Nonlinear Bayesian Filters
for Training Recurrent Neural Networks

Ienkaran Arasaratnam and Simon Haykin

Cognitive Systems Laboratory
Department of Electrical & Computer Engineering
McMaster University
Hamilton, ON, L8S 4K1
aienkaran@grads.ece.mcmaster.ca, haykin@mcmaster.ca

Abstract. In this paper, we present nonlinear Bayesian filters for train-
ing recurrent neural networks with a special emphasis on a novel, more
accurate, derivative-free member of the approximate Bayesian filter fam-
ily called the cubature Kalman filter. We discuss the theory of Bayesian
filters, which is rooted in the state-space modeling of the dynamic system
in question and the linear estimation principle. For improved numerical
stability and optimal performance during training period, a number of
techniques of how to tune Bayesian filters is suggested. We compare the
predictability of various Bayesian filter-trained recurrent neural networks
using a chaotic time-series. From the empirical results, we conclude that
the performance may be greatly improved by the new square-root cuba-
ture Kalman filter.

1 Introduction

Neural networks are an important tool in the modern engineer’s kit of problem-
solvers. They essentially use flexibly parameterized classes of nonlinear functions
to approximate input-desired output relations. The parameters, hereafter called
weights, are unknown to be determined. In the supervised training mode, a
training data set is provided with a set of examples, each of which has a distinct
input/desired-output. Hence, the objective of the training algorithm is to find
these weights so as to match the training data set as closely as possible.
Specifically, recurrent neural networks (RNNs) have had successes in areas
such as dynamic system identification [13], nonlinear prediction [7] and con-
trol [22]. They are capable of storing temporal dependencies spanning a number
of time steps between inputs and desired outputs. To train RNNs, we use the
gradient descent method. Here, the gradient descent method is applied in a
truncated backpropagation through time setup to compute derivatives of a cost
function with respect to weights meaningfully [17], [27]. In the truncated back-
propagation through time setup, internal states of a RNN at current time are
computed by unfolding recurrent loops to some steps backward in time and prop-
agating states corresponding to that time through the unfolded network. The
gradient descent method for training RNNs suffers from the following limitations:

(i) Poor convergence (ii) Recency effect (tendency for recent weight update to
cause RNNs to forget what they have learned in the past) (iii) Vanishing gradient
effect (inability of the gradient method to propagate errors backward deeply).
The latter is severe when we use a highly time-correlated signal as the training
sequence (e.g., speech signal) [3].

To accelerate the rate of convergence, we may use second-order methods using
the Hessian information. Unfortunately, they do not always improve the perfor-
mance significantly due to Hessians that are intrinsically ill-conditioned. More-
over, their converge rate relies on an accurate evaluation of successive descent
directions, which seems meaningful only in a batch of examples. However, up-
dating of weights on an example-by-example (online) basis is preferred when the
training data set (i) exhibits non-stationary behavior or (ii) is difficult/expensive
to obtain before the training starts. This is where we seek the so-called Bayesian
filters.

Bayesian filters utilize Bayes’ rule to update weight statistics. To be specific,
Bayesian filters track the evolving conditional probability density of weights,
given a history of examples. In the recent past, there has been a surge of interest
in utilizing nonlinear Bayesian filters for training RNNs [9], [19]. Specifically,
they provide the following benefits:

— Bayesian filter-based training algorithms converge more rapidly than the
gradient descent method.

— They are well-suited to handle noisy and nonstationary training data.

— The second-order information encoded in the filter-estimated error covari-
ance can often be used to prune the network structure [25].

— Last but by no means least, we mention the benefit of using them in neu-
rocontroller training. The Physics-based models of plants including various
non-differential submodels due to dead zones, look-up tables etc., are al-
ready in place in an industry. In this case, we may directly utilize derivative-
free Bayesian filters for neurocontroller training rather than replacing them
with less accurate neural networks using the principle of system identifica-
tion [19], [26].

Although Bayesian filters achieve better results in fewer iterations than the
gradient descent method, this does not necessarily translate to less training time.
Of course, their complexity is in the order of w? instead of w, where w is the
number of weights. As a practical cure, algorithmic implementations included
various clever groupings of weights at the expense of ‘slightly’ degraded per-
formance nearly two decades ago [20], [24]. Fortunately, most of present digital
computers are capable of handling this computational demand without seeking
any approximative approaches, thanks to the ever-increasing power of comput-
ers.

In this paper, one of our objectives is to pique the readers’ interest in the
Bayesian filter family, namely, the extended Kalman filter (EKF) [1], the central-
difference Kalman filter (CDKF) [14] and the cubature Kalman filter (CKF) [2],
for training networks. However, contributions of this paper mainly lie in how to
utilize the CKF', which is novel, more accurate and derivative-free. For example,

— We analyze various Bayesian filters from the optimization perspective. Therein,
we go on to prove why the CKF is superior to other filters theoretically and
verify it empirically.

— We illustrate how the CKF addresses the following problems: (i) Accommo-
dating a wide range of cost functions, which may be non-differentiable (ii)
Vanishing gradient in RNNs: The use of the CKF eliminates the need for
unfolding the internal feedback loops of the RNNs in time. The reason is
that the CKF is rooted in the philosophy:

Optimization through integration as opposed to differentiation.

— We discuss how to optimize performance of the CKF by tailoring its various

hyperparameters.

