
Using climate to predict infectious disease outbreaks: a review 
 

 
 

WHO/SDE/OEH/04.01 
English only 

 
 
 
 
 
 
 
 
 
 
 

Using Climate to Predict 
Infectious Disease Outbreaks:  

A Review 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Communicable Diseases Surveillance and Response 
Protection of the Human Environment 

Roll Back Malaria  
Geneva 

2004 
 

 



Using climate to predict infectious disease outbreaks: a review 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Using climate to predict infectious disease outbreaks: a review 

 
© World Health Organization 2004 
 

All rights reserved. Publications of the World Health Organization can be obtained from Marketing 
and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland 
(tel: +41 22 791 2476; fax: +41 22 791 4857; email: bookorders@who.int). Requests for 
permission to reproduce or translate WHO publications – whether for sale or for noncommercial 
distribution – should be addressed to Publications, at the above address (fax: +41 22 791 4806; 
email: permissions@who.int).  

 
The designations employed and the presentation of the material in this publication do not imply the 
expression of any opinion whatsoever on the part of the World Health Organization concerning the 
legal status of any country, territory, city or area or of its authorities, or concerning the delimitation 
of its frontiers or boundaries. 
 
The mention of specific companies or of certain manufacturers’ products does not imply that they 
are endorsed or recommended by the World Health Organization in preference to others of a 
similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary 
products are distinguished by initial capital letters. 
 
The World Health Organization does not warrant that the information contained in this publication 
is complete and correct and shall not be liable for any damages incurred as a result of its use. 

 
 

mailto:bookorders@who.int


Using climate to predict infectious disease outbreaks: a review 
 

 
 

Table of contents 
 
Preface            4 
Acknowledgements          6 
List of abbreviations          7 
Executive summary          8 
1.  Introduction         10 
2.  Historical early warning systems       12 
3.  Conceptual framework for developing climate-based EWS  
     for infectious diseases        14 

3.1  Preliminary phases       14 
3.1.1   Evaluating epidemic potential     14 
3.1.2   Identifying the geographical location of epidemic areas 14 
3.1.3   Identifying climatic and non-climatic disease risk factors 15 
3.1.4  Quantifying links between climate variability and disease 

 outbreaks: constructing predictive models  15 
3.2  Early warning systems       16 

3.2.1   Disease surveillance      17 
3.2.2   Monitoring disease risk factors    17 
3.2.3   Model forecasts      18 

3.3  Response phase        19 
3.4  Assessment/evaluation phase      19 

4.  Identifying candidate diseases for early warning systems    21 
5.  Climate-based early warning systems for infectious diseases   27 

5.1    Cholera         27 
5.2    Malaria         27 
5.3    Meningococcal meningitis      29 
5.4    Dengue/dengue haemorrhagic fever     30 
5.5    African trypanosomiasis      31 
5.6    Yellow fever        31 
5.7    Japanese and St. Louis encephalitis     31 
5.8    Rift Valley fever       32 
5.9    Leishmaniasis        33 
5.10  West Nile virus        33 
5.11  Ross River virus and Murray Valley encephalitis   34 
5.12  Influenza        35 

6.  General discussion and conclusions      37 
7.  Bibliography         43 
Appendix 1          51 
 



Using climate to predict infectious disease outbreaks: a review 
 

 

Preface 
 
This document was written as guidance for the Department of Communicable Diseases 
Surveillance and Response (CSR), the Department of Protection of the Human Environment 
(PHE), and the Roll Back Malaria Department (RBM) on the potential of early warning systems 
based on climate variations to enhance global surveillance and response to epidemic-prone 
diseases. 
 
CSR has a unique mandate to lead international efforts to achieve global health security.  Its 
strategy has three components: to improve preparedness of member states by strengthening 
national surveillance and response systems; to contain known risks; and to respond to unexpected 
health events.  PHE aims to achieve safe, sustainable and health-enhancing human environments, 
protected from biological, chemical and physical hazards and secure from the adverse effects of 
global and local environmental threats. Founded in 1998, Roll Back Malaria aims to halve the 
world's malaria burden by 2010. Its four main technical strategies are: prompt access to treatment, 
especially for young children; prevention and control of malaria in pregnant women; vector 
control; and prevention and containment of epidemics. 
 
Knowledge of the interactions between climate and health date back to the time of Aristotle, but 
our understanding of this subject has recently progressed rapidly as technology has become more 
advanced.  At the same time the ability to forecast weather (in terms of both accuracy and lead-
times) has greatly improved in recent years, especially with the use of remote sensing. The 
increased accuracy of climate predictions, and improving understanding of interactions between 
weather and infectious disease, has motivated attempts to develop models which predict changes 
in the incidence of epidemic-prone infectious diseases.  Such models are designed to provide early 
warning of impending  epidemics  which, if  accurate, would be invaluable for epidemic 
preparedness and prevention. 
 
This document evaluates the current and future potential of climate-based disease early warning as 
a means of improving preparedness for, and response to, epidemics.  Based on the history of EWS 
development to date, the authors develop a conceptual framework for constructing and evaluating 
climate-based EWS. They identify the climate-sensitive diseases of major public health 
importance and review the current state of the art in climate-based modelling of these diseases, as 
well as future requirements and recommendations. 
 
This document lays the foundation for future development of EWS that capitalize on new 
knowledge about the interaction between climate and infectious diseases, as well as improved 
capacity for forecasting climate.  No large scale EWS is yet in place but for some diseases, such as 
malaria and Rift Valley fever, early warnings based on climatic conditions are beginning to be 
used in selected locations to alert ministries of health to the potential for increased risk of 
outbreaks and to improve epidemic preparedness.  However, the use of such models is just 
beginning, and experience with their use is limited. 
 
A number of models are in the pipeline, although more work is required before climate-based 
models can realize their full potential.  This includes: 
 
1. Developing and strengthening disease surveillance systems to produce the high-quality, long-

term data needed for model development and testing. 
 
2. Developing standard terminology and criteria for evaluating the accuracy of such models. 
 
3. Inclusion of non-climatic influences in the models. 
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4. Making the models relevant to particular response decisions and to the particular needs of 

policy-makers. 
 
