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I. Semi-tensor Product of Matrices

+ Am×n × Bp×q =?

Definition 1.1
Let A ∈Mm×n and B ∈Mp×q. Denote

t := lcm(n, p).

Then we define the semi-tensor product (STP) of A and B
as

A n B :=
(
A⊗ It/n

) (
B⊗ It/p

)
∈M(mt/n)×(qt/p). (1)
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+ Some Basic Comments
When n = p, A n B = AB. So the STP is a
generalization of conventional matrix product.
When n = rp, denote it by A �r B;
when rn = p, denote it by A ≺r B.
These two cases are called the multi-dimensional
case, which is particularly important in applications.
STP keeps almost all the major properties of the
conventional matrix product unchanged.
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+ Examples

Example 1.2

1. Let X =
[
1 2 3 −1

]
and Y =

[
1
2

]
. Then

X n Y =
[
1 2

]
· 1 +

[
3 −1

]
· 2 =

[
7 0

]
.

2. Let X =
[
−1 2 1 −1 2 3

]T and Y =
[
1 2 −2

]
.

Then

X n Y =

[
−1
2

]
· 1 +

[
1
−1

]
· 2 +

[
2
3

]
· (−2) =

[
−3
−6

]
.
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Example 1.2 (Continued)
3. Let

A =

1 2 1 1
2 3 1 2
3 2 1 0

 , B =

[
1 −2
2 −1

]
.

Then

A n B =



(
1 2 1 1

)(1
2

) (
1 2 1 1

)(−2
−1

)
(
2 3 1 2

)(1
2

) (
2 3 1 2

)(−2
−1

)
(
3 2 1 0

)(1
2

) (
3 2 1 0

)(−2
−1

)



=

3 4 −3 −5
4 7 −5 −8
5 2 −7 −4

 .
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+ Insight Meaning

Let A ∈Mm×n. Consider a bilinear form

P(x, y) = xTAy. (2)

Set (Row Stacking Form)

Vr(A) = (a11, · · · , a1n, · · · , am1, · · · , amn).

Then

P(x, y) = Vr(A) n x n y. (3)

n can search pointer mechanically!
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+ Multilinear Mapping

P : Rm × Rn × Rs → R.

(? Cubic Matrix)

P(δi
m, δ

j
n, δ

k
s ) := ri,j,k,

i = 1, · · · ,m; j = 1, · · · , n; k = 1, · · · , s.

Define

MP = [r111, · · · , r1,1,s · · · rmn1, · · · , rmns].

Then

P(x, y, z) = MP n x n y n z. (4)

It is available for general multilinear mappings.
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+ Properties

Proposition 1.3
(Distributive rule)

A n (αB + βC) = αA n B + βA n C;
(αB + βC) n A = αB n A + βC n A, α, β ∈ R. (5)

(Associative rule)

A n (B n C) = (A n B) n C. (6)
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Proposition 1.4

(A n B)T = BT n AT . (7)

Assume both A and B are invertible. Then

(A n B)−1 = B−1 n A−1. (8)
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Proposition 1.5 (Pseudo-Commutativity)
Assume A ∈Mm×n is given.

Let Z ∈ Rt be a row vector. Then

A n Z = Z n (It ⊗ A); (9)

Let Z ∈ Rt be a column vector. Then

Z n A = (It ⊗ A) n Z. (10)
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+ Remarks

Let ξ ∈ Rn be a column (row). Then

ξk := ξ n · · ·n ξ︸ ︷︷ ︸
k

.

Let A ∈Mm×n and m|n or n|m. Then

Ak := A n · · ·n A︸ ︷︷ ︸
k

.

In Boolean algebra, all matrices A ∈Mm×n, where
m = 2p and n = 2q (or for k-valued case: m = kp and
n = kq), which is the multiple dimensional case.
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+ Swap Matrix

Definition 1.6
A swap matrix, W[m,n] is an mn× mn matrix constructed in
the following way: label its columns by
(11, 12, · · · , 1n, · · · ,m1,m2, · · · ,mn) and its rows by
(11, 21, · · · ,m1, · · · , 1n, 2n, · · · ,mn). Then its element in
the position ((I, J), (i, j)) is assigned as

w(IJ),(ij) = δI,J
i,j =

{
1, I = i and J = j,
0, otherwise.

