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Abstract

It is hypothesized that 680 million years ago solar mag-
netic storms producing ultraviolet and X-radiation affected
the earths ozone layer, which in turn influenced the varia-
tions in the silt deposition from glacial run-off. Preserved
as fossils discovered in South Australia, the striation widths
constitute clues to ancient solar activity. Utilizing this noisy
data, we have improved our ability to predict the modern
sunspot series. Inthis paper, we detail how the prediction re-
sults were achieved through training on the fossil data and
committee predictions with the sunspots. Through this ex-
ercise, we develop general methods for combining predic-
tors and also time series that may be related but separated
in time.

1. Introduction: Fossils and Sunspots

One of the most studied time series corresponds to the
record of sunspots dating back to the 1700’s. New insight

into this series comes from fossilized rocks formed during
the Precambrian period in South Australia [10]. Striation
widths in the fossils are believed to constitute over a thou-
sand year record of solar activity. The shape and spectral
characteristics are strikingly similar to the sunspot series.
Figure 1 shows the two series next to each other on the same
scale. Note that over 680 million years separate the two time
series. The goal of this work is to investigate the utilization
of the fossil data to improve the prediction of the modern
sunspots. In general, it provides a test case for investigat-
ing methods which relate multiple series that may be related
but also separated in time. In addition, simple yet effective
methods will also be devised for forming and training com-
mittees of predictors.

1.1. Benchmark results

Early attempts at sunspot prediction date back to 1927
with the seminal work of Yule [11]. More recent significant
results are summarized in Table 1.1. It has been customary
to use the dates 1700-1920 for training and then test on vari-
ous segments of years after 1920. Note that if we consider
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Figure 1. Fossil data and sunspot numbers.



performance on all test data up to the present, the simple
Threshold Autoregression (TAR) model of Tong and Lim
[6] still outperforms reported results utilizing various neu-
ral network techniques [5, 8].

| [[ 1700-1920(T) ][ 1921-55 | 1956-79 ]

Trivial 0292 0416 | 094
Lincar AR(12) 0.128 0.126 | 036
TAR 0.097 0097 | 028
WNet 0.082 0.086 | 035
SSNet - 0.077 -
| [ [ 1980-94 | 1921-94 |
Trivial 0785 | 0.661
Lincar AR(12) 0306 | 0238
TAR 0306 | 0.197
WNet 0313 | 0219
SSNet - -

Table 1. Benchmark single step MSE/1535
sunspot predictions. 1700-1920 used for
training (T), remaining data used for testing.
Trivial - prediction is previous value of series.
Linear AR(12) -12th order linear autoregres-
sion. TAR - Threshold Autoregressive (Tong
and Lim, 1980). WNet - feedforward neural
network using weight elimination (Weigend,
1990). SSNet - Soft weight sharing network
(Nowlan and Hinton, 1992). (WNet test for
1980-1994 were found by simulating networks
with the published parameters)

2. Data Representation

A more natural, though less conventional, representation
of both time series is achieved by “de-rectifying” the data
(see Figure 2). In other words, at every cycle minimum
the sign of the signal is switched. This is well motivated
since the approximate 11 year solar cycle actually consists
of a 22 year magnetic cycle that flips polarity every 11 years
(see Bracewell 1988 [1]). (Taking the absolute value of the
new representation returns us to the original data.) The de-
rectified time series appears more like a sum of sinusoids
with an apparent beat phenomena. In the fossil series, two
longer cycles (314 and 315 years) have also been observed.
These cycles act as an additive undulation and may explain
alternating strengths of successive 11 year solar cycles in
the modern data. For purposes of neural network training,
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Figure 2. De-rectification of sunspot numbers

3 Methodology

The methodology developed for combining fossil predic-
tions with sunspot predictions involves three steps:

1. Fossil Prediction: Train a neural network predictor on
the fossil data only. Test on sunspot data.

2. Committee Prediction: Form a committee prediction
using the fossil trained network with existing sunspot
predictors.

3. Committee Tuning: Tune the weights of the fossil net-
work on the sunspot data to improve the committee pre-
diction.

Each of these steps will be explained in turn below.
3.1. Fossil Prediction

The first step is to simply train a standard feedforward
network on the fossil data alone. A two layer network, with
11 lagged inputs and 6 hidden units, is trained with standard
backpropagation. (200 points of the 1336 point fossil se-
ries are reserved for cross-validation and model selection).
Next, this network is evaluated on the sunspot data. These
results are summarized in the table below. Note in this case
the standard 1700-1920 “training set” is actually a test set.
While the performance is poorer than some of the better pre-
dictors, results are actually comparable to the linear predic-
tor which was explicitly trained on the sunspots. This pro-
vides strong evidence to support the hypothesis that the fos-
sil data is an indication of solar activity'. As a control ex-

both data sets are normalized to match variances (over 1700-
1920).