5. Cost effectiveness analyses. 
 
This joint CSR, PHE and RBM publication was prepared with the understanding that  climate-
based EWS, when fully developed, do have the potential to provide increased lead-times in which 
to implement epidemic prevention and/or control activities.  Therefore their development should 
be encouraged, and both positive and negative experience of using such systems should be 
documented.  It is only with experience that such systems will become useful tools. 
 
 
 

Guenael Rodier, 
Director 
Department of Communicable 
Disease Surveillance and 
Response 
World Health Organization 

Margaret Chan, 
Director 
Department of Protection of the 
Human Environment 
World Health Organization 

Fatoumata Nafo-Traoré, 
Director 
Roll Back Malaria Department 
World Health Organization 
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Executive summary 
 
It is commonly accepted that climate plays a role 
in the transmission of many infectious diseases, 
of which some are among the most important 
causes of mortality and morbidity in developing 
countries.  Often these diseases occur as 
epidemics which may be triggered by variability 
in climatic conditions that favour higher 
transmission rates.  With increasing demand for 
operational disease early warning systems 
(EWS), recent advances in the availability of 
climate and environmental data and increased use 
of geographical information systems (GIS) and 
remote sensing make climate-based EWS 
increasingly feasible from a technical point of 
view. 
 
This report presents a framework for developing 
disease EWS and, following steps within it, 
reviews the degree to which individual infectious 
diseases are sensitive to climate variability.  This 
is used as a basis for identifying diseases for 
which climate-based prediction offers most 
potential for disease control.  Subsequent sections 
review the current state of development of EWS 
for specific diseases and assess their likelihood of 
success. 
 
This report demonstrates that there is 
considerable on-going research activity    
identifying climate-epidemic links.  Of the 18 
diseases meeting defined criteria for the potential 
for climate-based EWS, few (African 
trypanosomiasis, leishmaniasis, yellow fever and 
Murray Valley encephalitis) are not associated 
with some sort of EWS development activity.  
For others (St. Louis encephalitis and West Nile 
virus in the United States of America) operational 
and effective warning systems have been 
developed which rely solely on viral activity 
detection (also the strategy  employed for early 
detection and prediction of influenza outbreaks).  
It remains unclear whether the addition of 
climatic predictors would improve the predictive 
accuracy or lead-time of these systems.  For the 
remaining diseases (cholera, malaria, meningitis, 
dengue, Japanese encephalitis, Rift Valley fever 
and Ross River virus), research projects have 
demonstrated a temporal link between climatic 
factors and variations in disease rates.  In some of 
these cases the power to predict epidemics has 
been tested, although the tests are preliminary 
and usually based on either limited data or 

inadequate description of the methods used.  
From the published literature so far, there is little 
evidence to suggest that any of these systems 
currently are being used to influence disease 
control decisions. 
 
This report suggests a number of likely 
explanations for this: 
 
1. Affordable and accessible data and analytical 

tools have become widespread only recently, 
so that the field is at a relatively early stage 
of development.  Many more studies should 
be available in the next two to three years as 
systems are completed and tested in other 
locations. 

 
2. Few studies have been published, so there are 

no generally agreed criteria for assessing 
predictive accuracy (for example, it is seldom 
clear how an epidemic year is defined).  As a 
consequence it is often difficult to judge the 
utility of existing systems. 

 
3. Most research projects have had relatively 

limited resources and  therefore not been 
tested in locations outside the original study 
area. 

 
4. Most studies in this area focus solely on 

climatic factors and do not explicitly test 
other explanations for variations in disease 
rates through time. 

 
5. Many studies are undertaken as ‘pure 

research’ therefore neither the extent to 
which they address specific control decisions 
nor their utility for planning public health 
interventions is clear.   

 
This report concludes that a number of steps 
could be taken to begin to address these issues.  
These include: 
 
1. Maintaining and strengthening disease 

surveillance systems for monitoring 
incidence of epidemic diseases.  High 
quality, long-term disease data are essential 
for generating and refining models relating 
climate to infectious disease; lack of disease 
data is a more common limiting factor than 
lack of climate data.  In some cases existing 
approaches to surveillance may generate 
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disease data appropriate for use within an 
EWS – in others it may be necessary to either 
modify existing systems or build completely 
new systems.  The introduction of computer 
hardware and software at appropriate levels 
within the surveillance system may facilitate 
timely collation and analysis of incoming 
disease data.  Widespread introduction of 
GIS tools, the WHO Healthmapper software 
for example, may allow surveillance data to 
be stored and accessed in a disaggregated 
form, allowing detailed analysis of spatial 
and temporal distributions.  Consideration 
should be given to integrating such 
monitoring into single systems (e.g. by 
combining disease and famine EWS) to 
facilitate data access and maximize 
comparability. 

 
2. Clarifying definitions of terminology and 

methods for assessing predictive accuracy.  
For instance, the definition of an epidemic 
(i.e. number of cases in a specific population 
over a specified time) should be determined 
before the modelling process is carried out.  
The accuracy of the system could be 
measured using standard epidemiological 
measures (e.g. sensitivity, specificity, 
positive and negative predictive value, and 
kappa statistics).  The accuracy of predictive 
models for incidence numbers or rates could 
be measured as the root mean square error, or 
as correlation coefficients between observed 
and predicted case numbers – always against 
independent data (i.e. not included in the 
original model building process). 

 

3. Testing for non-climatic influences (e.g. 
population immunity, migration rates, drug 
resistance etc.) on disease fluctuations is 
desirable.  This should avoid disease 
variations being attributed incorrectly to 
climate.  Theoretically, measurements of all 
relevant factors for which data are available 
should allow more accurate predictive 
models, although this is not always feasible 
in practice. 

 
4. Including health policy-makers in all stages 

of system design (e.g. involvement of local 
control personnel in defining an epidemic 
and determining the most appropriate 
warning lead-time).  These discussions 
should relate to specific control decisions and 
consider local (particularly resource) 
constraints on the implementation of the 
EWS.  Experience with famine EWS in the 
1990s showed the effectiveness of 
predictions to depend less on their accuracy, 
more on political factors. 