(11)

When m = n we briefly denote W[n] := W[n,n].
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+ Example

Example 1.7
Let m = 2 and n = 3, the swap matrix W[2,3] is constructed
as

(11) (12) (13) (21) (22) (23)

W[2,3] =


1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1


(11)
(21)
(12)
(22)
(13)
(23)

.
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+ Properties

Proposition 1.8

Let X ∈ Rm and Y ∈ Rn be two columns. Then

W[m,n] n X n Y = Y n X, W[n,m] n Y n X = X n Y. (12)

Let A ∈Mm×n. Then

W[m,n]Vr(A) = Vc(A), W[n,m]Vc(A) = Vr(A). (13)

Let Xi ∈ Rni , i = 1, · · · ,m. Then(
In1+···+nk−1 ⊗W[nk,nk+1] ⊗ Ink+2+···+nm

)
X1 n · · ·n Xk n Xk+1 n · · ·n Xm

= X1 n · · ·n Xk+1 n Xk n · · ·n Xm.

(14)
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+ Properties

Proposition 1.9
The swap matrix is an orthogonal matrix as

WT
[m,n] = W−1

[m,n] = W[n,m]. (15)

W[m,n] =
(
δ1

n n δ1
m · · · δn

n n δ1
m · · · · · · δn

n n δm
m

)
,

(16)

where δi
n is the ith column of In.
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+ “×” vs “n”

CP × STP n
Property Similar Similar

Applicability linear, bilinear multilinear
Commutativity No Pseudo-Commutative
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+ My Book
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II. Boolean Network
Kaffman: for cellular networks, gene regulatory networks,
etc.
+ Network Graph

A B

C

Figure 1: A Boolean network

+ Network Dynamics
A(t + 1) = B(t) ∧ C(t)
B(t + 1) = ¬A(t)
C(t + 1) = B(t) ∨ C(t)

(17)
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Boolean Control Network
+ Network Graph

A

B

C

u1

u2

y

Figure 2: A Boolean control network

+ Network Dynamics
Its logical equation is

A(t + 1) = B(t) ∧ u1(t)
B(t + 1) = C(t) ∨ u2(t)
C(t + 1) = A(t)
y(t) = ¬C(t)

(18)
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+ Dynamics of Boolean Network


x1(t + 1) = f1(x1(t), · · · , xn(t))
...

xn(t + 1) = fn(x1(t), · · · , xn(t)), xi ∈ D,
(19)

where
D := {0, 1}.
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+ Dynamics of Boolean Control Network


x1(t + 1) = f1(x1(t), · · · , xn(t), u1(t), · · · , um(t))
...

xn(t + 1) = fn(x1(t), · · · , xn(t), u1(t), · · · , um(t)),
yj(t) = hj(x(t)), j = 1, · · · , p,

(20)

where xi, ui, yi ∈ D.
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+ Some Notations

D = {0 ∼ False, 1 ∼ True};
1k := (1 1 · · · 1︸ ︷︷ ︸

k

)T ;

δi
n: the i-th column of In;

∆n := {δi
n|i = 1, · · · , n}, ∆ := D2;

A matrix L ∈Mn×r is called a logical matrix if

Col(L) ⊂ ∆n.

Denote by Ln×r the set of n× r logical matrices.
Let L = [δi1

n , δ
i2
n , · · · , δir

n ] ∈ Ln×r. Briefly,

L = δn[i1, i2, · · · , ir].
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+ Vector Form of Logical Mapping

1 ∼ δ1
2, 0 ∼ δ2

2 ⇒ D ∼ ∆.

Logical function:

f : Dn → D ⇒ ∆n → ∆;

Logical mapping:

F : Dn → Dm ⇒ ∆n → ∆m.

The later function (mapping) is called the vector form.
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+ Structure Matrix (1)

Theorem 2.1
Let y = f (x1, · · · , xn) : ∆n → ∆. Then there exists unique
Mf ∈ L2×2n such that

y = Mf x, where x = nn
i=1xi. (21)

Definition 2.2
The Mf is called the structure matrix of f .
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+ Structure Matrix (2)

Theorem 2.3
Let F : ∆n → ∆k be defined by

yi = fi(x1, · · · , xn).