1 As opposed to competing theories regarding tidal origins of the fossil
series [9].



periment, networks were also trained on pure sinusoids with
frequency equal to the fundamental sunspot cycle (and 1/3
the fundamental). The control networks evaluated on the
sunspot series (see Table 2) do not result in comparable per-
formance.

| [[ 1700-1920(T) || 1921-55 | 1956-79 ]

[ FNet || 0143 || 0158 | 037 |
Controll 0.317 0.401 0.98
Control3 1.23 1.89 3.72

| || || 1980-94| 1921-94 |

[ FNet | [ 0376 | 0269 |
Controll 0.865 0.674
Control3 4.64 3.00

Table 2. Fossil network single step MSE/1535
sunspot predictions.

3.2. Committee Prediction

The fossil network predictor was trained on only the fos-
sil data. Itis thus likely that the errors made in predicting the
sunspots will be different than the errors made by a network
that was trained on the sunspot data. This motivates the use
of a simple committee prediction as illustrated in the Figure
below.
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Figure 3. A simple committee prediction. The
committee output is the weighting of two pre-
dictors with weights chosen to be optimal as-
suming errors are orthogonal.

The committee prediction is given by the weighted sum
of two predictors.

Ye = afgfossil + asgsunspot (D

There is an extensive body of literature on various es-
tablished methods for choosing the weighting coefficients
for both regression and classification committees, including
work by Efron and Morris (1973), Jacobs and Jordan et. al.

| [[ 1700-1920(T) [ 1921-55 | 195679 |

WNet+Controll 0.088 0.082 0.32
TAR+Controll 0.100 0.098 0.28
TAR+WNet 0.081 0.075 0.27
FNet+WNet 0.084 0.078 0.26
FNet+TAR 0.094 0.107 0.28
FNet+TAR+WNet 0.082 0.078 0.25
| || || 1980-94 | 1921-94 \
WNet+Controll 0.25 0.190
TAR+Controll 0.25 0.187
TAR+WNet 0.238 0.172
FNet+WNet 0.208 0.161
FNet+TAR 0.310 0.202
FNet+TAR+WNet 0.203 0.159

Table 3. Single step MSE/1535 for committee
predictions.

(1991), Brieiman (1992), and Tresp and Taniguch (1995)
[3, 4, 2, 7]. Here we take a simple constant weighting ap-
proach where the coefficients are selected to be optimal such
that a; + ay = 1 under the assumption that the errors made
by each committee member are orthogonal. This leads to the
simple expressions

_ __ %
ay = o-? o and as = o-? o2 2)
where o-? and o2 correspond to the prediction error variance
from 1700-1920 for the fossil network and sunspot predic-
tor respectively. If the errors are orthogonal and equal then
the committee prediction error variance will be reduced by
a factor of two. (This can also be extended in a straight for-
ward manner to multiple member committees.)

While the variance based committee coefficients are sub-
optimal to the least-squares solution of the coefficients over
the training set, performance on the test set is observed to
be substantially better. Effectively, the non-negativity of
the coefficients insures that the committee prediction is al-
ways between the minimum and maximum of either com-
mittee member (as opposed to the least-squares solution
where the generalization performance may vary consider-
ably). We will also motivate the use of this committee
weighting scheme in the next section.

The results of forming the committee predictions are
summarized in Table 3. It is observed that all commit-
tees perform better than any single predictor. Committees
formed with the control network indicate a minor advan-
tage to including a network trained on only the fundamen-
tal frequency of the sunspot cycle. The best prediction is



achieved with the committee formed from the fossil network
plus TAR plus WNet. Over the complete test set (1921-
1994) the normalized MSE has been reduced by approxi-
mately 20% from the best single predictor.
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Figure 4. Typical illustration of committee
training. Note, there is an actual minimum of
the training set. This occurs when additional
minimization of the MSE (step 1) leads to in-
creased error correlations. At this point the
committee weighting coefficients found (step
2) are suboptimal and in turn tend to increase
the prediction error. This point is used as a
stopping criteria.