The rest of the paper is organized as follows: Section 2 introduces a pair
of fundamental equations of the optimal nonlinear Bayesian filters for nonlin-
ear filtering problems. We present the theory of the CKF under the Gaussian
assumption in Section 3. Section 4 illustrates that the use of the Bayesian filter-
based training is equivalent to a second-order optimization method minimizing
the regularized sum of squared error cost function with varying degree of ac-
curacies. Therein, we prove theoretically that the CKF estimate is superior to
various other Bayesian filters. In Section 5, we suggest a number of possible
extensions and refinements of Bayesian filters with a special emphasis on the
CKF for an improved and stable performance in training. We present a com-
puter experiment in Section 6, where we compare the predictability of various
Bayesian filter-trained RNNs using a chaotic time-series. Finally, in Section 7,
we summarize the paper with some insightful remarks.

2 Optimal Bayesian Solution to Filtering Problems

In this section, we present a theoretically relevant optimal Bayesian solution to
nonlinear filtering problems and describe its intractability leading to proliferation
of many suboptimal solutions. Consider the problem of sequentially estimating
a state vector x; € R™= that evolves in discrete-time according to the first-order
Markov process:

xp = f(Xp—1, up-1) + dr—1 (1)
given a mapping function from the hidden state space to the observable space:
Zp = h(Xk; uk) + re, (2)

where f : R" x R™ — R™ and h : R" x R™ — R"™ are known; u; € R™
is the known input at time k; z; € R™ is the measurement; {qs_1} and {ry}
are uncorrelated process and measurement Gaussian noise sequences with zero
means and covariances Q;—1 and Ry, respectively. The pair of equations, namely
the process (state transition) equation (1) and the measurement equation (2) are
collectively called the state-space model of the dynamic system.

The Bayesian filter extracts information about the hidden state from noisy
measurements. Of course, it computes the posterior density of the state, which
provides a complete statistical description of the state at that time, in two basic
steps:

— Prediction, which involves propagating the old posterior density state one
time-step ahead before receiving a new measurement. At the end of this
step, we obtain the predictive density using Kolmogorov’s forward equation:

P D) = [pbaal Do)ik (6)
where Dy_1 = {(u;,2;),4 = 1,2...(k — 1)} denotes the history of input-
measurement pairs up to time (k — 1); p(xg—1|Dr—1) is the old posterior
density at time (k—1) and the transition density p(xx|xx—1, ur—1) is obtained
from the process equation (1).

— Correction, which involves updating the predictive density using the new
measurement, z;. Using Bayes’ rule, we write the posterior density:

1
p(xx|Dy) = ap(XMDkﬂ)p(Zk\Xm uy), (4)

where the normalizing constant
cr = / P(xk| Dr—1)p(2k x5, uk) dxy, (5)
Rna

and the measurement likelihood function p(zg|xx,ux) is obtained from the
measurement equation (2).

From the posterior density (4), any statistic regarding xj can be computed.
For example, we can provide an optimal estimate and its associated covariance
(variance) according to ‘some’ chosen criterion. The optimal Bayesian filter solu-
tion given by (3), (4) and (5) provides a unified recursive approach for nonlinear
filtering problems conceptually. However, it is not of direct practical impor-
tance for two reasons: (i) For a multidimensional system, we require to compute
multi-dimensional integrals involved in (3) and (5) (ii) Even after integrals are
computed, it may be difficult to propagate relevant statistics through subsequent
time steps.

Consequently, an intense research in the past has resulted in a number of
suboptimal solutions to nonlinear filtering problems. Specifically, in machine
learning, suboptimal solutions are considered an advantage because they are un-
likely to yield an overfitted solution. In computational terms, the suboptimal
solutions to the posterior density can be obtained using one of two approaches:

1. Local approach. Here, we derive nonlinear filters by fixing the posterior den-
sity to take a priori form. The emphasis on locality allows us to work with
a limited set of parameters such as central moments of the probability den-
sity rather than the probability density itself. For example, we may assume

Prediction Correction

A A

Transition Likelihood
p(Xp X1, W1) P2k xg. uy)

'

Wy

Yy

Predictive
p(xk|Dr—1) -
S dx; [
Cp
Z—1
Prior (Old Posterior) New Posterior
(X1 Dy—1) P3| Dy)

Fig. 1. Signal-flow diagram of the optimal recursive Bayesian filter. (Z™' denotes the
unit time delay operator)

it to be Gaussian, which is completely characterized by mean and vari-
ance. Nonlinear filters, namely, the extended Kalman filter (EKF) [1], the
central-difference Kalman filter (CDKF) [14], the unscented Kalman filter
(UKF) [10], and the cubature Kalman filter (CKF) [2], fall under this first
category.

2. Global approach. As opposed to the local approach, we do not make any
explicit assumption about the posterior density form here. For example,
particle filters using Monte Carlo integrations with the importance sampling
[4], [5], fall under this second category .

Though the global approaches seem to be more accurate, their accuracy is
achieved at the expense of intensive computations. For example, when using
particle filters in high-dimensional filtering problems such as training neural
networks, a vast majority of particles may be sampled from a non-informative
volume of the state-space [12]. Therefore, when the problem dimension increases
we use an exponentially increasing number of particles to retain the same ac-
curacy. This is often called the curse of dimensionality. In this paper, we focus
on supervised training of neural networks, which typically involves a huge num-
ber weights to be determined. In this case, we have to be content with a local
approach, which makes the design of the filter simple and fast to execute. Next
section introduces the CKF using the local approach.

3 Theory of Cubature Kalman Filter

The key assumption of the cubature Kalman filter (CKF) is that the predictive
density p(xx|Dr—1) and the filter likelihood density p(zx|Dy) are both Gaussian,
which eventually leads to a Gaussian posterior density p(xi|Dy). Under this
assumption, the cubature Kalman filter solution reduces to how to compute
their means and covariances more accurately.