Then there exists unique MF ∈ L2k×2n such that

y = MFx, (22)

where
x = nn

i=1xi; y = nk
i=1yi.

Definition 2.4
The MF is called the structure matrix of F.
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+ Structure Matrices of Logical Operators

Table 1: Structure Matrices of Logical Operators

¬ Mn δ2[2 1]
∨ Md δ2[1 1 1 2]
∧ Mc δ2[1 2 2 2]
→ Mi δ2[1 2 1 1]
↔ Me δ2[1 2 2 1]
∨̄ Mp δ2[2 1 1 2]
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+ Matrix Expression of Subspace

State Space: X = F`(x1, · · · , xn)

Subspace: V = F`(y1, · · · , yk), yi ∈ X is described by

yi = fi(x1, · · · , xn), i = 1, · · · , k.

Algebraic Form:
y = Fvx,

where

x = nn
i=1xi, y = nk

i=1yi, Fv ∈ L2k×2n .

Conclusion: Each Fv ∈ L2k×2n uniquely determines a
subspace V.
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+ Algebraic Form of BN (19)

x(t + 1) = Lx(t), (23)

where L ∈ L2n×2n.

+ Algebraic Form of BCN (20){
x(t + 1) = Lu(t)x(t)
y(t) = Hx(t),

(24)

where L ∈ L2n×2n+m, H ∈ L2p×2n.
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Algebraic Form
Example

Example 2.5
Consider Boolean network (17) in Fig. 1. We have

L = δ8[3 7 7 8 1 5 5 6].

Consider Boolean control network (18) in Fig. 2. We
have

L = δ8[1 1 5 5 2 2 6 6 1 3 5 7 2 4 6 8
5 5 5 5 6 6 6 6 5 7 5 7 6 8 6 8];

H = δ2[2 1 2 1 2 1 2 1].
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+ Topological Structure

Find “fixed points”, “cycles”;
Find “basin of attraction” ,“transient time”;
“Rolling Gear” structure, which explains why “tiny
attractors” decide “vast order”.

References:

D. Cheng, H. Qi, A linear representation of dynamics
of Boolean networks, IEEE Trans. Aut. Contr., vol. 55,
no. 10, pp. 2251-2258, 2010. (Regular Paper)

D. Cheng, Input-state approach to Boolean networks,
IEEE Trans. Neural Networks, vol. 20, no. 3, pp.
512-521, 2009. (Regular Paper)
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+ Basic Control Properties

Controllability under open-loop or closed-loop
controls;
Observability;
Algebraic description of input-output transfer graph.

References:

D. Cheng, H. Qi, Controllability and observability of
Boolean control networks, Automatica, vol. 45, no. 7,
pp. 1659-1665, 2009. (Regular Paper)

Y. Zhao, H. Qi, D. Cheng, Input-state incidence matrix
of Boolean control networks and its applications, Sys.
Contr. Lett., vol. 46, no. 12, pp. 767-774, 2010.
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+ System Realization

State space expression;
Input-output realization;
Kalman decomposition, minimum realization.

References:

D. Cheng, Z. Li, H. Qi, Realization of Boolean control
networks, Automatica, vol. 46, no. 1, pp. 62-69, 2010.
(Regular Paper)

D. Cheng, H. Qi, State space analysis of Boolean
network, IEEE Trans. Neural Networks, vol. 21, no. 4,
pp. 584-594, 2010. (Regular Paper)
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+ Control Design

Disturbance decoupling;
Stability and stabilization;
Canalizing mapping and its applications.

References:

D. Cheng, Disturbance Decoupling of Boolean control
networks, IEEE Trans. Aut. Contr., 2011. (to appear)
(Regular Paper)

D. Cheng, H. Qi, Z. Li, J.B. Liu, Stability and
stabilization of Boolean networks, Int. J. Robust
Nonlin. Contr., doi:10.1002/rnc.1581 (to appear).
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+ Optimal Control

Topological structure of Boolean control networks;
Optimal control and its design.
k- and Mix-valued and higher-order control networks.

References:

Y. Zhao, Z. Li, D. Cheng, Optimal control of logical
control networks IEEE Trans. Aut. Contr., (to appear)
(Regular Paper).

