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Abstract—Neural networks with threshold activation functions
are highly desirable because of the ease of hardware implemen-
tation. However, the popular gradient-based learning algorithms
cannot be directly used to train these networks as the threshold
functions are nondifferentiable. Methods available in the literature
mainly focus on approximating the threshold activation functions
by using sigmoid functions. In this paper, we show theoretically
that the recently developed extreme learning machine (ELM) algo-
rithm can be used to train the neural networks with threshold func-
tions directly instead of approximating them with sigmoid func-
tions. Experimental results based on real-world benchmark regres-
sion problems demonstrate that the generalization performance
obtained by ELM is better than other algorithms used in threshold
networks. Also, the ELM method does not need control variables
(manually tuned parameters) and is much faster.

Index Terms—Extreme learning machine (ELM), gradient de-
scent method, threshold neural networks.

1. INTRODUCTION

ULTILAYER neural networks have attracted a lot of

interest in past decades. Although the neural networks
with analog activation functions such as sigmoid and sine in
hidden layers have great computational capabilities, the net-
works with the threshold or hard-limiting activation function in
hidden layers

L z2>
Wz) = {0, z<0 M
are still desirable due to the following reasons.

1) The threshold units are easy for hardware implementation
(11, [2].

2) The relationship between the size of the networks using
threshold units and the complexity of the training are
better understood [3], [4].

However, the widely used back-propagation (BP) learning algo-
rithm [5] and its variants cannot be used to train the threshold
neural networks directly as the threshold functions are nondif-
ferentiable. Hence, in literature, many research efforts [2], [6],
[7] have been pursued to modify the gradient-based learning
methods to be applicable indirectly for networks with threshold
units. BP and its variants are usually slow in learning and may
face local minima problem. The validation process (selection of
control parameters such as the learning rate, number of hidden
neurons and learning epoches) is complicated and challenging
to users, especially to those having little domain knowledge in
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the neural networks area. The large computational cost involved
in the learning process makes implementing an online learning
system on chips rather difficult. Thus, these algorithms are nor-
mally trained offline first and then the parameters (weights and
biases) of neural networks are transfered to the threshold net-
works in hardware implementation.

Recently, a novel learning method for single-hidden-layer
feedforward neural networks (SLFNs) named extreme learning
machine (ELM) algorithm has been proposed in Huang et al.
[8]. In this algorithm, the input weights (of the connections
linking the input neurons to hidden neurons) and the bias of the
hidden neurons are randomly generated based on continuous
distribution probabilities (the uniform distribution probability
is used in our simulations) and kept fixed. The output weights
are then analytically determined. ELM learns much faster than
the traditional BP without loss of generalization performance.
As indicated in Huang et al. [8], ELM algorithm will work
for the neural networks with threshold units as well. However,
a detailed performance study of ELM for threshold neural
networks has not been carried out so far and this paper attempts
to fill this gap. The aim of this paper is two-fold: 1) to prove,
in theory, that similar to ELM for sigmoid networks in theory
the input weights and biases of the threshold networks can
also be assigned randomly based on continuous distribution
probabilities (such as uniform distribution probability used
in our simulations) and thus ELM can be used to train such
networks easily without any modifications; 2) to provide a de-
tailed performance evaluation of ELM for threshold units based
on a number of real-world benchmark regression problems.
Simulations results show that the ELM for threshold networks
achieves better generalization performance than those trained
by other BP methods.

II. BRIEF REVIEW OF LEARNING ALGORITHMS FOR
THRESHOLD NETWORKS

As the threshold functions are nondifferentiable, the gradient
descent learning algorithms for multilayer feedforward neural
networks cannot be directly applied. Hence, a number of modi-
fications to gradient descent methods have been proposed in the
literature. Toms [6] proposed a gradient descent learning algo-
rithm for networks with hybrid activation functions which lin-
early combine the sigmoid and threshold functions as

f(@) = bS(x) + (1 = b)f(x) @

where the S(z) is sigmoid function and #(x) is a threshold func-
tion. The training is initiated with b = 1. During the training,
b is gradually decreased to 0. Thus, the activation functions
of hidden neurons gradually are transformed from pure analog
units to pure threshold ones. The activation function f(z) is not
a direct threshold function and is differentiable everywhere ex-
ceptatz = 0.
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Fig. 1. Threshold unit can only be approximated by sigmoid unit with
sufficiently large gain parameter A.

