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l. Semi-tensor Product of Matrices

= Am><n X Bp><q

Definition 1.1
LetA € M,,, and B € M,,,. Denote

t:=lem(n, p).

Then we define the semi-tensor product (STP) of A and B

as

A X B := (A ® It/,,) (B ® It/p) € M (mi/myx(qt/p)-

(1)

v
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= Some Basic Comments
@ Whenn =p,Ax B=AB. Sothe STP is a
generalization of conventional matrix product.
@ When n = rp, denote it by A >, B;
when rn = p, denote it by A <, B.
These two cases are called the multi-dimensional
case, which is particularly important in applications.

@ STP keeps almost all the major properties of the
conventional matrix product unchanged.
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= Examples

T.Letx=1[1 2 3 —1] andY:H.Then
XxY=[1 2]-1+[3 =1]-2=[7 0].

2. Letx =[-1 21 -1 2 3]"andy = [1 2 -2].
Then

cer- [ o) 2o -3
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Example 1.2 (Continued)

3. Let )
1211
A:2312,B:B:ﬂ
3210
Then
(1211); (1211):%
AxB = (2312); (2312):?
(3210)(;) (3210)<:?)
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= |nsight Meaning
Let A € M,,.,. Consider a bilinear form

P(x,y) = xT Ay.

Set (Row Stacking Form)

Vr(A) = (all’a.. 7a1n7--. 7am17--.

Then

P(x,y) = V,(A) X x X y.

x can search pointer mechanically!

7amn)-
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i Multilinear Mapping
P:R" xR" xR — R.

(? Cubic Matrix)

mj “n’ s
i=1,--- mj=1,--- mk=1,---s.

P((Sl 5] (Sk) = ri,j,ka

Define
Mp = [Fiats - 37115 Frggly“ = 5 Fogus]-
Then
P(x,y,z2) =Mp X x X y X Z. (4)

It is available for general multilinear mappings.
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= Properties

Proposition 1.3
@ (Distributive rule)

A X (aB+ C) = aA X B+ A x C; (5)
(aB+ C)x A=aBxA+CxA, «f€R.

@ (Associative rule)

Ax (BxC)=(AxB)xC. (6)
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Proposition 1.4

(Ax B)" =B" x A”. (7)
@ Assume both A and B are invertible. Then

AxB)'=B"'xA"" (8)

<
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Proposition 1.5 (Pseudo-Commutativity)

Assume A € M, is given.
@ Let Z € R’ be a row vector. Then

AXZ=Zx ([[®A); 9)
@ Let Z € R’ be a column vector. Then

ZxA=([[®A)XZ. (10)
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= Remarks

@ Let ¢ € R" be a column (row). Then

=fx- - xE.
k

@ LetA € M,,, and m|n or n|m. Then
A¥=Ax- - xA.
k

@ In Boolean algebra, all matrices A € M,,.,, where
m =27 and n = 27 (or for k-valued case: m = k” and
n = k?), which is the multiple dimensional case.
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= Swap Matrix

Definition 1.6

A swap matrix, W, , is an mn x mn matrix constructed in
the following way: label its columns by

(11,12,--- ,1n,--- ;ml,m2,--- ;mn) and its rows by
(11,21,--- ,ml,--- ,1n,2n,--- ;mn). Then its element in
the position ((Z,J), (i,j)) is assigned as

1, I=iandJ =},
0, otherwise.

W, @) = 0i) = { (11)

When m = n we briefly denote W, := W, .
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Let m = 2 and n = 3, the swap matrix W), 5 is constructed

= Example
as

Example 1.7

Wiz
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= Properties

Proposition 1.8

@ Let X € R™ and Y € R” be two columns. Then
Wi X X XY =Y XX, Wy, XY xX=XKY.
@ LetA € M,,x,. Then
Wi Vr(A) = Ve(A), Wi Ve(A) = V. (A).
Q@ letX; e R% i=1,--- ,m. Then
(I ttmees @ Wi mnr] @ Iyt

X1I>("'I><XkD<Xk+1l>(-~~I><Xm
=X X - X Xpypg X X X - -0 X X

(12)
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1= Properties

Proposition 1.9
@ The swap matrix is an orthogonal matrix as

WT _ W—]

[m,n] [m,n]

= Wi

W[mvﬂ]:<6rllb<6,1n Yl Y L 5" oM

where ¢! is the ith column of 7,
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= "X VS X

CP x STP x
Property Similar Similar
Applicability | linear, bilinear multilinear
Commutativity No Pseudo-Commutative
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= My Book
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Il. Boolean Network