3.1 Prediction

In the prediction step, the CKF computes the mean Xy ,_; and the associated
covariance Py ,_; of the Gaussian predictive density numerically using cubature
rules. We write the predicted mean

Xplk—1 = E(Xp|Dp—1), (6)
where E is the statistical expectation operator. Substituting (1) into (6) yields
Xip—1 = E[f(xp—1, up—1) + Q| Dy—1]- (7)

Because qy, is assumed to be zero-mean and uncorrelated with the measurement
sequence, we get

Xijp—1 = E[f(xp—1, up—1)|Dy—1]

:/ f(xp—1, Wp—1)p(xg—1|Dr—1)dxr_1

R

:/ f(xp—1, W 1)N (Xp—15 Xp—1)k—1, Pro—1jk—1)dXp—1, (8)
Rna

where A(.,.) is the conventional symbol for a Gaussian density. Similarly, we
obtain the associated error covariance

Pyji—1 = E[(xk — Xpopp—1) (% — Xpgpp—1) " |21:6-1]
:/ f(xp—1, Wom)£ (g1, W 1))N (K= 13 Rp—1)5—1, P 1jp—1)dXk—1
Rne

—Rpjp—1 Xk g1+ Qr1- 9)

3.2 Correction

It is known that the innovation process is not only white but also zero-mean
Gaussian when the additive measurement noise is Gaussian and the predicted
measurement is estimated in the least squares error sense. In this case, we write
the predicted measurement density also called the filter likelihood density

p(zx|Dr—1) = N(2k; Zgjo—1, Pz kjk—1)- (10)

where the predicted measurement and the associated covariance are given by
Zglk—1 = / h(xp, ug)N (X5 X -1, Prjr—1)dXk (11)
Rra

P, kjk—1 =/ h(x, we)h” (x4, we)N (Xp; X1, Prp—1)dX,
Rra
~Zpp—124)51 + Re (12)

Hence, we write the Gaussian conditional density of the joint state and the
measurement:

p([Xf Zg]T|Dk_1) =N (<>A(kk—1> ’ (I;klk_l Pgﬂz,klk—l)) . (13)

ZE|k—1 chz,k|k—1 Pzz7k|’~f—1

where the cross-covariance
T Lo o AT
P k-1 =/ X (%, W)N (g3 X1, Prje—1)dXp — i 12— -(14)
Rn

On the receipt of a new measurement zj, the CKF computes the posterior
density p(xx|Dy) from (13) yielding

p(Xx|Dr) = N (Xk; Xpjio, Prjie), (15)
where
Xk = Xpk—1 + Gr(2Zr — Zpjr—1) (16)
Py = Pyjj—1 — GiPes ki—1Gh. (17)
with the Kalman gain
Gk = sz,k\k—lpz_z’lk‘k,y (18)

The signal-flow diagram in Fig. 2 summarizes the steps involved in the re-
cursion cycle of the CKF. The CKF theory reduces to the Kalman filter for a
linear Gaussian system case. The CKF numerically computes Gaussian weighted
integrals that are present in (8)-(9), (11)-(12) and (14) using cubature rules as
outlined next.

3.3 Cubature Rules

In general, cubature rules are constructed to numerically compute multi-dimensional
weighted integrals. The CKF specifically uses a third-degree cubature rule to nu-
merically compute Gaussian weighted integrals. The third-degree cubature rule

is exact for integrands being polynomials of degree up to three or any odd in-
teger. For example, we use the cubature rule to approximate an n-dimensional
Gaussian weighted integral as follows:

[fGON G Dydx 5 St + V).
) i=1

Prediction

A

/ G-Transition \

P Xg—1, W1)

G-Prior (Old ¢

Posterior) G-Predictive

> EJ(X;-_1|D3‘-_1) —_— P[:XI.'|D.R'—1J

Z— 1
New G- G-Joint State-Meas. _G-Filter
Posterior Likelihood

}J(X;-|DA-) -4——| Conditioning 4—},)([\{ Z.E]T|Dk—l) - p(zy|Dp_q)

t

Zy

\¥ New Measurement /

—

Correction

Fig. 2. Signal-flow diagram of the CKF, where ‘G-’ stands for ’Gaussian-’.

where a square-root factor of the covariance X satisfies the relationship X =
T
VXX and the set of 2n cubature points are given by

e [vien i=12..n
‘ —vne;_n,i=n+1,n+2...2n.

with e; € R™ denoting the i-th elementary column vector. For a detailed expo-
sition of how to derive cubature points, the reader may consult [2].

4 From Learning to Inference: Bayesian filters for
supervised training

Mathematically, we may express the functional form of a neural network as
dk = h(W, uk), (19)

where w € R" is the weight vector; ui € R™ is the input vector; dg € R"™ is the
desired output; and the form of the nonlinear function h is determined by the
neural network architecture and its activation functions. We shall assume uy, to
encompass the state variables additionally present in a RNN architecture.

When a set of k examples denoted by Dy = {(u;,d;),i = 1,2...k} is given,

the objective of the supervised training can be posed as follows:
How do we extract the information about w, which is contained in Dy

i ‘some’ optimal fashion? In the Bayesian estimation paradigm, this readily
translates into the question of how to compute the posterior density p(w|Dy)?

To achieve the above objective in the Bayesian paradigm, the first key step
is to treat weights to be random variables thereby accounting for uncertainty in
their estimate. We assume weight variables to follow the Gaussian random walk
model. Hence, we write the state-space model for training neural networks in
supervised mode as follows:

Process equation: wj = wi_1 + qr_1 (20)
Measurement equation: dj = h(wy,ug) + rg, (21)

where wj may also be interpretable as a slowly varying parameter due to the
stochastic component qg, which is assumed to be zero-mean Gaussian process
noise with covariance Q_1; the process noise is purposely injected with decreas-
ing covariance; ry, is assumed to be zero-mean Gaussian measurement noise with
covariance Ry; and the desired output d; acts as measurements. Suppose the
prior weight statistics are set properly. In this case, the Bayesian filters infer
the evolving posterior density of wy, using the state-space model (20)-(21). The
Bayesian filters improve the accuracy of the weight estimate sequentially because
they operate on an example-by-example basis.