Z. Li, D. Cheng, Algebraic approach to dynamics of
multi-valued networks, Int. J. Bifurcat. Chaos, vol. 20,
no. 3, pp. 561-582, 2010.
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+ Identification

Identify the dynamic evolution;
Identify via input-output data.

References:

D. Cheng, Y. Zhao, Identification of Boolean control
networks, Automatica, (to appear) (Regular Paper).

D. Cheng, H. Qi, Z. Li, Model construction of Boolean
network via observed data, IEEE Trans. Neural
Networks, (to appear) (Regular Paper).
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+ My Book
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III. Continuous Dynamic Systems

+ Differential

Definition 3.1
Let A(x) = (aij(x)) ∈Mp×q be a matrix with entries as
smooth functions of x ∈ Rn. Its differential DA(x) ∈Mp×nq

is constructed by replacing aij(x) by its differential

daij(x) =
[
∂aij(x)
∂x1

∂aij(x)
∂x2

· · · ∂aij(x)
∂xn

]
.
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+ Properties

Proposition 3.2 (Product Rule)

D [A(x)B(x)] = DA(x) n B(x) + A(x) n DB(x). (25)

Proposition 3.3 (Basic Formula)
Define

Φk =
k∑

s=0

InsW[nk−s,n].

Then

D(xk+1) = Φkxk. (26)
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+ Taylor Expansion

Theorem 3.4 (Taylor Expansion)
Let f (x) = f (x1, · · · , xn) be a smooth function. Then

f (x) = f (0) + D(f )(0)x +
1
2!

D2f (0)x2 + · · · . (27)
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+ Stability Region

ẋ = f (x) = F1x + F2x2 + F3x3 + · · · , x ∈ Rn.

Stability boundary is composed of the stable
sub-manifolds of the unstable equilibriums on the
boundary.
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+ Formula for Stability Region

Theorem 3.5
Let the boundary be h(x) = 0. Then h(x) is uniquely
determined by 

h(0) = 0
h(x) = ηTx = O(‖x‖2)

Lf h(x) = µh(x),

(28)

where
η: eigenvector w.r.t. positive eigenvalue of Jf (0).
µ: non-zero parament.
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+ Calculation of Lie Derivative

Lf h = Dh · f
= D(H0 + H1x + H2x2 + · · · ) · f
=

(
H1 + H2Φ1x + H3Φ2x2 + · · ·

) (
F1x + F2x2 + · · ·

)
= H1F1x + H1F2x2 + H2Φ1xF1x + · · ·
= H1F1x + [H1F2 + H2Φ1(In ⊗ F1)] x2 + · · ·
:= C1x + C2x2 + C3x3 + · · ·
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+ Main Result
Theorem 3.6

h(x) = H1x +
1
2

xtΨx + H3x3 + · · · , (29)

where

H1 = ηT

Ψ = V−1
c

{[(µ
2 In − JT

)
⊗ In + In ⊗

(µ
2 In − JT

)]−1

Vc

(
n∑

i=1
ηiHess(fi)(0)

)}
Hk = GkTB(n, k), k ≥ 3

with

Gk =

[
k−1∑
i=1

GiTB(n, i)Φi−1(Ini−1 ⊗ Fk−i+1)

]
Tn(n, k)C−1

k

Ck = µId − TB(n, k)Φk−1 (Ink−1 ⊗ F1) TN(n, k).

44 / 57



+ Control Design
Morgan’s problem;
Non-regular feedback linearization;
Symmetry of nonlinear systems.

References:
D. Cheng, Semi-tensor product of matrices and its
application to Morgan’s Problem, Science in China, Series
F, vol. 44, no. 3, pp. 195-212, 2001.

D. Cheng, X. Hu, Y. Wang, Non-regular feedback
linerization of nonlinear systems, Automatica, vol. 40, no. 3,
pp. 439-447, 2004.

D. Cheng, J. Ma, Q. Lu, S. Mei, Quadratic form of stable
sub-manifold for power systems, Int. J. Rob. Nonlin. Contr.,
vol. 14, pp. 773-788, 2004.

D. Cheng, G. Yang, Z. Xi, Nonlinear systems possessing
linear symmetry, Int. J. Rob. Nonlin. Contr., vol. 17, no. 1,
pp. 51-81, 2007.
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+ Application to Power Systems
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IV. Application to Math and Physics
+ Lei Algebra

Definition 4.1
Let V be a real vector space with ∗ : V × V → V.

