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8. STOCHASTIC MODELS FOR 

PREDICTION OF THE

CATCH DYNAMICS

The modelled time series are represented by catch variations of the 12 main commercial species. The 

sampling interval of the time series is 1 year, and all series finish in 1996 and cover the following 

periods:

� 1900 (1 series - Pacific herring, 97 observations),  

� 1920 (3 series - Californian and Japanese sardine, and salmon, 77 observations),  

� 1930 (2 series - Atlantic cod and herring, 67 samples),  

� 1950 (4 series - Peruvian anchovy and sardine, Alaska pollock, South African sardine, 47 

observations),

� 1957 (1 series - European sardine, 40 observations),  

� 1969 (1 series - Chilean jack mackerel, 29 observations) 

All considered time series undergo well-manifested cyclic variation. The time series can be 

represented as the following sum: 

x(t) = ξ(t) + F(t) ,            x(t), t=t0, …, t0+N-1, (1) 

where x(t) is the catch volume in the year t, t0 is the starting year of the series, F(t) is deterministic 

function (trend), and ξ(t) is a stationary component (including random noise) of the time series. The 

stationary component has no trends in mean or variation. The deterministic part of the model (F(t)) is 

taken as a multiple cyclic trend with m periods Ti, i=1, …, m (Anderson 1971; Kashyap and Rao 

1976):
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where Bi, Di are unknown amplitudes, and G is an unknown static shift constant. Equation (2) can also 

be expressed as: 
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The stochastic part, ξ(t), may be represented as an autoregressive Box-Jenkins model (Box and 

Jenkins 1970; Anderson 1971; Kashyap and Rao 1976) of the given order p (or AR(p)-model): 
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where p is the number of autoregressive parameters, ak, and ε(t) is a residual signal, which is 

considered to be Gaussian3 white noise with zero mean and unknown variance s2. Combining formulae 

(1) and (4), the general model is presented as follows: 

3 The Gaussian probability distribution, also known as the Normal distribution, is often appropriate when errors show constant variation.
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Thus, unknown parameters of model (5) to be estimated from the data, are: p autoregressive 

parameters ak; 2m harmonic amplitudes Bi and Di; a static shift constant G; and variance s2 of the 

residual signal ε(t). These parameters are estimated using the maximum likelihood method (Kashyap 

and Rao 1976), which in case of Gaussian noise ε(t) coincides with the least squares method. Let us 

define Y(t) as the following (p+2m+1)-dimensional column vector: 

Y(t) = (-x(t-1), …, -x(t-p), sin(θ1(t)), cos(θ1(t)), …, sin(θm(t)), cos(θm(t)), 1)
T  (6) 

where the index “T” indicates a transposed (i.e. column) vector, and the parameters’ column vector c

of the same dimensionality is: 

c = (a1, …, ap, B1, D1, …, Bm, Dm, G)
T  (7) 

Then the model (5) in matrix form could be described as follows: 

x(t) = c
T⋅Y(t) + ε(t)  (8) 

where c
T = row vector of parameters.  

The following gives a detailed account of the method used to fit the parameters. It is not necessary to 

understand the fitting method to understand the results of the model. But it is useful to follow the 

principles used here for robust regression to understand how the particular results are derived. The 

parameters, c, can be estimated by minimising the sum: 
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A solution of (9) can be obtained as the solution to the Normal equations (i.e. standard least-squares 

regression):
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and the unbiased maximum likelihood estimate of the variance of ε(t) is:
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Estimates defined by equations (10) and (11) are the least squares estimates and maximum likelihood 

where the errors are genuinely normally distributed. The least squares estimates can be very sensitive 

to outliers, so that only a few outliers can lead to parameter estimates, which are considerably different 

from the “true” values (Huber 1981). The outliers may occur in fishery data for various reasons, which 

cause a temporary violation of the assumptions of the model: increases in illegal activities or the 

influences of rare but powerful events (war, economic crisis, etc.). One way to make estimates more 

resistant to outliers is to apply maximum likelihood estimates, but with the assumption that the 

distribution of the residual signal ε(t) is Gaussian for small values of ε and Laplacian for large values 

of ε. This kind of distribution has the following density (Huber 1981): 
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where a is a robustness parameter, which usually takes values 1-3 (we use a=2), s is a scale parameter 

(analogous to standard deviation in Gaussian law), and β is normalising constant: 
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Maximum log-likelihood method for the model (12) leads to the following problem (with accuracy to 

an additive constant, which depends on a only): 

( )ä
−+

+=

=
10

0

))((log),(
Nt

ptt

tpscJ ε = −(N−p)⋅log(s) − ää
>ε≤ε

ε−ε
sa|)t(|sa|)t(|

2

2
|)t(|

s

a
)t(

s2

1
→ max c, s (13)