4.1 Bayesian Filters as Second-Order Optimizers

In this subsection, the nonlinear Bayesian filters under the Gaussian assumption,
exemplified by the EKF, the CDKF and the CKF, are viewed to act on the basis
of a unified principle: Despite of their algorithmic differences, they all are second-
order optimizers in disguise, which minimize a regularized sum of squared error
cost function with varying degree of accuracies. !

Suppose we are given Dj. Under the Gaussian assumption, we write the
posterior density (compare (4)):

1
p(Wi| D) = aN(WkQ W1, Prje—1)N (tx; h(.,), 0%L,). (22)

As the resulting posterior density is also Gaussian, the conditional mean estimate
Wy is the mode of (22) and determined as follows:

Wik = arg II‘:,lkn (- 1ogp(wk|Dk))
= argrgiI? (o [wy — wk|k71]TPk_\]1—l[wk = Wlk-1]
+[dy —h(.,)]T[dg - h(.,.)]), (23)

! Regularization is a well-known method for treating mathematically ill-posed prob-
lems. It has been applied successfully to several machine learning problems to avoid
over-fitting.

where

— the second term on the right hand side of (23) is the usual sum of squared
error incurred in function approximation;

— the first term can be thought of as a regularizer for the approximation er-
ror criterion; specifically, the regularizer term can be though to measure
the discrepancy between two neural networks of same size assessed by a
weighted Euclidean distance between their corresponding weight vectors wy,
and VAVk‘k_l.

Setting the Jacobian of the regularized sum of squared error cost function (23)
to zero yields the explicit solution to the weight estimate of the form (compare

(16)):
Wik = Wrjk—1 + Gr(dp — ak|k—1)-
where the predicted network output
ak\kq = E[h(wmulc)‘Dk—l], (24)

and the Kalman gain G} can be computed in a number of ways depending on
which Bayesian filter is employed. From (20), we may equivalently write the
weight estimate

Wik = Wi—1)k—1 + Gr(dg — ak\k—1)~ (25)

Next, we illustrate how each Bayesian filter operates in the context of supervised
training.

4.2 Extended Kalman filters

Theory of the EKF results from linearizations of nonlinear functions and then
applying the Kalman filter theory to nonlinear, Gaussian systems. The lineariza-
tion relies on use of the first-order Taylor series expansion evaluated at the cur-
rent estimate. Though the EKF is popular for its simplicity, it is plagued by the
following limitations: (i) It quickly diverges in ‘highly’ nonlinear systems, owing
to its linear approximation (ii) The EKF often yields an underestimated error
covariance as it does not account for a prior covariance matrix in its analyti-
cal linearization approach (iii) Finally, its application is limited to differentiable
functions only.

To elaborate the concept, we consider how the EKF computes its predicted
network output in the supervised training mode of the neural network. Here,
we assume that the prior density of w, p(w) = N(0,1I,). In the sequel, we
suppress arguments di and ug of h() for notational simplicity. We write the
EKF-estimated predicted network output

ak|k—1 = E[h(wy)|Di—1]
~ E[h(0) + J(0)wy]
= h(0).

Here J € R™*% denotes the Jacobian matrix of h. Here, the EKF estimate does
not utilize the second-order statistics. Moreover, we may equivalently obtain the
predicted network output of the EKF as

dyj—1 = E[h(w)|Di1] ~ h(0) = h(E(wi|Di_1)),

which implies that the EKF estimate is exact for linear functions, and may be
highly biased otherwise. As a solution to mitigate bias errors of the EKF, the
CDKEF is discussed next.

4.3 Central difference Kalman filters

The CDKF is, in principle, comparable to the second-order EKF. That is, the
nonlinear functions of the dynamic system are approximated by the second-
order Taylor series expansion, in which the Jacobians and Hessians are replaced
by central difference approximations. Use of the CDKF for training neural net-
works has had successes recently for the following two main reasons [19]: (i) It
is derivative-free (ii) The square-root version of the original CDKF ensures a
smooth continuous operation during training.?

To elaborate its operation, we write the steps involved in computing the
predicted network output as follows:
(i) We write the second-order Taylor series expansion of h(wy) about 0:

h(wy) ~ h(0) + J(0)wy, + % > Wi Hi(0)wye;, (26)
i=1

where H; € RY*" denotes the the square symmetric Hessian matrix whose
elements are various second-order partial derivatives of h;(.),s = 1,2...n and
e; € R" is the i-th elementary column vector.

(ii) Taking expectation of (26) with respect to wy, yields

dujet = Elb(w) D] 2 0(0) + 5 S O)er, (20)

where Tr denotes the trace operator.
(iii) Finally, we replace the Hessian in (27) by the central difference approx-
imation. For example, we approximate the j-th diagonal element of the Hessian

2h. (Ae;) — 2h, .
(H0)55 = 22 0) ~ BilB8) =200 £ hi(Zhe)

where the step-size A is chosen to be A = /3 for a Gaussian prior.