Corwin et al. [2] has proposed an iterative method for
training multilayer networks with threshold functions. The
sigmoid function with a gain parameter A is used in the training
instead of the threshold function directly

_ 1
Cl4eM
If the training error is small, the gain parameter )\ is gradually
increased during the training until the slope of the sigmoid is
sufficiently large to allow a transfer to a threshold network with
the same architecture. However, in many cases, the error may
not be small enough to allow the A to be increased. On the other
hand, as shown in Fig. 1 A may need to be big enough to let the
sigmoid unit approximate the threshold unit properly.

In a method very similar to BP, Goodman and Zeng [7] com-
pute the “pseudo-gradient” (instead of the true gradient), using
the gradient of a sigmoid function as a heuristic hint in place of
that of the hard-limiting function. As commented by Goodman
and Zeng [7], the “inaccuracy” of the pseudo-gradient exists in
hidden layers.

Bartlett and Downs [1] proposed a probability distribution
based gradient descent approach. This approach assumes that
the units’ weights w; are random variables with probability
density functions f,, (w;). When these weights are normally
distributed with mean ,,, and standard deviation o;, then the
training of the networks can be easily achieved by adjusting
the parameters of the cumulative distribution function (CDF)
of each weight w;. Finally, the mean w; is considered as the
weight w; and its standard deviation o; as the weight of an
additional connection between a Gaussian noise source and
the unit. Because of the large computational cost involved in
the training, Bartlett and Downs [1] has indicated that this
algorithm is not suitable for online training.

Plagianakos et al. [9] have presented an algorithm for
training threshold networks by using the differential evolution
(DE) strategy. Although this algorithm need not compute the
gradient of the error function, it does need an iterative learning
scheme. Also, several control variables (mutation amplifica-
tion, crossover constant, number of generalizations) need to
be manually tuned making it slow especially for large size
applications.

It should be noted that all the above algorithms are not suit-
able for online learning in environments where target functions
may change often. They are only suitable for offline training
(outside the chips), and parameters obtained after the comple-
tion of the training are then transferred to the threshold networks
in chips.

9(x) 3)

III. ELM FOR THRESHOLD NETWORKS

Huang et al. [8] have alluded that ELM works for SLFNs
with different activation functions including threshold func-
tions. However, this has not been shown theoretically. In this
section, we prove that in theory ELM can be used to directly
train single hidden layer threshold networks.

A. Approximation Problem of SLFNs

For N arbitrary distinct samples (x;,t;), where the
input x; = [7i1,72,...,7]7 € R™ and the target
t; = [ti1,ti2, - tim])T € R™, standard single-hidden-layer
neural networks (SLFN) with L hidden neurons and activation
function g(z) are mathematically modeled as

L
> Big(wi-x; +b;) = o,

=1

j=1,....N (4

where w; = T is the weight vector
connecting the ¢th hidden neuron and the input neurons,
B; = [Bi1,Bizs- -, Bim)T is the weight vector connecting the
ith hidden neuron and the output neurons, and b; is the bias of
the ith hidden neuron. w; - x; denotes the inner product of w;
and x;.

The fact that standard SLFNs with L hidden neurons can
approximate these N samples with zero error means that
Zj\;l llo; — t;|| =0, i.e., there exist 8;, w; and b; such that

L
Y Big(wi-x;+bi) = t;,

i=1

j=1,...,N. (5

The above IV equations can be written compactly as
HB=T (6)

where H is called the hidden layer output matrix of the SLFN
[10], [11]; the ith column of H, [g(w; - x1 + b;),...,g(w; -
xn+b;)]7, is the ith hidden neuron output with respect to inputs
X1,X2,.. ...,tN]T.

B. ELM Learning Algorithm for Threshold Networks

From the main results of [11], [12], the following lemma can
be formulated.

Lemma 3.1: A SLFN with N hidden neurons with the activa-
tion function g(z) = 1/(1 + e~**) and with randomly chosen
input weights and hidden biases can learn N distinct observa-
tions with any arbitrarily small error.

In fact, arbitrarily small error is not required in real applica-
tions. Instead, the training error £ obtained using the network
is only expected to be smaller than a given nonzero target error
€ > 0. Based on this, We have the following.

