could be used to synthesize a close replica
of the output of a sensor that is too difficult or costly for routine use. This is
the classic statement of a “virtual sensor” problem.

In this example, we have six variables available as time sequences for network
inputs; each of these represents a sampled signal and reflects minor effects from
noise and other measurement irregularities. There is a single target output
sequence, representing measurements from a sensor installed at considerable
cost and effort. The present system is driven by external actions according to
several different types of trajectories. The external drivers are not explicitly
available, but their effect is evident in the network input sequences. As is
frequently the case in such applications, there was no a priori guarantee that
the information contained in the input sequences would be sufficient to model
the target output. The different types of external excitation give rise to a rather
large dynamic range for the target output. Indeed, the best approach in an
engineering sense might be to divide the problem into several behavioral modes
and to construct a separate model for each mode. Here, however, we assert that
a single model is feasible. Training by standard methods, e.g., by presenting
the various files one-by-one, would almost surely suffer the consequences of
the recency effect, especially as many files contain long segments in which
both inputs and target output change quite slowly. The kernel idea of multi-
stream training is that, by basing each weight update on several different data
segments, we can capture the required range of behavior in the trained recurrent
network.

The available data consists of 84 files, together representing more than
200,000 time steps. Each file consists of a natural trajectory of system op-
eration, and the various trajectories represent chosen external patterns of exci-
tation. Because of the nature of this virtual sensor application, it is permissible
to delay the network output relative to the input. Here we chose 7, = —25 in
(5). That is, the target at time step ¢ is the system output at time step ¢ — 25.

On the basis of initial explorations, we chose to use an RMLP of architecture
6-7R-5R-3R-1. Training was carried out using 25 streams, traditional BPTT
with truncation depth h = 29, a priming length N, = N, = 20, a trajectory
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Figure 1.2 Plots of the input variables, the target output variable, and the network output
for portions of two different trajectories from the modeling problem discussed in the text.
Panels labeled a-f show network inputs. In the top panels, the target output is the solid line,

while the network output is dashed.

length N; = 200, and global EKF. By the end of the training process, each
instance of the training data had been processed about four times.

Figure 1.2 shows network inputs, target outputs, and network outputs for
2000-step segments of two files; all variables reflect the scaling used in the
training process. Note how different are the target output sequences shown in
the top panels. The RMS errors for these sequences are representative of the
error averaged over the entire training set. Overall, we find remarkable the fact
that the network manages to capture quite accurately both the absolute value
of the target variable and details such as low-amplitude oscillation. Though
the target most closely reflects input (a), the relationship is clearly nonlinear.
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1.6 ALTERNATING TRAINING OF WEIGHTS AND INITIAL STATES

In this section, we consider initial state training as it might arise in the con-
text of modeling a stable dynamical system. For such systems, our approach
heretofore has been to defer making updates at the start of each trajectory until
initial-state transients of both the modeled system and the modeling network
have sufficiently diminished. However, for some problem statements, including
the one that follows, this scheme is not completely adequate because the effects
of initial state cannot be ignored.

Suppose we have the linear dynamical system represented by the sparsely
connected 1-3RL-1L network specified in Table 1.2. This is an abstract version
of a potentially important practical modeling problem. For simplicity, let the
system be driven by an input sequence whose values are randomly chosen from
the range [0,1]. We assume that only disjoint input-output segments of length
20 are available, and assume that we know the correct network structure, but
not the weights. However, without loss of generality we can choose the weights
of node 5 to be fixed at unity. The state of the system (i.e., the outputs of the
3 recurrent nodes) is unknown at the beginning of each data segment.

Table 1.2 Connection, delay, and activation function table for a 1-3RL-1L network. The
weights used to generate data for the example are shown. Note that no bias connections
are present. The elements of the input and output node arrays are: I; = 1 and O = 5.

1 ] Ci,j dl'7j WL]‘ activation

2 1 1 0 .025 linear
2 2 1 .95

3 1 1 0 2 linear
2 3 1 2

4 1 1 0 2375 linear
2 4 1 .05

5 1 2 0 1 linear
2 3 0 1
3 4 0 1

To apply multi-stream training to this problem, we deviate slightly from
the procedure as described above, by locking each stream to a particular data
segment. However, a difficulty arises because the available data sequences are
too short to support a priming length that will completely eliminate the effect
of the unknown initial state. On the other hand, setting the priming length
to zero forces the training process to compensate for unknown initial states by
distorting the network weights. For example, training with the priming length
set to zero produced an RMS error of 0.159, averaged over the 10 streams that
correspond to the 10 sets of 20 input-output pairs. Training with the priming
length set to 5 reduced the RMS error to 0.087. In both cases, the error was
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large at the beginning of each segment and decreased quickly, as shown in
Figure 1.3.