The CDKF yields a more accurate estimate than that of the EKF. Secondly,
it operates on function evaluations, thus is extendable to non-differential func-
tions. However, several assumptions are made in order to arrive at the CDKF

2 The square-root CDKF is sometimes referred to as nprKF, where ‘npr’ stands for
the initials of the three authors of [14].

equations. For example, (i) when computing the first two-order moments, namely
the mean and covariance, the CDKF essentially takes two approximations: (i.a)
Quadratic interpolating polynomials for nonlinear functions and (i.b) numeri-
cally approximative Jacobians and Hessians (ii) the choice of the step size A
to be A = /3 is not always guaranteed to be optimal in all problem settings
and (iii) finally, the interpolating point set using the fixed step-size of A = /3
irrespective of the state dimension w may fail to capture global properties of
a nonlinear function (e.g., peaks and troughs); the reason is that the quadratic
function approximation is accurate only in the vicinity of the current estimate [2].

4.4 Cubature Kalman filters

As opposed to functional approximations to nonlinear functions, the CKF takes
a more accurate and mathematically straightforward approach. As described
earlier, the CKF computes the predicted network output as follows:

dyjp_1 = E[h(wy)|Dy_1] = / h(w)N (w;0, I,)dw

1 2w
~ 50 Z h(&;),
i=1
where cubature points &; take a similar form as in Subsection 3.3

Remark. So far, we have discussed how each Bayesian filter computes the
predicted network output. We may also extend the similar procedure to compute
the covariance of the predicted error. The predicted error covariance, which is
also called innovation covariance, essentially determines the accuracy of the
Kalman gain. Because the CKF is proven to retain the information about the
first two order moments of a nonlinearly transformed variable completely, we
may expect the CKF to update the weights more accurately than other two
Bayesian filters.

5 Practical Implementation

In this section, we describe a number of techniques of how to fine tune the CKF
for better results.

5.1 Reducing Computational Complexity

As described earlier, the Bayesian filters implicitly minimizes the sum of squared
error. To elucidate the relationship of the sum of squared error in (23) and the
measurement function, we rewrite (2) as

0 = (di — h(wy, xz)) + 1%, (28)

where the output (measurement) is forced to take 0. Typically we encounter
vector-valued measurements in n-class classification problems. In this case, we
may replace the vector-valued measurement function by a scalar-valued mea-
surement function:

0= h(Wk,Xk,tk) + Tk, (29)

where

n

()= D0 (A —hO(,.,0)%

i=1

The above reformulation appears reasonable because the Bayesian filter min-
imizes the same sum of squared error. Also, the independency among output
labels does not alter the degree of monlinearity from the point of view of any
single weight-variable. Finally, when any one of the outputs corresponding to
the appropriate class is given, the other outputs carry little information. Based
on these observations, we expect the Bayesian filter using (29) to yield a weight
estimate similarly to that using (2). The similarity has also been verified in a
number of simulations. The scalar reformulation offers the following benefits: (i)
It reduces the computational complexity of the Bayesian filter based-training
significantly (ii) It improves the numerically stability of the Bayesian filter. For
example, when computing the Kalman gain, we replace the inversion of the in-
novation covariance matrix with a trivial scalar division (see Ch. 2, [9] also for
a similar exposition in the EKF setup).

5.2 Fitting Various Cost Functions

In this subsection, we consider how to incorporate cost criteria other than the
sum of squared error into the state-space model. To fit a given cost function,
which may be non-differentiable, into the state-space model, we closely follow the
idea of reformulating the measurement equation as explained through a couple
of examples below.

Ezxample 1: We consider the cross-entropic cost function that has been found
to be appropriate for an n-class pattern-classification problem. When the clas-
sifier network uses the softmax output layer and the binary encoding for its
outputs, we write the cross-entropic cost function

n

Jk = — ng) log h(i)(Wk,Xk).

i=1

Correspondingly, we write the reformulated measurement function to be the
square-root of Ji. That is, we write the measurement equation to take the form:

n

0=,|- Z d,(j) logh™ (wy,, x) + 7. (30)

=1

FEzxample 2: Here we consider the cost function to be the Minskowski’s p-
power metric. In this case, we write the reformulated measurement equation:

n

0=,[(X A — b (wi, x0)[P) + 7. (31)

i=1

Setting p = 2 in (31) yields the usual sum of squared error cost function. More-
over, the CKF and the CDKF can still be utilized when p = 1 (absolute error or
L1-norm), whereas the EKF fails due to the unavailability of analytic gradient.

5.3 Choosing Hyperparameters

Both the accuracy of weight estimate and the rate of convergence of the CKF
crucially hinge on the right choice of statistics of hyperparameters, namely, noise
models and weight priors. Specifically, we assume that the given training data
set is normalized and all the models are zero-mean Gaussian. In the Bayesian
filtering framework, the assumption of Gaussianity allows to obtain a tractable
solution. In this case, we are left to specify right covariances only. Next, we
describe simple methods to compute them and explain why they work effectively.

Process noise covariance. Injecting process noise artificially helps escape poor
local minima of the error surface. However, as the training progresses, the process
noise covariance @i needs to be reduced systematically. We use a mathematical
relationship of the form Qy—1 = (3 — 1)Py_1j5—1, where A € (0,1] is called
the the forgetting factor [28]. This allows to put exponentially decaying weight
on past data. Consequently, for the linear process equation (20), we get the
predicted error covariance Pyj_1 to be Ppp_1 = %Pk,nk,l; this suggests that
we get Ppjx—1 > Pr_1jx—1 when predicting a new weight estimate before the
receipt of a new measurement. Typically, the choice of A being slightly less than
unity works well for many problems.

Measurement noise covariance. Suppose we are given a set of clean training
data set embedding the information about the unknown weight vector. Hence,
it is reasonable to assume that the likelihood function is ‘highly’ peaked. We
choose a fixed measurement noise covariance of the form Ry = o21,. However,
the choice may vary depending on the quality of the training data.