Solution of equation (13) can be obtained using an iterative method, which is a combination of a 

generalised Newton-Raphson method for vector c and a simple iteration method for s:
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where j=0, 1, … is the iteration index. Matrix A(c, s) and vector R(c, s) are computed as follows: 
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Function χ(c, s) is defined as: 
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Derivation of equation (17) is the following. If we consider the dependence of value (13) on parameter 

s, it could be noticed that the major part of this dependence is due to multipliers 1/(2s
2
) and a/s. If δs is 

a small variation of s, then variation of the sums: 
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multiplied by 1/(2s
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) and a/s, are much smaller than the variation of 1/(2s

2
) and a/s alone. Hence, for a 

small compute variation of J(c, s) with respect to δs, values (19) can be considered approximately 

constant, so: 
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Applying the condition for the maximum point, δJ(c, s)=0, results in one non-trivial solution for s in 

the form of a quadratic equation: αr
2 + γr −1 = 0, where r=1/s. This has a unique positive root:  

r = )2()4(
2 αγ−α+γ=χ = 1/s

However, the values of α and γ are dependent on s, so the last equation should be used in an iterative 

procedure to refine the value of s (the 2nd equation in (14)). It should be noted that if the value of the 

robustness parameter a is large, then γ=0 and, according to (20), s= α , which is the same as (11). 

The iterative procedure starts from an initial approximation, which is given by the least squares’ 

method (10) and (11). It was found that values converged reasonably rapidly within 5-10 iterations.  
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The order of the autoregression, p, and number m of harmonics in cyclic trend and their periods Ti

need to be set before estimating the parameters of the model (5). The autoregression order (p) was 

assumed to be equal to 2 for all cases as the minimum value for describing a wide range of types of 

stochastic oscillations (Box and Jenkins 1970). As for choice of values of m and periods Ti, two 

possible approaches were used.  

8.1 THE FIRST APPROACH – NUMBER OF HARMONICS AND THEIR PERIODS ARE 

DEFINED FROM FISHERY TIME SERIES THEMSELVES 

Let us define the time series of more than 64 samples as “long” and others as “short” time series data 

sets.

For “long” time series, the number of harmonics m and their periods Ti are defined from power 

spectra estimates of the appropriate series. The value of m varies from 1 to 6 and is usually equal to 3-

4. Values of periods Ti were taken as periods corresponded to the essential peak values of power 

spectra estimates. Although the time series are labelled as “long”, their lengths (from 67 up to 97 

samples) has rather few observations for applying common procedures of spectra estimates based on 

the Fourier transform. For such a short series, parametric methods are more advantageous in terms of 

frequency resolution (Marple 1987). We use the autoregression approximation for the series, which is 

the procedure estimating parameters of the following model: 
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where αj, j=1, …, q are autoregressive parameters, η(t) is the residual signal, which is assumed to be 

Gaussian white noise with zero mean and variance σ2. Equation (21) applies the designations for 

parameters of the AR(q)-model different from those for the AR(p)-model in equations (4) and (5), to 

stress that although these models are the same, they are used for distinctly different purposes. The AR-

members in formulae (4) and (5) are introduced to describe essential features of stochastic oscillations 

of the signal close to the deterministic cyclic trend. That is why we assumed a small order p=2. The 

AR(q)-model (21) is estimated to describe the spectral structure of the signal and for this purpose 

needs many more parameters (i.e. larger q). The larger the value of q, the more sensitive is the power 

spectra estimate. At the same time, increase in q results in the corresponding increase in the statistical 

fluctuations of the estimate. Thus, the choice of q is a compromise between sensitivity and stability. 

Usually, for short series q=N/5-N/3, where N is the length of time series. We used q=20. As soon as 

parameters of the model (21) are estimated, the power spectra estimate could be computed using the 

following equation: 
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where ω is a cyclic frequency: ω=2π/T, T = period, measured in units of sampling time interval (1 

year in our case), i = imaginary unit. AR-methods of power spectra estimates differ from each other by 

procedures of estimating parameters of the model (21). We use Burg’s method of maximum entropy as 

the most reliable and providing the best frequency resolution for short time series (Marple 1987).  

For the “short” series, we used the model (5) with p=2 and single harmonic cyclic trend: m=1.

Because of lack of samples in the series, we could not define the period value T1 from power spectra 

estimates. That is why it was defined by minimization of s2 after estimating the autoregression 

parameters a1 and a2, amplitudes B1, D1 and static shift constant G for different trial values of the 

period: s
2
(T1)→min. The last task of one-dimensional minimization is solved by a Golden Section 

method. This method will be defined as fitting an AR(2)-model with single cyclic trend with unknown 

period.
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After the model had been fitted, it was used to forecast the interval 1997-2056 (the near 60-year 

cycle). The procedure is described below. For some species, the forecasted time series took negative 

values during some future time intervals. In such cases, we interpret these as a negligible forecasted 

catch and substituted all negative values with zero.