The ten-stream training process was begun using a priming length of 5,
with each data point being processed 400 times. Then initial state training
was performed, with the network weights fixed, starting with values of 0.5
for each of the 3 recurrent nodes. Reflecting the physical origin of the model
from which the network was specified, both the network weights and its initial
states were constrained to be nonnegative, using the scheme described in [9].
The maximum time horizon was chosen to be m = 20. Aggregate BPTT was
carried out at ¢ = 20 only. (This is accomplished with N, = 19, N, = 0,
and h = 20.) Derivatives of the sum of squared errors for steps 1 through 20
with respect to node outputs at step 0 are computed in this way. Using such
gradients, an EKF update of y2(0), y3(0), and y4(0) can be made. This process
was repeated several times for each segment separately. The RMS error was
reduced from 0.087 to 0.033, largely because of significant improvement at the
beginning of each segment, as shown in Figure 1.3. Finally, network weight
training was repeated with the learned initial states instantiated. This step
reduced the error to 0.027. Additional iterations reduce the error only slightly.

Figure 1.3  The solid curve is the output of the model. The short-dashed line is the output
of a network trained with initial states set to zero. The long-dashed line is the output of
the same network after its initial states have been trained.

In this section, we have illustrated how initial state training can help in
further reducing transient errors for problems with data segments too short to
be handled effectively by regular priming. Here training weights was followed by
initial state training. While such an alternation is convenient to use for stable
systems, it is not the only possibility to enhance the network performance.
Another approach is introduced and discussed in the subsequent sections. A key
feature of this more general approach is that it can be applied in applications
such as prediction, where information upon which to base a retrospective state
adjustment is not available.
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1.7 TOWARD MORE COORDINATED TRAINING OF WEIGHTS AND
STATES-A MOTIVATING EXAMPLE

In some cases, the initial state of a network may influence its evolution for
many time steps. This effect is extreme when predicting or modeling a chaotic
time series. In this section we show that, somewhat remarkably, there exists a
systematic method by which the state of a network predictor may be initialized
to significantly enhance its performance.

Consider the following time series, a logistic map.

y(t) = 39y(t—-1)A—-y(t—-1)) (1.26)

Suppose we generate a long sequence of values of y from (26) and assemble
from this sequence a one-input, one-output feedforward network training prob-
lem. Of course, this problem is very simple, and the input-output function can
be trained to essentially arbitrary accuracy. For present purposes, we employ
a relatively small network, say 1-5-1L, with five bipolar sigmoid hidden nodes
and a linear output node. After training with EKF for 1500 cycles through
a data set of 1000 instances we reduce the RMS error to 0.008. Now let this
network be employed as an iterated predictor of the time series. Despite the
network’s having captured closely the quadratic relationship between input and
output, accumulation of small errors leads fairly quickly to rather large pre-
diction errors. This behavior is well known in this and many other problems.
Usually the difficulty is attributed to the network having been trained only for
one-step prediction, rather than for the iterated prediction for which it is being
tested. While this analysis has merit (especially in problems in which training
for one-step prediction tends to lead to simple extrapolation), it tends to ob-
scure an important point. In the present problem, a significant improvement
can be observed without changing the network, merely by adjusting the net-
work’s initial state. Since, as usual, iterated prediction is begun by initializing
the network based on values of the series (here just one point is required), it
seems counterintuitive that a different value could lead to better prediction,
but that is indeed the case.

We first proceed in a fashion similar to that of the previous section. De-
noting a given starting point of the series as point 0, we adjust the network
initial state to minimize errors over a prediction horizon consisting of points 1
through m, while holding the prediction network fixed. We proceed in stages,
beginning with the first two points and then training over progressively larger
numbers of points until all m have been included. The gradients are obtained
by aggregate BPTT. When this process has been carried out over the specified
horizon, we find that agreement between the network output and the time series
has improved considerably. We emphasize that this improvement is attained
without altering the network itself. Though the network output here can not
be properly termed a prediction (the initial state is trained on the target series
values), we presently will show that this reservation may be overcome.