 
5. Basing final recommendations on EWS 

implementation on thorough cost-
effectiveness analysis.  This should measure 
the value of collecting data on the various 
climatic and non-climatic influences for 
predicting the occurrence, timing and scale of 
epidemics.  In some situations, for example, 
adding climatic information to an EWS may 
give only a small increase in predictive 
power and therefore effectiveness of control, 
however if sufficiently cheap and simple to 
collect it justifies inclusion.  Economic 
evaluation of EWS should recognise the 
opportunity costs involved in diverting scarce 
resources from other strata of disease 
transmission. 
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1.  Introduction 
 
Early identification of an infectious disease 
outbreak is an important first step towards 
implementing effective disease interventions and 
reducing resulting mortality and morbidity in 
human populations.  In the majority of cases, 
however, epidemics are generally well under way 
before authorities are notified and able to control 
the epidemic or mitigate its effects.   
 
Both geographical and seasonal distributions of 
many infectious diseases are linked to climate, 
therefore the possibility of using seasonal climate 
forecasts as predictive indicators in disease early 
warning systems (EWS) has long been a focus of 
interest.  During the 1990s, however, a number of 
factors led to increased activity in this field: 
significant advances in data availability, epide-
miological modelling and information technology, 
and the implementation of successful EWS outside 
the health sector.  In addition, convincing evidence 
that anthropogenic influences are causing the 
world’s climate to change has provided an added 
incentive to improve understanding of climate-
disease interactions. Projections indicate an 
approximate average global warming of 2-5 ºC 
within the twenty-first century (IPCC 2001), 
accompanied by an increase in the frequency of 
extreme and anomalous weather events such as 
heat-waves, floods and droughts (McMichael 
2001).  It has been widely speculated that these 
projected changes may have significant impacts on 
the timing and severity of infectious disease 
outbreaks. 
 
A range of infectious (particularly vector-borne) 
diseases are geographically and temporally limited 
by environmental variables such as climate and 
vegetation patterns.  Climatic factors’ impact on 
infectious diseases can be divided into three main 
effects: on human behaviour; on the disease 
pathogen; on the disease vector, where relevant: 

 
Human behaviour 

Climate variability directly influences human 
behaviour, which in turn can determine disease 
transmission patterns. The strong seasonal pattern 
of influenza infections in Europe, for example, is 
thought to reflect humans’ increased tendency to 
spend more time indoors during winter months 
(Halstead 1996). Also, the peak of gastro-enteritis  

 
in temperate developed countries during summer 
months can be related to changes in human 
behaviour (e.g. more picnics and barbecues) 
associated with warmer temperatures (Altekruse 
et al. 1998). 
 

Disease pathogens 
For infectious diseases where the pathogen 
replicates outside the final host (i.e. in the 
environment or an intermediate host or vector), 
climate factors can have a direct impact on the 
development of the pathogen.  Most viruses, 
bacteria and parasites do not replicate below a 
certain temperature threshold (e.g. 18 ºC for the 
malaria parasite Plasmodium falciparum and 20 
ºC for the Japanese encephalitis virus; 
Macdonald 1957, Mellor and Leake 2000).  
Ambient temperature increases above this 
threshold will shorten the development time of 
the pathogen. 
 

Disease vectors 
The geographical distribution and development 
rate of insect vectors is strongly related to 
temperature, rainfall and humidity.  A rise in 
temperature accelerates the insect metabolic rate, 
increases egg production and makes blood 
feeding more frequent (e.g. Mellor and Leake 
2000).  The influence of rainfall also is 
significant, although less easy to predict.  
Rainfall has an indirect effect on vector longevity 
through its effect on humidity; relatively wet 
conditions may create favourable insect habitats, 
thereby increasing the geographical distribution 
and seasonal abundance of disease vectors.  In 
other cases excess rainfall may have catastrophic 
effects on local vector populations if flooding 
washes away breeding sites. 
 
Even where linkages between disease and climate 
are relatively strong, other non-climatic factors 
also may have a significant impact on the timing 
and severity of disease outbreaks.  One such 
factor is population vulnerability (e.g. influenced 
by herd immunity and malnutrition). In Kenya, 
for example, Shanks et al. (2000) have argued 
that malaria epidemics in the western highlands 
may occur only when the non-immune proportion 
of the population has grown by recovery, births 
and immigration because local children surviving 
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to adulthood develop immunity. When developing 
an EWS, factors influencing the population 
dynamics of the pathogen (e.g. drug resistance) 
also may have to be considered. Human-related 
factors such as population movements and 
agricultural practices also can have considerable 
impact on disease patterns at various spatial scales. 
For example, the prevalence of malaria and 
leishmaniasis sometimes is strongly related to 
irrigation schemes and deforestation (e.g. 
Campbell-Lendrum et al. 2001, Guthmann et al. 
2002). 

Arguably, the importance of non-climatic factors 
should be assessed and compared to that of 
climate variability in order to justify the 
development of climate-based EWS for 
infectious diseases. The relative contributions of 
climatic and non-climatic risk factors in 
explaining temporal variability in disease 
incidence will, to a large degree, determine the 
practical utility of a climate-based EWS. 
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2.  Historical early warning systems  
 
The use of climate data for predicting outbreaks 
of infectious diseases dates back to work by Gill 
and others in India. Gill (1923) developed an 
EWS for malaria based on rainfall, prevalence of 
enlarged spleens, economic conditions (price of 
food grains) and epidemic potential (the 
coefficient of variation of fever mortality during 
October for the period 1828-1921).  A response 
mechanism also existed which could be initiated 
within time to avert the worst impact. The model 
itself was used to predict epidemics from 1921-
1942 in 29 districts of the Punjab; although the 
author believed that warnings in the first two 
years were issued too late (both in late September 
when the malaria season occurs in October).  
Formal assessment of the model’s predictions for 
1923-42 indicated that accuracy was significantly 
better than would have been obtained by chance 
(Swaroop 1949). However, the model’s exact 
accuracy is difficult to assess as there is no 
indication of the number of epidemics correctly 
predicted. Gill’s approach demonstrates how an 
EWS can be constructed from relatively few vari-
ables although this method can be very 
demanding in data requirements. Another 
problem with this analysis is that there is no 
indication of how an epidemic was defined. 
 