Theorem 3.1: For a SLFN with the activation function
g(z) = 1/(1 + e?%) in the hidden layer, given any constant
e > 0, there always exists an integer L < N such that a
SLFN with L hidden neurons and with randomly chosen input
weights and hidden biases can learn N distinct observations
with a training error less than e.

Proof: According to Lemma 3.1, there always exists an
integer I < N such that Z;\;l llo; — t;]|> < €, otherwise as
an extreme case we can simply choose L = N. ]

We now extend this theorem to threshold networks as given
below.
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Theorem 3.2: Suppose that threshold activation function
h(z) = 1;>0 + Oz<o is used in the hidden layer. Given any
nonzero constant € > 0 there always exists an integer L < N
such that a SLFN with L such hidden neurons and with ran-
domly chosen input weights and hidden biases can learn NV
distinct observations with its training error less than e.

Proof: Since Theorem 3.1 holds for all positive gain pa-
rameter A and limy_, 4o g(2) = h(z), the theorem holds. m

Thus, very interestingly, similar to sigmoid SLFNs [11], [13]
the input weights and hidden biases of threshold SLFNs are in
fact not necessarily tuned and the hidden layer output matrix H
can actually remain unchanged once random values have been
assigned to input parameters and hidden neuron biases in the
beginning of learning. According to Theorem 3.2, there exists
L and randomly generated input weights w; and hidden neuron
biases b; (1 = 1,..., L) such that

’ ’

N /L 2
b= Z (Z Big(wi-x; +b;) — t]-> < e (7
j=1 \i=1

In most cases the number of required hidden neurons is much
less than the number of distinct training samples, L < N,
making H a nonsquare matrix. For fixed input weights w; and
the hidden layer biases b;, from (7), to train an SLFN is simply
equivalent to finding a least-squares solution B of the linear
system HB = T. The unique smallest norm least-squares solu-
tion of the above linear system is

B=H'T ®)

where H is the Moore—Penrose generalized inverse of ma-
trix H. The learning procedure of ELM algorithm for threshold
neural networks can therefore be described as follows.

ELM Algorithm:

Given a training set N = {(x;,t;)|x; € R"t; €
R™}, threshold activation function h(z) =
1350 + 0z<0 and number of hidden neurons L
Step 1: Assign random input weight w; and
bias of hidden neurons b;, ey
Step 2: Calculate the hidden layer output
matrix H.

Step 3: Calculate the output weight f

B=H'T. (9)

C. Analysis of Generalization Performance

Unlike BP learning algorithms, ELM obtains both the
smallest output weights and the smallest training error.
As analyzed by Huang et al. [8], from the viewpoint of
Vapnik—Chervonenkis (VC) dimension (and hence number
of parameters) [4], this method tends to achieve good gen-
eralization performance. Gradient-based learning algorithms
like back-propagation have the difficulty of reaching the good
generalization performance since they only try to obtain the
small training errors without considering the magnitude of the
weights. (For detailed discussions, refer to [4], [8], [11])

IV. SIMULATION RESULTS

In many applications, threshold networks have been approx-
imated by sigmoid SLFNs with different gain parameters A and
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TABLE 1
SPECIFICATION OF 14 BENCHMARK REAL LIFE DATASETS

Name No. of Observations | Attributes
Training Testing

Abalone 2000 2177 8
Delta Ailerons 3000 4129 6
Delta Elevators 4000 5517 6
Pole Telecomm 5000 10000 48
Computer Activity 4000 4192 8
Census (Housel6H) 10000 12784 16
Auto Price 80 79 15
Boston Housing 250 256 13
Pyrimidines 40 34 27
Triazines 100 86 60
Machine CPU 100 109 6
Servo 80 87 4
Breast Cancer 100 94 32
Stocks Domain 450 500 10

then trained by BP and its variants. In this section, the perfor-
mance comparison will be conducted between such BP based
threshold network training algorithms and ELM algorithm for
SLFN networks on 14 benchmark real life regression problems!
which cover various fields of applications. The specifications of
the datasets are listed in Table 1. In our experiments, all the in-
puts (attributes) have been normalized into the range [—1, 1]
while the outputs (targets) have been normalized into [0, 1].
Both the input weights and hidden biases are randomly gener-
ated from [—1,1]. The average performance is obtained based
on 50 trials of simulations done for each learning algorithm
for each problem, and all datasets are randomly reshuffled into
training set and testing set at each trial of simulations.