We can repeat this process for all horizons of length m. For a series of length
n, we can make n — m initial state adjustments. In Figure 1.4 we illustrate
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the change in initial state variable as a function of the nominal state variable,
based on 3000 initial state adjustments for the logistic map and the network
used above. The average RMS error over horizon m = 15 for nominal initial
state variables is 0.317; the corresponding error for adjusted initial states is
0.044, clearly a large improvement. Using a simple interpolation, we can then
compute adjustments to initial states for portions of the series not included
in the training. Statistics for a large number of such continuations confirm a
significant improvement in RMS errors: 0.318 (nominal initial state) vs. 0.103
(adjusted initial state). The improvement is not as large as observed in training,
presumably because of extreme sensitivity to initial state errors that arise from
the approximation inherent in the mapping process.
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Figure 1.4 A plot of the network initial state adjustment learned by carrying out the
procedure outlined in the text.

The fact that the mapping of Figure 1.4 has some generalization value (i.e.,
predictions are improved for novel portions of the series) suggests a more ho-
mogeneous approach, in which we attempt to train directly a subnetwork to
perform the initial state adjustment. The idea is to convert available infor-
mation, here a single value of the time series, into network initial states. We
term the subnetwork that performs such an operation the initiator and term
the subnetwork that is responsible for state evolution the evolver. Figure 1.5
illustrates the combined initiator-evolver network, where parameter a takes on
values 0 or 1 and is provided to reflect the fact that the initiator feeds the
evolver for a limited number of time steps at the start of network operation.
Since in the present case the state is one-dimensional, « is unity for the first
time step and zero thereafter.

We used such a structure for the logistic map (26). The initiator was chosen
to be a 1-10-1L MLP; the evolver had the same architecture as used above,
1-5-1L. We carried out training for iterated prediction with GEKF to horizon
m = 17, attained sequentially starting from m = 1 with unit increments. We
obtained an RMS training error of 0.0026. More significantly, the combined
network, tested on novel data, produced an error of 0.0054. Carrying out the
same training procedure for the evolver alone (i.e., nominal initial states are
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used), the results are substantially inferior: training error of 0.0090, testing
error 0.0125. Figure 1.6 compares sequences for the two cases.

To conclude this section, we note that similar performance can be obtained
from an initiator with fewer nodes. The initiator can also be structured with a
fixed jump connection from input to output, so that the trainable part of the
network learns only the state adjustment.

In this section, we have introduced the combined initiator-evolver network for
problems where the effect of initial states on system dynamics can be persistent.
We have transformed seemingly separate training of initial states into equivalent
training of weights of the initiator. Because the initiator requires only available
information as input, it can be used for prediction. It allows us not only to gain
substantially in network performance but also to achieve good generalization.

evolver

1-a a

initiator
!

Figure 1.5 Schematic illustration of a combined initiator-evolver network. The initiator

provides values for the initial state variables of the evolver. The parameter «v is unity for a
specified number of time steps and zero thereafter.

0 5 10 150 5 10 15

Figure 1.6 |Iterated predictions of a portion of a logistic map not used in training. In
the left plot, the solid line represents 17 steps of the actual series, while the dashed line is
the prediction of a trained evolver network. The right plot shows results for the combined
initiator-evolver network. Depending on the starting point, the improvement is not always
this evident.
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1.8 THE MACKEY-GLASS SERIES

The Mackey-Glass (MG) series has frequently been used to illustrate time series
prediction methods and may be more representative of practical series than is
the logistic map. Here we first apply the initiator-evolver approach to the
simpler of the two commonly employed versions (7 = 17).

The evolver subnetwork has the architecture specified by Table 1.3. This
network contains 5 hidden nodes and a linear output node. We begin by training
a network for direct (not iterated) six-step prediction. To do this, we hold the
weights Wo; and Was fixed at 1 and 0, respectively. In effect, the inputs are
obtained from 5 taps on a delay line with tap spacing 6. (Alternatively, we
could have prepared explicitly a file containing appropriate input vectors and
used a feedforward network with architecture 5-5-1L.) We set the trajectory
length to N; = 31 and the priming length N, = 30, so that weight updates
occur only when the delay line has been filled. The training set consisted of
1880 series values. The RMS error for the resulting one-step prediction network
is 0.0083.

Table 1.3  Network architecture used for the Mackey-Glass series. The input stream con-
sists of consecutive values of the time series. The network output is ignored for 30 time
steps, during which series values populate the buffer that holds present and past values of
node outputs. If @ = 1, the network operates as a direct 6-step predictor, while for a« = 0
it performs pure iterated prediction. Values for the weights of nodes 3-8, not shown here,
are initialized randomly to small values before training begins. Here 7, = 1.

i j Ci,j diyj Wiyj activation
2 1 1 0 Q linear
2 8 6 11—«
37 1 0 0 bipolar sigmoid
2 2 0
3 2 6
4 2 12
b) 2 18
6 2 24
8 1 0 0 linear
2 3 0
3 4 0
4 5 0
5 6 0
6 7 0

By switching « from 1 to 0 at time step 31, we can use this network to
perform iterated prediction. During the first 30 steps, series values set the
network initial state variables. At step 31, the network begins to make predic-
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tions, which then are fed back as network input. For 120-step predictions, we
obtain an RMS error of 0.029; this represents the average of iterated predictions
from 1880 different starting points. On novel data, the error is increased only
slightly, to 0.030. When the evolver is explicitly trained for iterated prediction,
its performance on the training set is improved to 0.019.