Rogers (1923, 1925, 1926) described associations 
between climatic variables such as temperature, 
rainfall, humidity and winds, and the incidence of 
diseases such as pneumonia, smallpox, leprosy 
and tuberculosis in India and elsewhere.  
Although Rogers’ inferences were made on a 
visual rather than statistical basis, these studies 
highlighted the potential utility of long-term 
datasets. The leprosy data used, for example, 
represented 30 years of annual incidence data for 
the whole of India in combination with 
meteorological records from over 2 000 sites 
(Rogers 1923). Based on his conclusions, it was 
recommended that climatic variables be used for 
forecasting epidemics of TB, smallpox and 
pneumonia and for mapping worldwide incidence 
of leprosy. However, such systems were never 
implemented on a wide scale. 
 
These historical studies demonstrate the 
usefulness of long-term historical or current  
datasets in predicting present and future patterns 
of disease. They also suggest that it is possible to 

 
 construct an EWS based on overall associations 
of climate variables with disease incidence, 
without necessarily relying on complete 
knowledge of the effects of climate on all 
components of the disease transmission cycle. 
 
The health sector is now in a much stronger 
position to explore the utility of EWS.  Firstly, 
standardization of disease diagnosis and 
networked computerized reporting potentially 
allow accurate and rapid monitoring of disease 
incidence (although undermined by patchy and 
often deteriorating surveillance systems in many 
parts of the world).  Secondly, a wide variety of 
environmental monitoring data from satellite and 
ground-based systems are easily accessible at no 
or low cost, facilitating the investigation of 
potential links to climate.  Thirdly, advances in 
statistical and epidemiological modelling allow 
apparent associations to be tested explicitly, 
rather than relying on visual inspection. 
 
Despite the renewed interest in EWS within the 
health sector, there has been little operational 
activity to date. This contrasts with other sectors: 
most notably, a large amount of research and 
development effort has been focused on the 
development of famine early warning systems 
(FEWS) following widespread famine in Africa 
in the early 1980s. A FEWS  has been defined by 
Davies et al. (1991) as “a system of data 
collection to monitor people’s access to food, in 
order to provide timely notice when a food crisis 
threatens and, thus, to elicit appropriate 
response.” 
 
FEWS operate at various geographical levels 
(Table 1), with food availability being predicted 
using risk indicators such as market export 
prices, pest infestations, war and conflict, 
nutritional indices and climate and vegetation 
variables. The Food and Agriculture 
Organization of the United Nations (FAO) has 
established the Africa Real Time Environmental 
Monitoring Information System (ARTEMIS) 
which uses Meteosat remotely sensed images to 
monitor crop seasons and rainfall. These can be 
used to assess environmental conditions during 
the current growing season relative to previous  
years. 
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Table 1.  Examples of FEWS and their geographical coverage. 
 

Level Early warning system 

Global Global Information and Early Warning System 
(GIEWS) 

Regional Southern African Development Community (SADC) 
 Comité Permanent Interetats de Lutte contre la 

Sécheresse dans le Sahel (CILSS) 
National USAID Famine early warning system information 

network (FEWS NET) 
Sub-national Save the Children Fund (SCF-UK), Darfur, Sudan 
Local Suivi Alimentaire Delta Seno (SADS), Mopti, Mali 

 
 
A critical point in Davies’ definition of a FEWS is 
the inclusion of an ‘appropriate response’, which 
suggests that an EWS should be part of a wider, 
integrated system designed to respond to a crisis.  
The importance of a response will be discussed 
below with particular reference to infectious 
diseases, but it is the phase following the early 
warning (i.e. mitigation and response) which so far 
has been crucial in determining the success of  
FEWS. The message from numerous studies is that 
EWS are of little use if the capacity to respond is 
not present – i.e. the resources to react promptly 
and effectively must be included within the EWS.  
For instance, the 1990-91 drought in southern 
Africa was the worst of the twentieth century, 
placing approximately 40 million people at risk of 
starvation.  A major famine was averted due to 
both the SADC Regional EWS warning in March 
1991 of a substantial grain shortfall and extensive 
national and international government involvement 
in ordering and delivering food imports. 
 
Experience elsewhere has shown that where 
decisions are predicated on signs that a crisis is 
already underway, relief is not delivered on time – 
as was the case in Sudan and Chad 1990-91.   

 
Additionally, political issues can have a 
significant impact on the timing of the 
response.  In Ethiopia, for example, early 
warning information from national systems was 
ignored for years due to political instability 
(Buchanan-Smith et al. 1995). 
 
In various instances the success of the FEWS 
approach has been limited by a number of 
organizational problems, the implications of 
which should not be overlooked in the health 
sector: 
 
1. Climate is only one of many determinants 

which could be included in an EWS. 
 
2. Early warning of a crisis is no guarantee of 

prevention. 
 
3. Interest in preventing a crisis is part of a 

wider political, economic and social 
agenda.  In many cases governments are not 
directly accountable to vulnerable popu-
lations. 

 
4. In most cases, the purpose of early warning 

is undermined as relief arrives too late due 
to poor organization at donor-level. 
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3.  Conceptual framework for developing climate-based 
EWS for infectious disease 
 
Attempts to initiate EWS development within a 
specific country should be preceded by a 
decision-making process which identifies the 
principal disease(s) of interest. This will depend 
on the burden of various infectious diseases in 
the region and on levels of national and 
international funding available for disease-
specific activities. 
 
On the basis of an extensive literature review, the 
following framework for constructing climate-
based infectious disease EWS is proposed 
(Figure 1). The framework  comprises four 
preliminary phases, the EWS itself, and the 
response and assessment phases. 
 
 
3.1. Preliminary phases 
 
3.1.1 Evaluating epidemic potential 
 
An EWS for an infectious disease should be 
developed only if the disease is epidemic-prone.  
Before assessing the epidemic potential of a 
disease, the word epidemic should be defined 
(Last 2001):  
 
The occurrence in a community or region of 
cases of an illness, specific health-related 
behaviour, or other health-related events clearly 
in excess of normal expectancy.  The community 
or region and the period in which the cases occur 
are specified precisely.  The number of cases 
indicating the presence of an epidemic varies 
according to the agent, size, and type of 
population exposed; previous experience or lack 
of exposure to the disease; and time and place of 
occurrence. 
 
‘Outbreak’ is also commonly used, and is defined 
by Last (2001) as “an epidemic limited to 
localized increase in the incidence of a disease, 
e.g. in a village, town or closed institution.” 
 