(V, ∗) is called an algebra, if (distributivity)

(aX + bY) ∗Z = aX ∗Z + bY ∗Z, a, b ∈ R, X,Y,Z ∈ V;

An algebra is called a Lie algebra, if
(i) (skew symmetry)

X ∗ Y = −Y ∗ X;

(ii) (Jacobi Identity)

X ∗ (Y ∗ Z) + Y ∗ (Z ∗ X) + Z ∗ (X ∗ Y) = 0.
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+ Structure Matrix of a Algebra

Let (V, ∗) be an algebra, and {e1, · · · , en} a basis of V.
Denote

ei ∗ ej = c1
ije1 + c1

ije2 + · · ·+ cn
ijen, i, j = 1, · · · , n.

We construct a matrix, called the structure matrix of the
algebra, as

M =


c1

11 c1
12 · · · c1

1n · · · c1
nn

c2
11 c2

12 · · · c2
1n · · · c2

nn
...

cn
11 cn

12 · · · cn
1n · · · cn

nn

 .
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+ Product Using Structure Matrix

Proposition 4.2
Let M be the structure matrix of (V, ∗). Then

X ∗ Y = MXY. (30)

Example 4.3

(X ∗ Y ∗ Z) = (MXY) ∗ Z = M(MXY)Z = M2XYZ.

X ∗ X ∗ · · · ∗ X︸ ︷︷ ︸
k

= Mk−1Xk.
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+ Verifying Lie Algebra

Theorem 4.4
Let L be an algebra with structure matrix ML ∈Mn×n2.
Then V is a Lie algebra, iff,
(i)

ML
(
W[n] + In

)
= 0;

(ii)
M2

L

(
In2 + W[n2,n] + W[n,n2]

)
= 0.
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+ Cross Product on R3

Proposition 4.5
(R3,×) is a Lie algebra, where × is the cross product.

Its structure matrix is

M× =

0 0 0 0 0 1 0 1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0


Invoking Theorem 4.4, the proof is a straightforward
computation.
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+ Any other Lie algebra(s) on R3 ?

Theorem 4.6
A three-dimensional algebra is a Lie algebra, iff, its
structure matrix is as

M =

0 a d −a 0 g −d −g 0
0 b e −b 0 h −e −h 0
0 c f −c 0 i −f −i 0

 ,
with entries satisfying

bg + gf − ah− di = 0
ae− bd + hf − ei = 0
af + bi− cd − ch = 0.
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+ Another Lie algebra on R3

Example 4.7
(R3, ∗) is a Lie algebra, where

~i ∗~i =~j ∗~j = ~k ∗~k = 0
~i ∗~j = −~j ∗~i = −7~i + 10~j− 11~k
~i ∗~k = −~k ∗~i =~i−~j + 2~k
~j ∗~k = −~k ∗~j = −2~i + 3~j− 3~k.

M∗ =

0 −7 1 7 0 −2 −1 2 0
0 10 −1 −10 0 3 1 −3 0
0 −11 2 11 0 −3 −2 3 0

 .
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+ Applications to Math and Physics

Contraction of tensor field;
Calculation of connection in Differential Geometry;
Structure of algebras and fields.

References:

D. Cheng, Y. Dong, Semi-tensor product of matrices
and its some applications to physics, Meth. Appl.
Analysis, vol. 10, no. 4, pp. 565-588, 2003.

D. Cheng, Some applications of semi-tensor product
of matrices in algebra, Comp. Math. Appl., vol. 52, pp.
1045-1066, 2006.
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V. Concluding Remarks

+ Current Research Topics

Game Theory:

Finite history strategy in dynamic game;
Evolutionary games on networks.

Universal algebra:
Structure of lattice;
Structure matrix⇒ Homomorphism.

Cryptography:

Symmetry of Boolean functions.

Fuzzy control:

Solving fuzzy relational equations;
Design of multi-input fuzzy controllers.
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+ Remarks

Semi-tensor product is a simple and useful tool;
Numerical tool in computer era;
It is with 100% originality;
It has attracted international attention;
You are expected to join us.

Please try it!
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Thank you!

Question?
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