Kaffman: for cellular networks, gene regulatory networks,

etc.
i Network Graph

oO—

Figure 1: A Boolean network

== Network Dynamics
A(t+1)=B(t) NC(1)
B(t+ 1) =—-A(r) (17)
C(t+1)=B(1)VvC(1)

~~
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Boolean Control Network
= Network Graph

Figure 2: A Boolean control network

1= Network Dynamics
Its logical equation is
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= Dynamics of Boolean Network

xi(t+1) =filxi(e), - xa(1))
: (19)

xn(t+1) :fn(xl(t)v"' 7xn(t)>7 x; €D,

where
D :={0,1}.
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= Dynamics of Boolean Control Network

xl(t+ 1) :fl(xl(t)’ T 7xn(l)7u1(t)’ T 7””!0))
(t 1) = ( (I)?"' axn(t)aul(t)"" ,l/tm(l)),
yi(t) = h(x(t)), j=1,---,p,

where x;,u;,y; € D.
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i Some Notations
@ D = {0~ False, 1 ~ True};
@1, :=(11 k )7
@ ¢,: the i-th column of 1,;

@ A, :={0i=1,---,n}, A:=Dy;
@ A matrix L € M, is called a logical matrix if

Col(L) C A,.

Denote by £, ., the set of n x r logical matrices.
@ LetL=1[01,62,--- 0] € L,x,. Briefly,

n’-n?

L= 5n{il7i27 tU 7ir]~
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1= Vector Form of Logical Mapping

1~0,,0~6; = D~A.

@ Logical function:

f:D"5D = A" A
@ Logical mapping:

F:D'"—=D" = A"— A"

The later function (mapping) is called the vector form.
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1= Structure Matrix (1)

Lety =f(x1, -+ ,x,) : A" — A. Then there exists unique
Mf € Loyon such that

y=Mx, wherex= x__ x. (21)

Definition 2.2
The M; is called the structure matrix of f.

25/57



i Structure Matrix (2)

Theorem 2.3
Let F: A" — A be defined by

)’i :ﬁ<X1,"' 7-xn)-
Then there exists unique My € Ly, such that
y = MFX, (22)

where

o . Y <
X = XX, Yy = Xi—1Vi-

Definition 2.4
The My is called the structure matrix of F.
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iz Structure Matrices of Logical Operators

Table 1: Structure Matrices of Logical Operators

< T I><] 4
SNSRI
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i Matrix Expression of Subspace

@ State Space: X = Fy(xy, -+ ,x,)
@ Subspace: V = Fy(y1, -+ ,y), yi € X is described by

yi:ﬁ(-xl,"',xn); l:l’,k

@ Algebraic Form:
y = Fux,

where
k
X=X X, y=Xi_1Yi, F\, € Lokyon.

@ Conclusion: Each F, € Ly, uniquely determines a
subspace V.
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1= Algebraic Form of BN (19)

where L € Lonyon.
iz Algebraic Form of BCN (20)

x(t 4 1) = Lu(t)x(¢)
y(1) = Hx(1),

Where L E £2n><2n+m, H e Eszzn.
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Algebraic Form

Example

@ Consider Boolean network (17) in Fig. 1. We have
L=0[37781556].

@ Consider Boolean control network (18) in Fig. 2. We
have

L = &[1155226613572468
555566665757686 8];
H = 621212121].
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iz Topological Structure
@ Find “fixed points”, “cycles”;
@ Find “basin of attraction” ,“transient time”;
@ “Rolling Gear” structure, which explains why “tiny
attractors” decide “vast order”.
References:

[4 D. Cheng, H. Qi, A linear representation of dynamics
of Boolean networks, IEEE Trans. Aut. Contr., vol. 55,
no. 10, pp. 2251-2258, 2010. (Regular Paper)

[4 D. Cheng, Input-state approach to Boolean networks,
IEEE Trans. Neural Networks, vol. 20, no. 3, pp.
512-521, 2009. (Regular Paper)
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1= Basic Control Properties
@ Controllability under open-loop or closed-loop
controls;
@ Observability;
@ Algebraic description of input-output transfer graph.