8.2 THE SECOND APPROACH – AR(2)-MODEL WITH A SINGLE CYCLIC TREND WITH THE 

PERIOD LENGTH TAKEN FROM THE CLIMATIC TIME SERIES 

Earlier we used those periods in the equation (1), which follow naturally from the power spectra of the 

fishery time series, or those periods for which the cyclic trend is the best approximation to the data. 

However, such values of periods may be too sensitive to patterns in the data, which are not useful for 

forecasting. A long-term prediction based on the short-term behaviour of a signal is risky. The catch 

depends not only on natural processes in the ocean, but on economic politics of fishing-dependent 

countries, availability of fuel for fleets, power resources for fish processing, military and economic 

collisions in various regions of World ocean, etc. It is hardly possible to forecast all these (and other) 

factors for 10-20 years ahead. It is therefore prudent to confine the model to patterns, which can be 

established through independent means. 

From all the above, it may be concluded that the period lengths derived from the fishery time series 

and then used in model (5), are estimated and therefore depend on realization and length of the 

sample. At the same time, there are time series for global climatic processes which, although believed 

to be somewhat affected by human activities or changes in local measurement environments, are much 

less "human-dependent" than fish stocks are.  

 These are:

� mean global temperature - dT time series, 138 annual samples for 1861-1998; 

� atmospheric circulation index - ACI time series, 109 annual samples for 1891-1999; 

� length of day (i. e. Earth rotation velocity) - LOD time series , 151 annual samples for 1850-

2000.  

In addition, the following long-term series were analyzed: 

� Reconstructed air surface temperature for the period of 552-1975 AD by Greenland Ice Cores – 

1420 annual samples.  

� Reconstructed summer air surface temperature for the period of 500-1990 AD by Tree Rings of 

Scots pine –140 samples aggregated by a 10-year moving average.  

� Reconstructed sardine and anchovy population by analysis of varved sediment cores located in 

Californian upwelling for the period of 500-1950 AD – 145 samples aggregated by 10–years 

averaging.

Climatic processes definitely affect the productivity of major commercial marine species, although in 

an undefined way. Thus, we applied model (5) to make forecasts, but the periods were derived not 

only from fishery time series, but also from using the most significant climate cycles. Applying such 

cyclic trends to model (5) results in more reliable values for the modelled (and forecasted) period 

lengths.

The values of the period lengths derived from the climatic and geophysical (LOD) time series are the 

following:

- for dT - 55, 9, 5 years (evaluation from power spectrum estimate), 64 years (evaluation from single 

cyclic trend fitting with unknown period); 

- for ACI - 50, 19 years (evaluation from power spectrum estimate), 58. 5 years (evaluation from 

single cyclic trend fitting with unknown period); 

- for LOD - 64, 23 years (evaluation from power spectrum estimate).  

Thus, we examined the AR(2)-model with a single cyclic trend with the following modelled periods 

close to those derived form the above-mentioned climatic (geophysical) time series: 55, 60 and 65 

years.  
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8.3 FORECASTING 

To make the forecast, we applied a “bootstrap” method (Efron and Tibshirani 1986) to generate a 

probability distribution for the forecasts. The method consisted of generating a large number, M (we 

take M=1000), of independent stochastic artificial trajectories of the model (5), starting from the last 

sample of the series into the future time interval of the given length. These trajectories differ from 

each other only by independent realizations of the white noise component ε(t). All other parameters 

(including variance s2) are fixed as the estimates. Each trajectory presents a scenario for a future time 

series following model (5) drawn from a probability distribution based on the variation in data. Thus 

we have a “bundle” of M samples of generated trajectories which fill some “strip” on the plane of (t,

x). For each value of t in the future we can compute the average value among M values, corresponding 

to the different realisations and a variance (a width of the projected “strip”). These mean values 

constitute the forecasting curve, and the variance values reflect standard deviations bars for each 

future t value (for more explanation see Chapter 9) 

Besides forecasting, we also applied the same bootstrap technique for “forecasting the past” or 

"hindcasting" (see figures of Chapter 9, dashed line). In this case, M bootstrap trajectories were 

generated starting from the third rather than first data point of the series because the AR(2) used the 

first two values to initiate the autoregression. This procedure can be regarded as a test of the model by 

visual comparison between the mean values (i.e. expected from the model) and observed time series. It 

should be noticed, however, that such mean trajectory depends on the first two samples taken as initial 

values.  Other methods can also be used to test model (5), such as the usual statistical criteria to test 

whether the residual signal ε(t) is Gaussian white noise or more sophisticated tools such as the AIC 

(Akaike Informational Criterion) to decide upon which terms to include (Kashyap and Rao 1976).  
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