Since the BP algorithm cannot be applied to the threshold
activation function directly, similar to Corwin et al. [2] sig-
moid SLFNs with different gain parameters A are used to ap-
proximate threshold networks in our experiments. BP and ELM
are running in the MATLAB 6.5 (Windows version) environ-
ments. Levenberg—Marquardt (LM) learning algorithm, one of
the fastest BP variant, is used in our simulations (cf. HELP
of MATLAB). All the simulations have been run on the same
PC with Pentium 4 3.0 GHZ and 768 MB RAM. It has been
known that SLFN with too few hidden neurons may be inca-
pable of learning whereas SLFN with too many hidden neu-
rons may be overfitting. In both cases, the SLFNs do not pro-
duce good generalization. Thus, the size of the SLFN (number
of hidden neurons) for both BP and ELM can be well chosen
through an extensive validation process for each algorithm on
each dataset, which provides almost the best validation perfor-
mance for an algorithm in a dataset. For example, in our cases,
the neuron numbers L of BP and ELM are searched from the

I'The datasets can be downloaded from http://www.niaad.liacc.up.pt/~Itorgo/
Regression/ds_menu.html
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Fig.2. Average generalization performance comparison of threshold networks
directly trained by ELM algorithm and threshold networks approximated by
analog networks trained by BP algorithm.

range [5,10,15,...,390,395,400] and the best generalization
performance obtained by BP and ELM are shown in this paper.

As shown in Fig. 1, sigmoid units can approximate threshold
units only when the gain parameters A\ are set large enough;
otherwise one actually deals with a sigmoid network instead of
threshold network. As shown in Fig. 2 and Table II, ELM for
threshold networks usually obtains much better generalization
performance than BP learning algorithms. Here the threshold
networks are approximated by sigmoid networks with gain pa-
rameters A = 5 and A = 10 as set in Corwin et al. [2]. We
have tried to gradually increase the gain parameter A and check
the relationship between the generalization performance and ).
As observed from Fig. 3, the generalization performance tends
to decrease when the A is increased.? Thus, the gradient de-
scent method which gradually transforms the activation func-
tions from sigmoid to threshold may not provide satisfactory
performance when threshold units are approximated by sigmoid
functions with higher gain parameters .

As shown in Table III the ELM algorithm is very stable
and able to obtain much smaller standard deviation of testing
errors. As shown in Table IV, the ELM algorithm runs much
faster than BP. Since the input weights and hidden biases of
ELM are randomly generated instead of being fine-tuned, ELM
usually needs more neurons than other learning algorithms.
For example, if the target function is a sigmoid function:
f(x) = 1/(1+e~"), BP with sigmoid activation function
g(z) = 1/(1 4+ ¢~*) and one hidden neuron can approximate
this target function after fine-tuning the input weights and
hidden bias. Obviously, in general, ELM with one hidden
neuron (with random input weights and hidden bias) cannot
approximate this target function and ELM may need more
neurons (around 10 in this case) so that the combination of all
these neurons can approximate it.

V. DISCUSSION AND CONCLUSION

It is well known that compared with analog neural networks
threshold networks can reduce the complexity of neural net-
work implementation in hardware. The traditional backpropa-

2For the sake of readability, only a partial of all simulation results are shown
in Fig. 3.

TABLE 11
COMPARISON OF AVERAGE GENERALIZATION PERFORMANCE (AVERAGE
ROOT MEAN SQUARE ERROR (RMSE) OF TESTING) OF DIFFERENT
LEARNING ALGORITHMS

Dataset BP BP ELM
(A=15) | (A=10) | (threshold)
Abalone 0.14919 | 0.15017 0.091948
Delta Ailerons 0.077026 | 0.073125 | 0.050801
Delta Elevators 0.06706 | 0.065261 0.0630
Pole Telecomm 0.26473 | 0.29321 0.2225
Computer Activity | 0.24818 | 0.31035 0.0530
Census (Housel6H) | 0.109 0.13631 0.089744
Auto Price 0.16813 | 0.15976 0.13709
Boston housing 0.1939 0.20077 0.14325
Pyrimidines 0.17165 | 0.26147 0.19416
Triazines 0.22907 | 0.22836 0.21426
Machine CPU 0.16445 | 0.18598 0.08066
Servo 0.23886 | 0.26012 0.19474
Breast Cancer 0.3085 0.29246 0.29022
Stocks Domain 0.11432 | 0.17013 0.052997
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Fig. 3. Generalization performance of analog approximated threshold

networks depends closely on the gain parameter A.

gation algorithm cannot be applied to such threshold networks
since the required derivatives are not available. Many learning
algorithms do not deal with threshold networks directly and in-
stead use some analog networks to approximate them such that
gradient-descent method can finally be used. Similar to conven-
tional BP, these methods may face local minima and over fitting
issues. To our knowledge, all these learning algorithms [1], [2],
[6], [7], [9] may face difficulty for online and/or hardware im-
plementation due to the following.