References:

[4 D. Cheng, H. Qi, Controllability and observability of
Boolean control networks, Automatica, vol. 45, no. 7,
pp. 1659-1665, 2009. (Regular Paper)

[4 VY. Zhao, H. Qi, D. Cheng, Input-state incidence matrix
of Boolean control networks and its applications, Sys.
Contr. Lett., vol. 46, no. 12, pp. 767-774, 2010.
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1 System Realization

@ State space expression;

@ Input-output realization;

@ Kalman decomposition, minimum realization.
References:

[4 D. Cheng, Z. Li, H. Qi, Realization of Boolean control
networks, Automatica, vol. 46, no. 1, pp. 62-69, 2010.
(Regular Paper)

[4 D. Cheng, H. Qi, State space analysis of Boolean
network, IEEE Trans. Neural Networks, vol. 21, no. 4,
pp. 584-594, 2010. (Regular Paper)
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= Control Design

@ Disturbance decoupling;

@ Stability and stabilization;

@ Canalizing mapping and its applications.
References:

[4 D. Cheng, Disturbance Decoupling of Boolean control
networks, IEEE Trans. Aut. Contr., 2011. (to appear)
(Regular Paper)

[ D. Cheng, H. Qi, Z. Li, J.B. Liu, Stability and
stabilization of Boolean networks, Int. J. Robust
Nonlin. Contr., doi:10.1002/rnc.1581 (to appear).
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= Optimal Control

@ Topological structure of Boolean control networks;

@ Optimal control and its design.

@ k- and Mix-valued and higher-order control networks.
References:

[4 Y. Zhao, Z. Li, D. Cheng, Optimal control of logical
control networks IEEE Trans. Aut. Contr., (to appear)
(Regular Paper).

[4 Z.Li, D. Cheng, Algebraic approach to dynamics of
multi-valued networks, Int. J. Bifurcat. Chaos, vol. 20,
no. 3, pp. 561-582, 2010.
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1= |dentification
@ Identify the dynamic evolution;
@ Identify via input-output data.
References:

[4 D. Cheng, Y. Zhao, Identification of Boolean control
networks, Automatica, (to appear) (Regular Paper).

[4 D. Cheng, H. Qi, Z. Li, Model construction of Boolean
network via observed data, IEEE Trans. Neural
Networks, (to appear) (Regular Paper).
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= My Book

Communications and Control Engineering

Daizhan Cheng
Hongsheng Qi
Zhigiang Li

Analysis and
Control of Boolean

Networks

A Semi-tensor Product Approach

@ Springer
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lll. Continuous Dynamic Systems

= Differential

Definition 3.1

Let A(x) = (a;(x)) € M,, be a matrix with entries as
smooth functions of x € R”. Its differential DA(x) € M,
is constructed by replacing a;(x) by its differential

Oaji(x Oaji(x Oaji(x
day(x) = |24 2400 ... ould]
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1= Properties

Proposition 3.2 (Product Rule)

D [A(x)B(x)] = DA(x) X B(x) + A(x) x DB(x). (25)

4

Proposition 3.3 (Basic Formula)
Define

k
O = LWio.
s=0
Then
D) = Ot (26)
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1= Taylor Expansion

Theorem 3.4 (Taylor Expansion)

Let f(x) = f(x1,- -+ ,x,) be a smooth function. Then

70 = £(0) + D) O)x + g DFO)2 4+ (27)
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iz Stability Region

i=f(x)=Fx+FxX* +Fx 4+, xeR"

L

h(z) =0

€2

€4

¢e3

Stability boundary is composed of the stable
sub-manifolds of the unstable equilibriums on the
boundary.
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= Formula for Stability Region

Theorem 3.5

Let the boundary be i(x) = 0. Then A(x) is uniquely
determined by

h(0) = 0
h(x) = nx = O(||x|]?)
Leh(x) = ph(x),

where
n: eigenvector w.r.t. positive eigenvalue of J;(0).
(> non-zero parament.

(28)
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= Calculation of Lie Derivative

Lih = Dh-f

= D(Hy+Hx+Hx*>+--+)-f
(Hi + Hy®ix + Hy®ox? + -+ ) (Fix+ Fox* + -+ +)
H1F1x+H1F2x2+H2<I>1xF1x+~-~
H1F1x+[H1F2—|—H2®1(I,,®F1)]x2+---
C1X—|—C2X2+C3X3‘|‘"'
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=z Main Result
Theorem 3.6

1
h(x) = Hix + Ex’\IJx + Hyx® + -, (29)

where

v = v { [ - I @ bt o (41, —IT)]

ve (£ ntess()0)) |
He = GiTg(n, k), k>3

with

|:Z G; TB(I’Z l)q)l 1(Int 1 ®Fk—i+1):| Tn(nvk)ck_l

Ck ,uld — TB(n k)q)k 1 ( nk—1 ®F1) TN( k)
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= Control Design

@ Morgan’s problem;

@ Non-regular feedback linearization;

@ Symmetry of nonlinear systems.
References:
[4 D. Cheng, Semi-tensor product of matrices and its

application to Morgan’s Problem, Science in China, Series
F, vol. 44, no. 3, pp. 195-212, 2001.