In contrast to the logistic map, the network initial state here is multi-
dimensional. Hence, various ways of employing an initiator are available. We
consider here the simplest possibility, which can be regarded as a serial ad-
justment of the sequence of series values to form the network initial state. We
place a single-input, single-output feedforward network between nodes 1 and 2
of the network of Table 1.3. This initiator is a 1-10-1L MLP, augmented with
a fixed jump connection between its input and output, so that the MLP learns
adjustments to the series values. We start with the adjustable weights of the
initiator randomly initialized, and the evolver weights set to those of the direct
6-step predictor. Ten-stream training for iterated prediction was carried out
with the trajectory length increased in stages. The BPTT truncation depth
was set to Ny — 1, i.e., large enough to capture the sensitivity of evolver output
to outputs of the initiator network at each of the first 30 time steps of each tra-
jectory, during which initial state of the evolver is being formed. Coordinated
training of the initiator and evolver was accomplished using GEKF updates. At
each stage, the network was tested on all possible trajectories with a 120-step
horizon (N; = 150, Ny — N, = 120). The final RMS training error is 0.012.
The same value was found for the novel data, suggesting that the combined
network had not only learned the essence of the evolution of the series but also
had learned how to form an initial state to optimize its performance. Further,
the additional parameters required for the initiator have not compromised the
network’s generalization.

We repeated the process for the more difficult version of the series, 7 = 30.
In coordinated training of the initiator and evolver, we achieved an RMS error
of 0.035, while testing on novel data yielded 0.040. Typical iterated predictions
for testing trajectories are shown in Figure 1.7.

Summarizing this section, we have verified viability of a coordinated training
of the initiator and the evolver for a chaotic system with multi-dimensional
initial state.

1.9 USE OF A STRUCTURED EVOLVER

In this section, we would like to discuss a promising generalization of the ap-
proach illustrated above, motivated by the time-series competition problem, for
which a straightforward application of iterated prediction training seemed to
be inadequate for extended predictions.

The competition series may be described as having oscillating behavior with
slowly varying amplitude and frequency, along with occasional jumps of the
level about which the oscillations are centered. Since it is not entirely trivial
merely to train a network to exhibit sinusoidal oscillations, it is appealing to
consider specialized node activation functions. Here we used a two-block struc-
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Figure 1.7 lterated prediction (horizon of 120 time steps) for the Mackey-Glass series,
7 = 30, using the initiator-evolver network. The 30 time steps of the series that precede
the trajectories shown here were processed by the initiator to provide an initial state for the
evolver. The actual series is drawn with a solid line; the network output is dashed.

ture, where the first block contains sinusoidal nodes and produces oscillatory
behavior intrinsically. This block is driven by a second block, upon which the
training effort is concentrated. Justification for using such a structured evolver
is based on potentially increased efficacy of training, not on increased represen-
tational capability. In particular, we argue that training a recurrent network to
oscillate with slowly varying amplitude, frequency and offset to follow a target
series is harder than training a network to evolve these controlling variables
themselves.

As noted above, we encountered difficulty in training a standard externally
recurrent network, such as that used for the Mackey-Glass series, to provide
good iterated predictions beyond, say, 20 or 30 steps. On the other hand, a
local fit to the parameters of a single biased sinusoid often produced respectable
agreement over the same interval. Further, having produced local-fit parame-
ters for all 30-step horizons supported by the data, we observed a considerable
degree of predictability of one set of parameters from preceding sets of param-
eters, suggesting that successful training of an evolver with these parameters
as state variables might be possible.

We chose the following evolver state variables: amplitude a(t), bias (or dc
offset) b(t), frequency (more properly, sinusoid argument increase per time step)
w(t), s(t), and ¢(t). The variables s(¢) and ¢(t) may be regarded as sine and
cosine states that together encode the current phase. The upper block of the
evolver is implemented with sine and cosine nodes, product nodes, and linear
nodes. The lower block is externally recurrent with an internal tapped delay
line. It has as inputs the five one-step-delayed state variables listed above; nine
taps, spaced nine steps apart, are devoted to each variable. The kernel of this
block is an MLP with structure 45-15-10-3L and outputs a(t), b(t), and w(t).
All trainable weights of the evolver are associated with this block.