If it is assumed that outbreaks and epidemics 
differ only in the scale of their effects rather than 
their aetiology, the concept of climate-based 
EWS will be applicable equally to both.  
 

 
Generally, a disease that exhibits large inter-
annual variability can be considered as epidemic. 
 
The transmission of many infectious diseases 
varies markedly by season. For example, the 
majority of influenza outbreaks in the northern 
hemisphere occur in mid to late winter (WHO 
2000) while, even in relatively stable trans-
mission areas, peak malaria transmission 
generally follows periods of heavy rain 
(Macdonald 1957). Where disease is present in 
an area, fluctuations in its incidence are 
considered epidemics only if the number of cases 
exceeds a certain threshold. A commonly used 
definition of an outbreak is a situation where 
reported disease cases exceed a threshold of 1.96 
multiplied by the standard deviation of the mean 
for at least two weeks (Snacken et al. 1992).  For 
influenza, the duration of an epidemic also has 
been defined as the number of weeks when virus 
has been isolated from at least 10% of samples 
(Snacken et al. 1992). In all cases, an epidemic is 
defined best by examining continuous long-term 
datasets, therefore setting up surveillance centres 
is an important preliminary requirement.   
 
 
3.1.2 Identifying the geographical 
location of epidemic areas 
 
Even if an infectious disease is widespread 
throughout a country or entire region, 
geographically the risk of epidemics is not equal 
at all locations and will reflect, inter alia, the 
distribution and behaviour of disease vectors and 
hosts. Geographical variation in risk of epidemics 
is widely acknowledged, but epidemic-prone 
areas are seldom defined formally. This is due 
partly to the difficulties in defining epidemics, 
partly to lack of long-term surveillance data and 
changing epidemiology of diseases over time. 
For example, malaria transmission in many 
lowland areas of Africa often is characterized as 
holoendemic, with year round transmission, 
while neighbouring regions at higher altitude are 
considered to be epidemic-prone. In these areas, 
environmental conditions (presumably tempe-
rature) are on average less favourable, and 
transmission occurs in the form of epidemics 
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only on occasions when changes in 
environmental conditions and/or population 
immunity create permissive conditions. However, 
the difficulties in characterization are shown by a 
recent study by Hay et al. (2002a). This showed 
no evidence of greater instability in transmission 
in three study sites with altitudes over 1 600 m, 
than occurred  in low altitude areas.   
 
When testing research hypotheses it is important 
to apply consistent definitions in order to identify 
epidemic areas. Conversely, to improve public 
health this may be less important than 
consideration of whether the pattern of 
transmission in a particular area is sufficiently 
different to require a qualitatively distinct type of 
operational response. 
 
 
3.1.3 Identifying climatic and non-
climatic disease risk factors 
 
Also known as risk assessment or modelling, this 
phase provides a vital input to EWS 
development. An extensive number of studies 
have been undertaken to identify environmental 
risk factors, including climate (see section 5).  
There are two main approaches: statistical and 
biological modelling. Statistical models are used 
to identify the direct statistical correlations 
between predictor (e.g. climate) variables and the 
outcome of interest (e.g. disease incidence). 
Biological models contain complete re-
presentations of climate's effects on the 
population dynamics of pathogens and vectors. 
The majority of past studies have used statistical 
modelling of locality-specific historical disease 
measures and/or vector distributions. Biological 
models potentially offer greater insights into the 
mechanisms driving variation in disease 
incidence but require more extensive 
understanding of climatic effects on all aspects of 
pathogen and vector dynamics.  They therefore 
have been applied on very few occasions (e.g. 
Randolph and Rogers 1997). 
 
Whichever modelling approach is used, it is 
important to take account of non-climatic factors.  
These include indicators of the vulnerability of 
populations to disease outbreaks such as (in the 
case of malaria) low immunity, high prevalence 
of HIV, malnutrition, drug and insecticide 
resistance (WHO 2001). Failure to take account 
of such influences can lead to either variation in 

disease incidence being incorrectly attributed to 
climate effects and/or poor predictive accuracy. 
 
 
3.1.4  Quantifying the link between 
climate variability and disease 
outbreaks; constructing predictive 
models 
 
The relationship between disease incidence and 
the climate factors identified in section 3.1.3 can 
be quantified in a statistical or biological model 
that may subsequently form the basis of future 
predictions of disease outbreaks. Before this can 
be initiated, it is necessary to ensure that both 
disease and explanatory data are available at 
appropriate spatial and temporal resolutions and 
for a sufficient time- frame. 
 
Climate data for use in EWS are available in two 
forms: direct, ground-based measurements and 
surrogate measures derived by remote sensing. 
Usually ground-based data are measured at 
standard synoptic weather stations. They have the 
advantage of being accurate, direct measurements 
of meteorological conditions – but these data will 
be representative only of a small area in the 
vicinity of the station itself. If the area of interest 
does not contain meteorological stations, the use 
of ground-based data depends on appropriate 
extrapolation methods being applied to the data. 
 
The use of satellite remote sensing data obviates 
the need for interpolation, as measurements are 
taken repeatedly for all locations.  Raw remote 
sensing data can be transformed to provide a 
number of indices that constitute proxies for 
standard meteorological variables (Hay et al. 
1996; Hay and Lennon 1999). Data from the 
Advanced Very High Resolution Radio-meter 
(AVHRR) sensor on board National Oceanic and 
Atmospheric Administration (NOAA) satellites, 
for example, can be used to provide daily data at 
up to 1.1 km spatial resolution for land surface 
temperature, as well as an assessment of 
vegetation status (greenness) through the 
normalized difference vegetation index (NDVI). 
The AVHRR data archive goes back as far as 
1981. Meteosat, a geostationary satellite operated 
by EUMETSAT, provides information on cloud-
top temperatures that has been used to construct a 
proxy variable for rainfall (cold cloud duration or 
CCD). For Africa, NOAA’s Climate Prediction 
Center (CPC) produces 10 day estimates of 
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rainfall based on CCD and these, together with 
NDVI, are disseminated free of charge through 
the Africa Data Dissemination Service1. Software 
for extracting and analysing these data for 
specific localities (WinDisp) also is available as 
freeware.  CCD data go back to 1988, although 
CPC rainfall estimates are available only from 
1995. 
 