Initial error covariance. To choose this hyperparameter, we use the principle
of stable estimation, which suggests to choose the prior density to be relatively
more flat than the likelihood function in the case of uninformative prior [16].
The reason is that the shape of the posterior is forced to closely follow the shape
of the likelihood rather than that of uninformative prior. We may choose the
initial error covariance Py to be a diagonal matrix, with diagonal entries being
one/two order higher than o2. The choice of initial covariance seems contrary
to the Bayesian perspective, which is essentially built around the principle that
Priors rule; posteriors just follow around them. As training progresses however,
the prior becomes more influential and decides the shape of the posterior (see
Fig. 3).

(a) At time k=1 (b) At time k =1

Fig. 3. Posterior (solid line) resulting from prior (dash-dot line) combined with likeli-
hood function (dotted line) at two consecutive time steps.

5.4 Improving Stability: Square-root Formulation

The two basic properties of an error covariance matrix are (i) symmetry and (ii)
positive definiteness. In practice, due to finite word-length arithmetics, these two
properties are often lost. Specifically, the positive definiteness of the posterior
covariance, which is computed as the difference between two positive definite
matrices is likely to be lost (see (17)). The conflict between theoretical proper-
ties and practical values may lead to an unstable behavior of a Bayesian filter.
Importantly, the loss of the positive definiteness may be more hazardous as it
stops the CKF to run continuously. The obvious question in this case is: how do
we avoid this undesirable situation so as to assure a continuous stable operation
of the CKF? The answer lies in a mathematically principled approach called
square-root filtering.

The square-root version of the cubature Kalman filter hereafter called square-
root cubature Kalman filter (SCKF), essentially propagates a square-root factor
of the covariance matrix. To develop the SCKF for training neural networks,
we use matrix factorizations. To elaborate further, we write the CKF-estimated
covariance P € RY*" of the form:

P = AAT, (32)

where A € R**! with [> w is a fat matrix. In the square-root filtering, we are
required to compute a square-root factor of P of dimension (w x w) without
explicitly taking the square-root of P owing to numerical instabilities. Applying
the QR decomposition on A7, we get

P=AAT = RTQTQR = R"R = BB7,

where the desired square-root factor is a lower triangular matrix B = RT. Here-
after we call this procedure triangularization. Note that in computing the square-
root covariance B, we discard the orthogonal matrix () and exploit the upper
triangular matrix R only. Since B is triangular, its sparseness provides efficient
computation and reduced storage space. In terms of computational complexity,
the SCKF requires O(w?) flops, which comes from the use of a matrix triangu-
larization.

@) = 1.71tanh(av)
I
g o

Fig. 4. Effect of a on the shape of the activation function ¢(v) = 1.71tanh(av).

6 Experimental Results

In this section, we report our findings of the experiment dealing with Bayesian
filter-trained RNNs. The trained RNNs are employed to predict the chaotic
Mackey-Glass time-series. We use the CKF as described in Appendix A, the
CDKF and the EKF as training algorithms.

Chaotic Mackey-Glass System. The Mackey-Glass equation is often used to
model the production of white-blood cells in Leukemia patients and given by the
delay differential equation:

— =0.1 —_— 33
Ty + l‘lo) ()

where the delay A = 30. To sample the time-series at discrete time steps, we
numerically integrated (33) using the forth-order Runge-Kutta method with a
sampling period of T' = 6 s, and the initial condition z; = 0.9, for 0 < ¢t < A.
Given a chaotic system, it is known that the next data sample x4, can be pre-
dicted from a properly chosen time-series {2y, Tx—r ... Th_[dp—27s Th—[dp—1]r }»
where dg and 7 are called the embedding dimension and the embedding delay,
respectively. For the chaotic Mackey-Glass system, dg and 7 were chosen to be
seven and one, respectively.

RNN Architecture. We used the Bayesian filter-trained RNNs to predict the
chaotic Mackey-Glass time-series data. We chose the RNN to have seven inputs
representing an embedding of the observed time-series, one output, and one self-
recurrent hidden layer with five neurons. Hence, the RNN has a total of 71
connecting weights (bias included). The output neuron uses a linear activation
function, whereas all the hidden neurons use the hyperbolic tangent function of
the form

p(v) = 1.71 tanh(awv),

(b)

Fig. 5. Schematic diagrams (a). Original RNN (b). Unfolded RNN of unity truncation
depth.

where o was assumed to take values ranging from 1/3 - 3. As shown in Fig. 4,
the hyperbolic tangent function is ‘mildly’ nonlinear (that is, close to a linear
function) around its origin when « = 1/3. Its nonlinearity increases with a, and
behaves closely similar to a switch when a = 3.

State-Space Model. We represent the RNN architecture following the state-
space model:

W = Wg_1+dg_1

0= (dk — W()(,O(Wrxk_1 + Wiuk)) + k.

Here ¢, denotes the softmax function of the output layer, whereas ¢; and ¢,
denote the hyperbolic tangent functions of the input layer and recurrent layer,
respectively; W;, W,. and W, are input, recurrent and output weight matrices of
appropriate dimensions; the weight vector wy, is obtained by grouping elements
from W;, W,. and W, in ‘some’ orderly fashion.

Data. We obtained the chaotic time series of length 1000, of which the first
half was used for training and the rest for testing. To train the RNN using the
CKF, we used 10 epochs per run. Each epoch was obtained from a 107 time-step
long subsequence, starting from a randomly selected point. That is, each epoch
consists of 100 examples gleaned by sliding a window of length eight over the
subsequence. The weights were initialized to zero-mean Gaussian with a diagonal
covariance of 0.51,,; We made Q_1 to decay such that Qr_1 = (% —1)Py_1jk—1
with A = 0.9995. We fixed R;, to be R;, = 5 x 1072 across all entire epochs; the
output of the hidden layer (state) of the RNN at ¢ = 0, xo was assumed to be
Zero.