A sine-generating recurrent block carries out the following recursion:
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s(t) = s(t—1ecos(w(t —1)) + c(t — 1)sin(w(t — 1)) (1.27)
c(t) = c(t—1)cos(w(t—1)) —s(t —1)sin(w(t — 1)) (1.28)

To obtain the final output, we multiply s(¢) of (27) by the amplitude and
add the bias:

Your(t) = a(t) xs(t) + b(t) (1.29)

This output is to be compared with the corresponding value of the time
series, as in (8).

In the present case, we chose the delay line of the evolver to have length
81, with taps spaced at 9 step intervals. Thus the initial state of the evolver
requires 81 values of each of the 5 state variables. This could, in principle, be
carried out by an initiator network, based on past values of the time series.
At present, however, we take the expedient of using values obtained by locally
fitting the series. Hence, the network operates by inputting 81 values of each of
the 5 input variables, then taking its input as previous values of the 5 evolver
state variables. Apart from having five delay lines instead of one, the mechanics
are the same as described above for other time series.

Training was carried out using node-decoupled DEKF rather than GEKF for
initial experiments, in view of the large number of adjustable weights. Multi-
stream training with 10 streams was employed. The 45-15-10-3L evolver was
initialized with values obtained by training for direct 9-step prediction of states
a, b, and w. The trajectory length was increased in stages, from 111 (prediction
horizon 111 — 81 = 30) to 201. The truncation depth h was set to N — 81 — 1,
with a maximum of h = 120. The time required for training is substantial,
because of the number of weights and the depth of BPTT. At the start of
training, the RMS error averaged over all possible 120-step horizons of iterated
prediction was 0.264, about the same as the standard deviation of the series
itself. After 2000 cycles of training, which represents 182,000 weight updates,
the error had been reduced to 0.092. Though this value is not low enough for
us to have confidence in a prediction of the series beyond the provided data,
the steady improvement observed during training is promising. In addition,
it seems quite likely that tailoring of the training procedure to this problem
will yield significantly lower error. Figure 1.8 illustrates iterated prediction for
three typical trajectories with horizon 120. The sequence on the right is rather
well predicted, while the other two suggest that the network is having difficulty
capturing details of the change of bias and amplitude. Even so, the evolver
seems to be on its way to learning the essence of the dynamical system that
underlies the series. We recognize that we have no evidence that the network
would generalize to novel portions of the series; further work will clarify this.
In addition, we have not explicitly considered the very real possibility that the
underlying system is nonstationary.

As mentioned, we have not yet applied the coordinated initiator-evolver
training scheme to this problem. It is quite possible that the initial states
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instantiated on the basis of local fits are limiting the network’s performance. If
this is indeed the case, then we would expect an improvement by coordinating
training of the evolver with that of an initiator that transforms the local-fit-
derived network initial states into ones that are more optimal. Naturally, such
a training process will be slower due to the increased size of the combined
network.
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Figure 1.8 Iterated predictions (horizon of 120 time steps) from three randomly chosen
starting points of the competition time series. The actual series is drawn with a solid line;
the network output is dashed.

1.10 SUMMARY

For efficient training of recurrent networks for problems where initial states are
important, we advocate coordinated training of the evolver and the initiator.
The initiator receives a vector of delayed values of the time series as its input
and outputs a vector which serves as initial states of the evolver. The evolver
is responsible for state evolution and trained to match values of the time se-
ries. Based on the results of the previous sections, a procedure for coordinated
training of the initiator and the evolver can be summarized as follows.

Choose maximum time horizon of iterative predictions m.
Instantiate input tapped-delay lines of the initiator based on
series values from steps < 0.
For t =2 to m in chosen steps
{
Execute the initiator for as many time steps as the number of
unit-step delays in the input taps of the evolver.
Set h=t—1.
Run the evolver forward until time step ¢.
Carry out aggregate BPTT from ¢ to 1 as described in
Section 3.2 to obtain gradients with respect to weights
of both the evolver and initiator.

Perform GEKF-based weight updates for both networks.

}



24

Our experience to date suggests that the coordination of weight updates for
the initiator and the evolver provided by GEKF, as compared to DEKF, is
important.

In summary, we have described the multi-stream EKF method for train-
ing neural networks and have articulated an approach to dealing with network
initial states. The initiator-evolver method can easily be generalized to appli-
cations other than time series prediction. In particular, the proposed structure
has already proven useful in a practical application, not presented here, where
it was useful to instantiate network initial states on the basis of available in-
formation that was not used in network training.
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