3.3. Committee Tuning

Up to this point, the weights of the fossil network have
never been optimized using the actual sunspot data. In the
final stage, we consider funing these weights to the sunspot
data. Starting with the fossil trained network weights, we
alternately perform stochastic gradient descent on the com-
mittee error (over one epoch) and reestimate the committee
weighting coefficients. This represents a new procedure for
training the weights in a committee, and is summarized be-
low:

1. Over one epoch

1920

r%i/n Z [afef(k) + ases(k‘)]z

k=1700

2. Reestimate a; and a,; based on new prediction errors.

3. Loop.

| [[ 1700-1920(T) [ 1921-55 | 195679 |

FNet+TAR+WNet 0.082 0.078 0.25
Tuned Committee 0.079 0.065 0.24

| Standard Dev. || 0.0005 || 0.0008 | 0.0047 \

| || || 1980-94 | 1921-94 |
FNet+TAR+WNet 0.203 0.159
Tuned Committee 0.188 0.148

| Standard Dev. || || 0.0045 | 0.0013 |

Table 4. Single step MSE/1535 for committee
prediction before and after tuning.

During minimization of the committee error, only the
weights W in the original fossil network are adjusted. While
the errors from the other committee predictors (TAR and
WNet) affect the optimization, the weights of these net-
works are kept fixed. Note this procedure requires only a
slight modification of the backpropagation algorithm.

Selecting the committee weighting coefficients in the
manner above is key to this algorithm. Had we used a least-
squares solution, then the committee could be viewed as one
large network where all parameters (coefficients and net-
work weights) are adjusted to minimize the same error. Ef-
fectively, we would simply be training a new network on the
data with no guarantee that individual committee members
act as actual predictors of the series. Our original assump-
tion that errors should be orthogonal would not hold.

The final results for the tuned committee is summarized
in Table 4. As can be seen, these figures represent the best
performance in all test sets (the standard deviation for the
results are also calculated by repeating the experiment 10
times). A typical learning curve where both the performance
of the training set and test set are monitored is illustrated in
Figure 4.

We can evaluate to what extent the weights of the original
fossil network have changed after committee tuning. The
average change in weight magnitude (¥ %{l?—”' )
is approximately 10 percent, which would indicate that the
network starts out at a near optimal solution. Only a few
hundred epochs through the training set were necessary un-
til a minimum is found. A slight variation involves adding
to the cost function the “weight-decay” like term A||W —
W/ossil||2 which explicitly keeps the weights 1V close to
W/essil - However, this does not appear necessary in this
experiment, as the committee training did not exhibit over-
fitting problems.



3.4. Minor variations to the methodology

Several variations are possible on the overall methodol-
ogy. For example, during the initial phase of training (step
1), various validation sets may be chosen to determine when
to stop training and avoid overfitting to the fossil data. Op-
tions include: 1) a short segment of fossil data (as reported
above), 2) the sunspot series from 1700-1920 (i.e. train
on fossil data, validate on sunspots), 3) the sunspot series
from 1700-1920 using the committee performance to vali-
date. While using committee validation leads to slightly bet-
ter performance for the untuned committee, the differences
in the final performance after tuning appear negligible.

4 Sunspot Only Training

Three factors appear to contribute to our final prediction
results: fossil data, de-rectified sunspot representation, and
committee predictions. Finally, we investigate to what ex-
tent the fossil data contributes to the improved performance.
To do this we simply train a committee with a new net-
work on the de-rectified sunspot data starting with random
weights (i.e., throw out the fossil trained weights and start
over).

The results of this experiment are summarized in Table
5 (TAR + WNet + De-rectified trained Net) and indicate
that performance is nearly as good as the committees using
the fossil data. This would support the value of our pro-
cedure for committee training itself. In this case, however,
the method is much more sensitive to early-stopping criteria
since we do not start out near a solution.

Note, if we use the standard representation for the
sunspots (not de-rectified) we do not show any improve-
ment. This would indicate that the de-rectified representa-
tion is also a key factor for this problem.

| [[ 1700-1920(T) || 1921-55 | 1956-79 |

Sunspot committee || 0.082 | 0066 | 026 |
| I [ 1980-94 | 192194 |
Sunspot committee || | 0200 | 0.156 ]

Table 5. Single step MSE/1535 for sunspot
only trained committee.

5. Conclusions

We cannot as yet draw definitive conclusions as to the re-
lationship between the fossil data and solar activity. How-
ever, using simple committees and committee training, we

were able to improve our ability to predict sunspots. Incor-
porating priors into the network by initially training on one
series and then tuning on a second, allows for combining
data which may be related but separated in time. In addi-
tion, we devised a general method for training committees of
networks which proved to be effective at improving predic-
tions (even without the explicit use of the fossil data). As to
the importance of predicting sunspots, recall that Skylab was
brought to an early demise in 1979 due to inadequately fore-
casting increased atmospheric drag accompanying a sunspot
maximum.
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