As opposed to the CKF relying on integration, the EKF and the CDKF use
gradient information, which necessitate the use of the truncated backpropagation
through time method. The truncation depths of longer than unity were tried;
surprisingly, a length of unity was found to be sufficient in this experimental
setup (see Fig. 5).

Cum. absolute error
Cum. absolute error

0 20 40 60 80 100 0 20 4 60 80 100
Prediction time step Prediction time step

(a) EKF-trained RNN. (b) CDKF-trained RNN.

Cum. absolute error

0 20

4 60 80 100
Prediction time step

(¢) CKF-trained RNN.

Fig. 6. Ensemble-averaged cumulative absolute error curves during the autonomous
prediction when o = 1/3 (solid-thin), 2/3 (dashed), 1 (dotted), 2 (dash-dot), and 3
(solid-thick).

Performance Metric. During the testing phase, we initialized RNNs with
20 time-step long test sequence and allowed them to run autonomously using
their own output for the next 100 steps. To compare the performance of CKF-
trained RNNs against the CDKF, and EKF-trained RNNs fairly, we made 50
independent training runs for each value of a. As a performance metric, we used
the ensemble-averaged cumulative absolute error

50 k
1 y s
k= %ZZM@ —dM; k=1,2,...100.

r=11i=1

The long-term accumulative prediction error is increasing exponentially in time
k for the following reasons: (i) the chaotic systems are known to be sensitive
even to a slight perturbation in their present state [15] (ii) the prediction error
is amplified at each time step due to the closed loop structure. From Figs. 6(a)
and 6(b), we see that the EKF and CDKF-trained RNNs break down at o = 2
and beyond. The CKF-trained RNN performs reasonably well even when oo = 3
at which the hyperbolic tangent function is ‘severely’ nonlinear (Fig. 6(c)). The
reason is that the CKF tends to locate a better local minimum of the cost
function in the weight space than the EKF or the CDKF. The successful solution

to estimating more accurate weights in a highly nonlinear setup studied herein
is a convincing testimony to the superiority of the CKF as a training algorithm.

7 Concluding Remarks

In this paper, we introduced the cubature Kalman filter (CKF) for training RNNs
for the first time in the machine learning literature. With the cubature rule at
our disposal, the principle behind the CKF can be confined to linear filtering
theory. Despite algorithmic differences, the approximate Bayesian filters exem-
plified by the EKF, the CDKF and the CKF, share a common feature: they all
are second-order optimizers minimizing the reqularized sum of square error cost
function. Specifically, it has already been proved that the EKF is equivalent to
the Newton’s method whereas the backpropagation is equivalent to a degenerate
form of the EKF in [21], [23]. Hence, the Bayesian filters provide more accurate
solution and rapid convergence than the gradient method. A significant perfor-
mance boost of Bayesian filters over the gradient descent method results from
computing (i) the predicted network output (24) and (ii) the Kalman gain Gy
joining the prediction error to the latest weight estimate. Of course, a compari-
son of Newton’s method and the weight update of a Bayesian filter suggests that
the Kalman gain encompasses a stochastic counterpart of a scaled inverse Hes-
sian of the cost function. The Kalman gain can also be thought of as a collection
of learning rates chosen optimally for each neuron of the network.

Specifically, CKF-trained RNNs seem to outperform other Bayesian filter-
trained RNNs. Apart from its more accurate solution to the weight vector, the
CKF may be preferred for the following reasons:

1. The CKF does not require analytical derivatives.

2. The CKF includes only the forward pass as opposed to forward and backward
passes as in the gradient-based training algorithms. Hence, we do not keep
track of information local to each unit.

3. In the CKF-based training of a RNN, we only consider the unfolded archi-
tecture of unity truncation depth. Hence, it is extremely easy to code and
implement the training algorithm for a RNN.

4. Last but by no means the least, we mention the benefit of the fast square-
root algorithm tailored specifically for training neural networks. It ensures a
continues smooth training operation.

Acknowledgement

The authors would like to thank the natural sciences and engineering research
council (NSERC) of Canada for financially supporting this project.

Appendix A: Square-root Cubature Kalman Filter

State-space model: In the SCKF algorithm outlined below, we assume the
following reformulated state-space model:

Wi = Wg_1 +qr—1

0= h(Wk,uk,dk> + 7,

where h(wy,,uy, dy,) = \/Zz;l (d,(;) —h@ (wy, uk))2 for the cost function being
the sum of squared error; q;_; and r are independent, zero-mean Gaussian noise
sequences with covariances Qi_1 and o?; Q_1 is annealed using the adaptive
strategy with a forgetting factor .

Initial Assumption: At time (k — 1), we are given the posterior density

P(Wi—1|Dr—1) = N (Wi_1jk—1, 5k-1|k—15;?71\k71)~

SCKF Algorithm from time (k — 1) to k: Compute
1. Cubature points

1
VA

where the cubature points {;} are defined in Subsection 3.3.
2. Propagated cubature points

D = h(#;,ug,,dy,) i=1,2,...,2w. (35)

Wi=Wi k-1 + =S 1x1& i=1,2,...,2w. (34)

3. Predicted network output

2w

N 1
dpih—1 = — ;.
T ;.@ (36)
Hence, the innovation is (_Jk\k—1)~
4. Innovation variance
U?l,k\kﬂ = 99" + a7, (37)
where the weighted, centered row vector
1 . . .
7 = \/T—w[-% —dpp—1 D2 — diji—1 - - - Dow — diji—1]- (38)
5. Cross-covariance
Ppayp-1="2", (39)
where the weighted, centered matrix
1 . . .
W = ——[M — Wi k=1 W2 —Wp_1jk—1--- P2w — Wi_1jk—1]. (40)

V2w

6.