The analytical steps involved in quantifying 
climate-disease links can be separated into four 
main steps: 
 
1. Fitting trend lines and sine-cosine waves (or 
similar) to remove long-term trends and seasonal 
variation from outcome and predictor variables. 
 
2. Testing for correlations between climate 
variability and variability in the outcome 
variable. 
 
3. Using the derived equations to make 
predictions for subsequent time points not 
included in the original model. 
 
4. Measuring levels of agreement between 
predictors and outcomes. 
 
Quantifying the relationship between climate 
parameters and the occurrence of infectious 
diseases and/or their vectors in order to predict 
geographical and temporal patterns of disease has 
been attempted numerous times (see sections 2 
and 5). Although these predictions allow us to 
map disease and vector ranges, the majority are 
not EWS, either because they aim to make spatial 
rather than temporal predictions (i.e. predict 
disease rates in locations that have not previously 
been surveyed), or because they are used to 
explore possible effects of long-term changes in 
climate over decades, rather than for the next few 
weeks or months.   
 
For EWS the specific analytical methods used, 
and associated accuracy measures, depend on the 
specific purpose. For example, one major aim of 
EWS is to predict the likelihood of an epidemic 
(i.e. whether a pre-defined threshold of incidence 
will be exceeded). For this purpose it is 
appropriate to use techniques for predicting a 
binary outcome, such as logistic regression or 
discriminant analysis, with climatic and non-
climatic data as the predictor variables and the 
                                                 
1  http://edcsnw4.cr.usgs.gov/adds/ 

occurrence or non-occurrence of an epidemic as 
the outcome. Various measurements can be used 
to represent different aspects of predictive 
accuracy. These include the overall proportion of 
correct predictions, the sensitivity (proportion of 
epidemics correctly predicted), specificity (pro-
portion of non-epidemics correctly predicted), 
positive predictive value (proportion of 
predictions of an epidemic that were correct), 
negative predictive value (proportion of 
predictions of non-epidemics that were correct), 
and kappa statistics, a measure of increased 
predictive accuracy above that expected by 
chance alone (Brooker et al. 2002a). 
 
Another major aim of EWS is to predict not only 
the occurrence, but also the size of an epidemic. 
In this case, it is appropriate to use regression 
techniques with a continuous outcome, such as 
traditional linear and non-linear regression, or 
more complex regression techniques such as 
ARIMA (autoregressive-moving average) models 
that incorporate trends and temporal 
autocorrelation into a single model. In this case, 
predictive accuracy can be represented by 
comparing the magnitude of the observed and 
predicted epidemic, using the root mean square 
error, or as correlation coefficients between 
observed and predicted case numbers (Abeku et 
al. 2002). 
 
In either case, model accuracy should be assessed 
against independent data (i.e. not included in the 
original model building process) to give an 
accurate replication of an attempt to predict a 
future epidemic.  Using the same data to both 
build and test a model will tend to exaggerate 
predictive accuracy.   
 
 
3.2. Early warning systems 
 
An EWS encompasses not only predictions of 
disease in time and space but also active disease 
surveillance and a pre-determined set of 
responses. The distinction between prediction 
and early warning must be clearly defined: early 
warning is prediction but not all prediction is 
early warning. In the context of this report, early 
warnings are considered to come from both 
model predictions and disease surveillance (i.e. 
early detection), and include consideration of 
operational conditions and responses. 
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3.2.1 Disease surveillance 
 
Disease surveillance provides a means of 
monitoring disease incidence over time and, 
depending on the nature of the system, may be an 
appropriate instrument for detecting unusual 
patterns among incidence data. Strictly speaking, 
disease surveillance does not constitute early 
warning, even where surveillance is carried out 
within a specially designed network of sentinel 
sites. Surveillance provides a means of detecting 
rather than predicting the onset of an epidemic 
(there is therefore no lead-time as such). 
However, a properly designed system should 
bring forward significantly the point of 
intervention, thereby increasing the chances of 
intervention assisting disease control. As a means 
of validating disease predictions produced by 
climate-based models surveillance data constitute 
an integral part of any fully-fledged EWS.  In 
most cases, the existence of accurate, validated 
predictive models depends on the availability of 
historical surveillance data. 
 
An important first step in EWS development at 
national level is to assess current approaches to 
disease surveillance and the quality, quantity and 
completeness of associated disease data. In many 
cases – and especially for notifiable diseases in 
well resourced health systems – existing disease 
data may be suitable for model development and 
the system itself quite appropriate for epidemic 
early detection.  In other situations existing 
systems may need extensive modification, either 
in the way in which disease data are collected 
(e.g. diagnostics), or the manner in which data 
from individual health facilities are collected, 
aggregated and communicated to higher levels in 
the health system.  Standard health management 
information system (HMIS) data, for example, 
commonly aggregate data from individual 
facilities to the extent that localized disease 
outbreaks may be obscured.  Many standard 
surveillance approaches also may lack sufficient 
temporal resolution for epidemic detection, 
especially where data are reported monthly. 
 
Where appropriate disease surveillance systems 
are in place, tracking disease incidence with 
reference to expected normal levels of incidence 
can indicate the onset of an epidemic and (where 
surveillance data include information on the 
locality of cases) provide information about its 
geographical extent. However, aberrations in 

surveillance data indicating abnormal levels of 
disease transmission should be  investigated 
before implementation of large-scale 
interventions aimed at epidemic control. Such ab-
errations may constitute artefacts within the 
surveillance system (e.g. due to changes in 
diagnostic practices, shifts in the levels of usage 
of individual health facilities by the general 
public etc.) and may not reflect changes in levels 
of disease transmission. It should also be borne in 
mind that there is no single, standard approach 
available for detecting aberrations (i.e. outbreaks) 
on the basis of surveillance data. A number of 
detection algorithms have been proposed (for 
example, Hay et al. 2003) and the sensitivity and 
specificity of each will vary depending on the 
nature of the temporal distribution of cases 
associated with each disease type.  Similarly, a 
number of issues concerning how best to 
construct a ‘reference’ disease baseline have yet 
to be resolved fully.  For example, what is the 
minimum number of years of data required to 
develop a reliable baseline? Should the baseline 
lengthen with each year of new data, or should 
older data be discarded? Should data from known 
epidemic years be omitted from the baseline 
calculation? These and many other issues await 
full clarification. 
 