1) Besides network size many control variables (manually
tuned parameters) are required to be manually selected
in advance.

2) Learning parameters (connection weights and hidden
neuron biases) can be transformed to threshold networks
in hardware only after training is completed.
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TABLE III
COMPARISON OF STANDARD DEVIATIONS OF TESTING RMSE OF DIFFERENT
LEARNING ALGORITHMS

Dataset BP BP ELM
(A=5) | (A=10) | (threshold
Abalone 0.078597 | 0.093745 | 0.007065
Delta Ailerons 0.056256 | 0.033776 | 0.0055414
Delta Elevators 0.026206 | 0.019181 | 0.005523
Pole Telecomm 0.092299 | 0.11306 | 0.009235
Computer Activity | 0.31722 | 0.32758 0.006495
Census (Housel6H) | 0.034903 | 0.082774 | 0.0016687
Auto Price 0.078444 | 0.070159 | 0.024718
Boston Housing 0.1018 0.11585 0.021672
Pyrimidines 0.046733 | 0.16867 0.061273
Triazines 0.071486 | 0.052997 | 0.027469
Machine CPU 0.13201 0.12717 0.026763
Servo 0.11372 | 0.11216 0.021299
Breast Cancer 0.074661 | 0.035625 | 0.019929
Stocks Domain 0.080048 | 0.15098 | 0.0038313

TABLE IV

COMPARISON OF TRAINING TIME AND NUMBER OF HIDDEN NEURONS
OF DIFFERENT LEARNING ALGORITHMS

Dataset BP (A=5) BP (A =10) ELM-threshold
time (s) neurons | time (s) neurons | time (s) neurons
Abalone 6.6219 5 7.3251 5 0.24004 80
Delta Ailerons 0.87926 5 0.86224 5 0.35364 80
Delta Elevators 1.2919 5 1.3016 5 0.7771 100
Pole Telecomm 8.0454 5 18.242 10 3.7634 300
Computer Activity | 4.2516 10 1.8045 5 1.5155 180
Census (Housel6H) | 17.472 10 16.301 10 9.1687 340
Auto Price 0.31904 5 0.3484 5 0.00188 20

Boston Housing 0.55224 10 0.57064 10 0.01726 70

Pyrimidines 0.3456 5 0.43542 10 0.00062 5
Triazines 0.59346 5 0.53716 5 0.00092 20
Machine CPU 0.2872 5 0.2154 5 0.01068 80
Servo 0.28686 5 0.36566 40 0.00156 20
Breast Cancer 0.46524 5 0.4335 5 0.00062 5
Stocks Domain 0.37216 5 0.55336 10 0.3582 200

3) All of these algorithms face difficulty when the learning
tasks change over time, which does often happen in real
applications.
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In this paper, based on the results obtained for sigmoid
networks [11], [12], we have shown in Theorem 3.2 that the
input weights and hidden neurons biases for threshold networks
can be randomly assigned instead of greedy tuning. Once
the input weights and hidden neurons biases are randomly as-
signed, unlike the conventional gradient-descent based methods
which often get stuck in local minima, ELM tends to reach
global minimum directly by using Moore—Penrose generalized
inverse method. We further showed that the ELM learning
algorithm can directly be used to train threshold networks
with good generalization performance. This has been verified
by the simulation results based on a number of real-world
benchmark applications. The results also show that ELM for
threshold networks takes lesser training time and obtains stable
performance. Compared to other learning algorithms, ELM
with a given network architecture requires no parameters to be
manually tuned and hence is easy to use, especially for ordinary
users who do not have domain knowledge in neural networks.
In order to encourage open development, testing and expansion
of the ELM, ELM source codes have been released in the ELM
website http://www.ntu.edu.sg/home/egbhuang/.
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