7.

8.

Kalman gain
Gy = Pwd,k\kfl/o'imkfl- (41)
Updated weight
Wik = Wh_1jk—1 — Grdgjp_1. (42)
Square-root factor of the posterior error covariance
Sy = Tria([# — Gr2 oGyil), (43)

where we denote the triangularization algorithm as B = Tria(A) with the
output B being a lower triangular matrix. The matrices A and B are related
as follows: Let the upper triangular matrix R be obtained from the QR
decomposition on AT then B = RT.

References

11.

12.
13.

14.

15.

Anderson, B. D. O., Moore, J. B.: Optimal Filtering. Prentice Hall, New Jersey
(1979).

Arasaratnam, I., Haykin, S.: Cubature Kalman Filters, IEEE Trans. Automatic
Cont., under 3rd review (2008).

Bengio, Y., Simard, P., Frasconi, P.: Learning Long-term Dependencies with Gra-
dient Descent is Difficult, IEEE Trans. Neural Netw., vol. 5, no. 2, 157-166 (1994).
Cappe, O., Godsil, S. J., Moulines, E.: An Overview of Existing Methods and
Recent Advances in Sequential Monte Carlo, Proc. IEEE, vol. 95, no. 5 (2007).
Gordon, N.J, Salmond, D. J., Smith, A. F. M.: Novel Approach to Nonlinear /Non-
Gaussian Bayesian State Estimation, IEE Proc.-F, vol. 140, 107-113 (1993).
Hanson, S. J., Burr, D.J.: Minkowski-r Back-Propagation: Learning in Connection-
ist Models with Non-Euclidian Error Signals, Neural inform. proces. sys., Anderson,
D., Ed., NY: American Inst. of Physics, pp. 348-357 (1988).

Haykin, S., Li, L., Nonlinear Adaptive Prediction of Nonstationary Signals, IEEE
Trans. Signal Process, vol. 43, no. 2, 526-535 (1995).

Haykin, S.: Neural Networks: A Comprehensive Foundation, Prentice Hall, New
Jersey (1999).

. Haykin, S., Ed.: Kalman Filtering and Neural Networks, Wiley, New York (2001).
10.

Julier, S. J., Ulhmann, J. K., Durrant-Whyte, H. F.: A New Method for Nonlinear
Transformation of Means and Covariances in Filters and Estimators, IEEE Trans.
Automatic Cont., vol. 45, 472-482 (2000).

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-Based Learning Applied
to Document Recognition, Proc. IEEE, vol. 86, no. 11, 2278-2324, (1998).

Liu, J. S.: Monte Carlo Strategies in Scientific Computing, Springer (2001).
Narendra, K. S., Parthasarathy, K.: Identification and Control of Dynamical Sys-
tems Using Neural Networks, IEEE Trans. Neural Netw., vol. 1, no. 1, 4-27 (1990).
Ngrgaard, M. N., Poulsen, N. K., Ravn, O.: New Developments in State Estimation
of Nonlinear Systems, Automatica, vol. 36, 1627-1638 (2000).

Ott, E.: Chaos in Dynamical Systems, 2nd ed., Cambridge Univ. Press (2002).

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Peterka, V.: Bayesian Approach to System Identification, in Trends and progress
in system identification, Eykhoff, P., Ed., Pergamon Press, Oxford, pp. 239-304
(1981).

Pineda, F.: Generalization of Backpropagation to Recurrent Neural Networks,
Physical Review Letters, vol. 59, no. 19 (1987).

Plumer, E. S.: Training Neural Networks Using Sequential Extened Kalman Filters,
Proc. World Congress on Neural Netw., Washigton DC, pp. [-764-1-769 (1995).
Prokhorov, D.: Training Recurrent Neurocontrollers for Robustness with
Derivative-Free Kalman Filter, IEEE Trans. Neural Netw., vol. 17, no. 6, 1606-
1616 (2006).

Puskorious, G., Feldkamp,L.: Neurocontrol of Nonlinear Dynamical Systems with
Kalman Filter Trained Neural Networks, IEEE Trans. Neural Netw., vol. 5, no. 2
(1994).

Ruck, D. W., Rogers, S. K., Kabrisky, M., Maybeck, P., Oxle, M. E.: Comparative
Analysis of Backpropgation and the Extended Kalman Filter for Training Multi-
layer Perceptrons, IEEE Trans. Patt. Anal. & Mach. Intell., vol. 14, no. 6, 686-691
(1992).

Sarangapani, J.: Neural Network Control of Nonlinear Discrete-Time Systems,
CRC Press, Florida (2006).

Schottky, B., Saad, D.: Statistical Mechanics of EKF Learning in Neural Networks,
J. Physics A, vol. 32, no. 9, 1605-1621 (1999).

Shah, S., Palmieri, F., Datum, M.: Optimal Filtering Algorithms for Fast Learning
in Feedforward Neural Networks, Neural Net., vol. 5, no. 5, 779-787 (1992).

Sum, J., Leung, C., Young, G. H., Kan, W.: On the Kalman Filtering Method in
Neural Network Training and Pruning, IEEE Trans. Neural Netw., vol. 10, no. 1
(1999).

Yamada, T., Yabuta, T.: Dynamic System Identification Using Neural Networks,
IEEE Trans. Systems, Man and Cyber., vol. 23, no. 1, 204-211 (1993).

Werbos, P.: Backpropagation Through Time: What It Does and How to Do It,
Proc. IEEE, vol. 78, no. 10, 1550-1560 (1990).

West, M., Harrison, J.: Bayesian Forecasting and Dynamic Linear Models,
Springer-Verlag (1996).