3.2.2. Monitoring disease risk factors 
 
As described in section 1.2, a range of weather 
monitoring datasets is available from earth 
observation satellites. These (and basic software 
for display and extraction of data) are free of 
charge but funds may need to be secured for GIS 
software capable of more advanced geographical 
processes and analysis. Also it is important to 
assess vulnerability indicators such as herd 
immunity, HIV prevalence, malnutrition and 
drug resistance at this stage.  As discussed below 
these are difficult to monitor accurately, 
requiring much manpower and well-organized 
surveillance systems.   
 
There are several vector-related risk factors for 
vector-borne diseases. These include local vector 
species composition and the human blood index 
(i.e. tendency to bite humans). It has been 
suggested that vector densities may be sufficient 
to forecast changes in malaria transmission 
(Lindblade et al. 2000) where surpassing an 
‘epidemic threshold’ could indicate a potential 
epidemic. Alternatively, measures of malaria 
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transmission intensity such as the entomological 
inoculation rate (EIR – the product of the  
infection rate in vectors and the biting rate on 
humans) have been used to assess variation in 
malaria transmission risk in Africa (Snow et al. 
1999, Hay et al. 2000b) and theoretically could 
be monitored as indicators of potential epidemics. 
Unfortunately, in most cases, monitoring both 
EIR and vector densities is too expensive to be 
feasible (Thomson and Connor 2001). In 
addition, the quantitative relationships between 
these variables and the probability and intensity 
of epidemics remain at the research stage. To our 
knowledge, there are no published examples 
where such a system has been put into operation. 
 
 
3.2.3. Model forecasts 
 
Model forecasts can be based on relationships 
between disease and predictor variables to predict 
risk in both surveyed and unsurveyed areas. 
Inputs for such predictions can  come from either 
direct monitoring of known risk factors (e.g. 
using rainfall measurements in one month to 
predict the probability of an epidemic of 
mosquito-borne disease in the next few months) 
or forecasting based on predictions of these risk 
factors (i.e. seasonal climate forecasts). The 
choice will depend on the relative importance of 
accuracy (usually maximized by using direct 
observations of risk factors) and lead-time 
(maximized by predictions of risk factors). 
 
Likely predictor climatic variables include 
temperature, rainfall and the El Niño Southern 
Oscillation (ENSO), all of which are available. 
Future climate-based predictions of disease 
variability require projections of climate events. 
It is possible to predict weather relatively 
accurately up to a week ahead using complex 
atmospheric models (Palmer and Anderson 
1994).  In some regions and under some existing 
climate conditions, predictions of climatic 
conditions up to several months ahead can be 
made (from similar models). In particular there 
has been considerable interest in predicting the 
interannual variations of the atmosphere-ocean 
system, such as the onset, development and 
breakdown of ENSO. ENSO is a periodic 
appearance of warm and cool sea surface water in 
the central and eastern Pacific ocean (Wang et al. 
1999). ENSO events are associated with 
increased probability of drought in some areas 

and excess rainfall in others, along with 
temperature increases in many regions.  In the 
tropics, variability in the ocean-atmosphere 
associated with ENSO can be predicted with a 
lead-time of several seasons (Palmer and 
Anderson 1994). In Asia  and south American 
regions, there is evidence that ENSO events have 
an intensifying effect on seasonal malaria 
transmission, including epidemics (Kovats et al. 
2003). 
 
Seasonal forecasts of some of these climate 
variables are available for specific regions of the 
world2. Forecast lead-times vary for different 
climate parameters, from one to four months for 
rainfall in Africa to a year or more for the 
strength of an ENSO event. Although these 
forecasts allow relatively long potential lead-
times which can be particularly useful for 
gathering resources necessary for control 
measures, forecasting climate introduces an 
additional source of uncertainty into the epidemic 
prediction. In addition, climate forecasts are not 
available at high spatial resolutions therefore the 
epidemic warning will be at a relatively coarse 
geographical scale. 
 
The EWS options presented above demonstrate a 
trade-off between warning time and specificity. 
In each case, the precision of predictions depends 
on how disease and climate indicators are 
selected – are they long-term projections or 
short-term active observations? The important 
question of whether predictions should be 
relatively general one-year forecasts or more 
precise predictions for the following week 
depends mostly on the public health 
requirements. It has been suggested that epidemic 
forecasting is most useful to health services when 
case numbers are predicted two to six months 
ahead, allowing tactical decision-making (Myers 
et al. 2000). When longer- term strategic disease 
control is the objective (e.g. the Onchocerciasis 
Control Programme in west Africa), longer-term 
forecasts may be more pertinent. 
 
The hierarchical system proposed for malaria 
EWS in Africa (Cox et al. 1999) takes account of 
all the different ranges of forecasts which can be 
developed to suit the various needs of the health 
sector: 
 
                                                 
2  e.g. NOAA Climate Prediction Center information 
at http://www.cpc.ncep.noaa.gov/products

18 
 



Using climate to predict infectious disease outbreaks: a review 
 

 
3. Is the system cost-effective and could 
resources have been used more effectively? 
 

1. Long range predictions based on seasonal 
climate forecasts.  The resulting epidemic risk 
assessments will cover wide areas and have lead-
times greater than six months. 
 

Despite many attempts to develop EWS for 
infectious diseases (and other areas), to our 
knowledge there are no practical guidelines for 
assessing the accuracy of an EWS. When an 
EWS is developed, end-users and researchers 
should agree on the required level of accuracy, 
although this may be difficult due to lack of 
communication and consultation between the 
different personnel involved in the various 
stages.   

2. Short range predictions based on active 
monitoring of risk factors (e.g. temperature and 
rainfall). Geographical resolution is much more 
specific and lead-times can be measured in weeks 
rather than months. 
 
3. Early detection of epidemics using disease 
monitoring.  There is no lead-time. per se, but 
this approach provides specific information on 
timing and location of an epidemic. 
 
 

 
There are two separate principal aims of an EWS: 
 
1. Identify whether an epidemic will occur 
within a specific population, according to a pre-
defined threshold of cases. 
 