[4 D. Cheng, X. Hu, Y. Wang, Non-regular feedback
linerization of nonlinear systems, Automatica, vol. 40, no. 3,
pp. 439-447, 2004.

[4 D.Cheng, J. Ma, Q. Lu, S. Mei, Quadratic form of stable
sub-manifold for power systems, Int. J. Rob. Nonlin. Contr.,
vol. 14, pp. 773-788, 2004.

[ D.Cheng, G. Yang, Z. Xi, Nonlinear systems possessing
linear symmetry, Int. J. Rob. Nonlin. Contr., vol. 17, no. 1,
pp. 51-81, 2007.
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= Application to Power Systems

s

) 3 5 4593 B i

oK BU5 ik
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IV. Application to Math and Physics

= | ei Algebra

Definition 4.1
Let V be a real vector space with « : V. x V — V.
@ (V,x)is called an algebra, if (distributivity)

(aX+bY)xZ=aX+«Z+bY*Z, abeR, XY ZeEYV,;

@ An algebra is called a Lie algebra, if
(i) (skew symmetry)

X*xY=-YxX;

(if) (Jacobi ldentity)

Xx(Y*Z)+Y*x(ZxX)+Zx(X*xY)=0.
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iz Structure Matrix of a Algebra

Let (V, %) be an algebra, and {e;,--- ,e,} a basis of V.
Denote
ei*ej:c}jel+c}je2+---+cgen, iL,j=1,---,n.

We construct a matrix, called the structure matrix of the
algebra, as

1 1 1 1
C%l C%Z P Cén P an
€1 Ci2 0 C o Gy

n n
Cll C12 ... Cln o e C
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1= Product Using Structure Matrix

Proposition 4.2
Let M be the structure matrix of (V, ). Then

X « Y = MXY. (30)

Example 4.3

.|
A

(X %Y %Z) = (MXY) x Z = M(MXY)Z = M*XYZ.

X*X%---xX =Mx*
—_—
k
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= Verifying Lie Algebra

Theorem 4.4
Let L be an algebra with structure matrix M; € M, 2.
Then V is a Lie algebra, iff,

()

(i)

M} (L2 + Wi ) + Wipe)) = 0.
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1= Cross Product on R3

Proposition 4.5

(R, x) is a Lie algebra, where x is the cross product.

Its structure matrix is

00 0 0 01010
M,=10 0 -1 0 00100
01 0 -1 0O0O0O0O
Invoking Theorem 4.4, the proof is a straightforward

computation.
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== Any other Lie algebra(s) on R? ?

Theorem 4.6

A three-dimensional algebra is a Lie algebra, iff, its
structure matrix is as

0 ad —a0g —d —g 0
M=1|0 b e —b 0O h —e —h O
O c f —cO0 i —f —i O

Y

with entries satisfying

bg+gf —ah—di=0
ae —bd + hf —ei =0
af +bi —cd — ch = 0.
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= Another Lie algebra on R?

Example 4.7

(R*, %) is a Lie algebra, where

?*?zf*fz%*%zO

ixj=—jxi=—Ti+10j — 11k

ixk=—kxi=i—j+2k

Jrk=—kxj=—2+3f—3k

0 -7 1 7 0 -2 -1 2 0
M,=|0 10 -1 =10 0 3 1 =30

0 —11 2 11 0 =3 -2 3 0
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1= Applications to Math and Physics

@ Contraction of tensor field;
@ Calculation of connection in Differential Geometry;
@ Structure of algebras and fields.

References:

[4 D. Cheng, Y. Dong, Semi-tensor product of matrices
and its some applications to physics, Meth. Appl.
Analysis, vol. 10, no. 4, pp. 565-588, 2003.

[4 D. Cheng, Some applications of semi-tensor product

of matrices in algebra, Comp. Math. Appl., vol. 52, pp.

1045-1066, 2006.

54 /57



V. Concluding Remarks

iz Current Research Topics

@ Game Theory:

e Finite history strategy in dynamic game;
e Evolutionary games on networks.

@ Universal algebra:

e Structure of lattice;
e Structure matrix = Homomorphism.

@ Cryptography:
e Symmetry of Boolean functions.
@ Fuzzy control:

@ Solving fuzzy relational equations;
e Design of multi-input fuzzy controllers.
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1= Remarks
@ Semi-tensor product is a simple and useful tool;
@ Numerical tool in computer era;
@ It is with 100% originality;
@ It has attracted international attention;
@ You are expected to join us.

Please try it!
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Thank you!

Question?
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