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ABSTRACT

An important element of monitoring compliance of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is an
infrasound network. For reliable monitoring, it is important to distinguish between nuclear explosions and other
sources of infrasound. This will require signal (event) classification after a detection is made. We have
demonstrated the feasibility of using neural networks to classify various infrasonic events. However, classification
of these events can be made more reliably with enhanced quality of the recorded infrasonic signals. One means of
improving the quality of the infrasound signals is to remove background noise. This can be carried out by
performing signal separation using Independent Component Analysis (ICA). ICA can be thought of as an
extension of Principal Component Analysis (PCA). Using ICA, noise, and other events that are not of concern,
can be removed from the signal of interest. This is not a filtering process, but rather a technique that actually
separates out the background noise from the signal of interest, even if the signals have overlapping spectra.
Therefore, not only is the signal of interest recovered, but so is the background noise. The higher fidelity signal of
interest (compared to any one sensor channel signal from the infrasound array before separation) can be presented
to an event classifier (e.g., a neural network), and the background noise can also be further scrutinized.

We show two examples of infrasound signal separation using ICA. The ICA is performed using a neural network
approach, i.e., an unsupervised nonlinear PCA subspace learning rule. The first example involves artificially
mixing three different infrasonic signals from three separate events using a random mixing matrix, these mixed
signals are then used to recover the original event signals. The second example is in the true spirit of ICA, i.e., the
separation is performed blindly. From four channels of an infrasound array, these four inputs are used in the ICA
to separate two signals, i.e., one “signal” the other “noise.” The mixing matrix is not known, however, the
separated signal of interest is shown to be the infrasound signal of a volcano eruption, and the separated noise is
shown to contain characteristics of a microbarom signal. Moreover, in spite of overlapping spectra between the
output signals of the ICA, separation of the signals is possible.

Key Words: Infrasound, independent component analysis, signal separation, neural network, nonlinear principal
component analysis, overlapping spectra.



for j=1,2,---, h, the elements a; are assumed to be not known, and n j (k) is additive measurement noise. We
. hx1
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the basis vectors of the ICA expansion. Equation (2) can now be written in vector-matrix form as
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referred to as the ICA expansion. We will assume the mixing matrix A contains at least as many rows as columns
(h > q), and it has full column rank, i.e., p(4) = g (i.e., the mixtures of the source signals are all different).

Independent Component Analysis Using Neural Networks

This discussion pertaining to the neural network approach for blind source separation using ICA follows the
presentation by Karhunen et al. [10]. Figure 1 shows the basic neural architecture to perform the separation of
source signals (i.e., estimate the independent components), and estimate the basis vectors of the ICA expansion,
[i.e., estimate the column vectors of the mixing matrix A4 in (3)].

whitening Y| separation | estimation of ICA
basis vectors

Figure 1. The ICA network. The three layers perform whitening, separation, and estimation of the basis vectors.

The weight matrices that are necessary to determine are V, WT ,and Q.
Prewhitening Process

The whitening process that proceeds the separation step (i.e., prewhitening) is a critical procedure. This process
normalizes the variances of the observed signals to unity. In general, separation algorithms that use prewhitened
inputs often have better stability properties and converge faster. However, whitening the data can make the
separation problem more difficult if the mixing matrix A is ill-conditioned or if some of the source signals are
relatively weak compared to the other signals [11, 12]. The input vectors x(k) are whitened by applying the
transformation

v(k) = Vx(k) 4



adaptive separation algorithms. However, it is sufficient to use the kurtosis (fourth-order cumulant) of the data.
Another class of separation methods involves using neural networks to perform the separation of the source signals
[12]. In Fig. 1, the second stage of the architecture is responsible for the separation of the whitened signals v. The
linear separation transformation is given by

k) = Wik n

where W € R9*9 (WTW =1 q) is the separation matrix. Thus the separated signals are the outputs of the second

stage, i.e., §(k) = y(k). An interesting observation is once the source signal s(k) has been estimated, this means
that the pseudo-inverse of 4 , i.e., A" , must have been also “blindly” determined [refer to (3)].

One very straightforward neural learning method to determine the separation matrix is based on the nonlinear
PCA subspace learning rule [14-16] given by

W(k +1) = W(k) + p(k)lv(k) - W(k)g[y(k)}]g{yT (9) (12)
where v(k) is the prewhitened input vector given in (4), and the function g(e) is a suitably chosen nonlinear
function usually selected to be odd in order to ensure stability and for separation purposes. It is recommended that
the learning rate parameter W(k) be adjusted according to the adaptive scheme given in (9), with v(k) replaced by
y(k) . Also, for good convergence, it is best to select the initial weight matrix W(0) to have as columns a set of
orthonormal vectors. Typically, the nonlinear function g(e) is chosen as

(1) = Btanh(z / B) 13)

daf(t . .
where g(1) = _fdt(_) and f(1) = len[cosh(t / B)1, the logistic function. This is not an arbitrary choice for the
nonlinearity in the learning rule of (12). It is motivated by the fact that when determining the ICA expansion
higher-order statistics are needed. This can be seen by observing another neural learning rule to perform

separation of unknown signals. This learning rule is called the bigradient algorithm [10, 17, 18] given by

Wk +1) = W) + p(kv(gly” (01+ YW - W (W) (14)

where (k) is another gain parameter, typically about 0.5 or one. This is a stochastic gradient algorithm that
maximizes or minimizes the performance criterion

q
JW) = ZE(f)) (15)

1=
under the constraint that the weight matrix W must be orthonormal. The orthonormal constraint in (15) is
realized in the learning rule in (14) in an additive manner. With the appropriate function f(e) in (15), the
performance criterion would involve the sum of the fourth-order statistics (fourth-order cumulants) of the outputs,
i.e., the kurtosis [8]. Therefore, the criterion would be either minimized for sources with a negative kurtosis and
maximized for sources with a positive kurtosis. Source signals that have a negative kurtosis are often called sub-
Gaussian signals and sources that have a positive kurtosis are referred to as super-Gaussian signals. In (15) the
expectation operator would be dropped because we only consider instantaneous values. We now write the logistic
functon f(t) = In[cosh(#)] (for B = 1) in terms of a Taylor series expansion

F@) = Infcosh@®] =12 /2-1* 112445 /45~ - (16)

The second-order term 2 /2 is on the average constant due to the whitening. The nonlinearity would then be
df(t
given by g(1) = —fQ = tanh(t) = ¢ - t3 /3+ 2t5 /15- ..., and the cubic term will be dominating (an odd
de
function) if the data are prewhitened.



separated signals with respect to the actual source signals are almost perfect. The negative correlation coefficient
indicates that a 180° phase shift has occurred in the output of the ICA separation process.
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Figure 2. (a) Three original infrasonic source signals. (b) “Observed” mixed infrasound signals. (c) Separated

infrasonic source signals using the nonlinear PCA subspace learning rule.

Simulation 2

The second example involves processing four infrasound signals from a large volcano eruption in Galunggung,
Java in 1982. The signals analyzed were recorded from a single station, 4-sensor (F-array), infrasound array in
Windless Bight, Antarctica. Fig. 3(a) shows the four recorded signals after beamforming [5] is applied to time
align the signals to a common reference in the sensor array. The nominal sampling frequency is 1 Hz, and 590
time samples were retained from each signal record for analysis. It is assumed that the number of source signals is



ICA separated signal. Specifically, in the 0.1 to 0.2 Hz region there are two spectral peaks in both PSDs. Probably
more profound is the observation made when comparing the bottom graph in Fig. 5(b) for the first separated
signal, to the top graph in Fig. 6(c) for the second separated signal. Upon first glance when comparing these two
spectra, they appear to be almost the same. However, when they are rescaled, shown in the top graph in Fig. 6(b)
for the first separated signal, and the top graph in Fig. 6(d) for the second separated signal, the differences in the
spectra can be seen. In fact, the correlation coefficient computed between the two time-domain signals is very low,

specifically, 1.7992x10'4 . But more importantly is the overlapping spectra that exists between the two signals in
the frequency range from 0.01 Hz to 0.02 Hz. In spite of this spectral overlap, ICA can separate the signals.

o 5 T T T T T - 3 . : . : .
3 corr. coef.= 0.8536 «——13 Separated Signal
% 0 i corr. coef.= 0.9956 — n Sepuated Sigoal
€
= -5 . L 1 1 1 2r 4
0 100 200 300 400 500 600
5 T T T T T -
corr. coef.= 0.9343 1t Separated Signal
1r -
0 WM\WMQ
©
=]
5 1 L ! ) N =
0 100 200 300 400 500 600 =, |
5 T T T T T - g‘
corr. coef.= 0.8964 /111 Separated Signal <
0 4
-1F -
5 1 1 1 1 1 Average of
0 100 200 300 400 500 600 4 Toput Signals
* ' ) ! ! L
corr. coef.= 0.8355 4—1st Separated Sigual 2 |
0 —
-5 1 1 1 1 1 3 \ \ | . .
0 100 200 . 300 400 500 600 0 100 200 .300 400 500 600
time, sec time, sec
(a) (b)

Figure 4. (a) First ICA separated signal superimposed on the four input signals. (b) First ICA separated signal
superimposed on the average of the four input signals.
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Figure 5. (a) PSD of the four ICA input signals. (b) Top Graph: PSD of the average of the four ICA input
signals, and Bottom Graph: PSD of the first ICA separated signal.



the ICA was able to separate the signals. Further research in this area will involve investigating other infrasound
recordings from the historical database [19, 20] for other types of events. When enough separated signals are
generated for different infrasound events, this data set will be used to train and test a neural network classifier.
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