3.3. Response phase 
 
Appropriate forms of epidemic response will be 
geographically and disease specific and may 
consist of either chemo-therapeutic or vector 
control measures, or a combination of both. 
Ultimately, responsibility for arranging relief or 
other measures necessary to contain an epidemic 
lies with national governments or non-
governmental bodies. Response to an epidemic 
warning ideally should follow a preparedness 
plan that has been developed through an 
integrated multisectoral approach (FEWS 2000). 
The majority of infectious disease outbreaks 
occur in developing countries where funds are 
(usually) of crucial importance, an effective 
response may require the extensive involvement 
of international organizations. 

2. Predict the number of cases within a period 
of time. 
 
The relative importance of the two aims will 
depend on the control decisions to be taken and 
the degree of interannual variation in disease. For 
example, for diseases which are absent from the 
human population for long periods followed by 
explosive epidemics, early detection and/or 
predictions of the probability of an epidemic may 
be more important than predictions of epidemic 
size. Assessments should be performed as ‘value-
of-information’ assessments; i.e. it must be 
determined whether collection and analysis of 
climate data adds sufficient predictive power, or 
if allocating the funds to collection of other 
information has a greater effect on predictive 
power. In terms of assessment, Woodruff et al. 
(2002) recommend that an EWS for arboviruses 
should predict an epidemic with at least 90% 
accuracy (assuming that an epidemic is defined 
as the number of cases exceeding the mean plus 
one standard deviation), while Abeku et al. 
(2002) proposed an assessment based on the 
forecast error (the log of the difference between 
observed and expected cases).  It is the 
recommendation of this report that solid 
guidelines on determining and assessing the 
precision of EWS predictions should be 
established. 

 
 
3.4. Assessment/evaluation phase 
 
After the onset of an epidemic (preferably during 
the response phase), the EWS should be 
evaluated technically in consultation with end-
users. Questions that need to be addressed 
include: 
 
1. How easy is the system to use? 
 
2. Are the predictions accurate enough to 
contribute usefully to disease planning? (see 
below). 
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Figure 1. Framework for developing climate-driven early warning systems for infectious diseases 
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Preliminary phaseData requirements 

Components of an Early Warning System 

 1. Evaluate  the epidemic 
potential of the disease 

2. Identify geographical 
location of epidemic areas 

3. Identify climatic and non-
climatic disease risk factors 

4. Quantify the link between climate 
variability and disease outbreaks. 

 
Output: predictive models

- Historical or current disease data 
(monthly or weekly incidence 
measures) 

- Temperature and rainfall variability 
data (daily or weekly) 

- Vegetation data (weekly or 
monthly) 

- Also consider case definition, 
confounders, population distribution 
and other known factors 

 1. Disease surveillance 
- Non-existing lead-time 
Output: detection of epidemic 

location 

2. Monitoring of disease risk 
factors 
- Lead-time 1-3 weeks 
- High geographical resolution 
Output: early warning of outbreak 

3. Model forecasts 
- > 6 months lead-time 
- Low geographical resolution 
Output: early warning of outbreak 

- Continuous disease surveillance data 
- Continuous weather monitoring data (from 

satellites) 
- Measures of vector densities, human biting 

rate and entomological inoculation rate 
(EIR) 

- Relationship between climate variability 
and disease outbreaks (from preliminary 
phase) 

- How easy is the system to use? 
- Do the predictions fall within the level of accuracy agreed in the 

preliminary phase? 
- Is the system cost-effective? Assess the costs incurred and lost 

man-hours saved. This allows cost-effective implementation of 
control (i.e. before the epidemic peak) 

MODEL ASSESSMENT/EVALUATION 

1. Assess immediate needs 
2. Health care, vector control 
3. Epidemiological surveillance 
4. Monitor environmental health 
5. Public health information and education 

- Establish new, or improve 
existing, surveillance centres   

- Run forecasting models 
- Disseminate results of model 

simulations to national 
stakeholders to ensure  
necessary response  

- Determine most appropriate 
response action 

- Ensure that planned response 
systems are in place 

- Agree on accuracy needed 
for model predictions 

- Identify a priori the 
availability of data 

- Assess availability of funds 
for acquiring climate and 
vegetation data and setting 
up GIS systems 

- Ensure that functioning 
detection and response 
systems exist  

- Train personnel for epidemic 
preparedness 

MEASURES TO BE TAKEN  
 
 
 

RESPONSE 
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4. Identifying candidate diseases for early warning systems 
 

As described in previous sections, a number of 
preliminary steps are necessary in order to assess the 
viability of climate-based EWS for a given disease.  
Table 2 has been constructed by following each of the 
preliminary steps presented in the framework 
proposed above. It comprises a list of the most 
important infectious diseases from the WHO global 
burden of disease assessment (WHO 2002a), in 
descending order by global burden, i.e. disability 
adjusted life years (DALYs).  Each disease has been 
assessed for inclusion in this review according to its 
associated disease burden, evidence of interannual 
variability and climate sensitivity.  A detailed 
discussion of the various diseases in the context of 
this report is given in Appendix 1.   

 
Table 2 indicates that the evidence for climate 

sensitivity of a range of epidemic-prone infectious 
diseases varies both in terms of the number of studies 
undertaken  

 
and the rigour with which apparent associations 

have been tested. Although outbreaks of many 
infectious diseases have an apparent climate link, 
still there is a lack of solid statistical support to 
back up historical anecdotes on the occurrence of 
epidemics. On the basis of the evidence presented 
in the table, the following diseases have been 
selected for further examination in this report: 

 
• Cholera 
• Malaria 
• Meningococcal meningitis 
• Dengue/dengue haemorrhagic fever 
• Yellow fever 
• Japanese and St. Louis encephalitis 
• Rift Valley fever 
• Leishmaniasis 
• African trypanosomiasis 
• West Nile virus 
• Murray Valley fever and Ross River virus 
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Table 2. Common communicable diseases, their distribution, epidemic potenti  to climate. 
 
 
Disease Global

burden (1000 
DALYs)*

Transmission Distribution Evidence
for 
interannu
variability
 

emic link Strength of 
climate 
sensitivity ‡

Climate –
epidemic 
relationship 
quantified? 

STDs  
(including 
HIV) 

106 231 Sexually transmitted Worldwide  * *  evidence for climate - N/A 

Influenza 97 658 
(all resp. 
infections and 
only a fraction 
due to 
influenza) 

Air-borne 
transmission 

Worldwide  
 

* * * * *

 temperature 
ciated with 
 range of human-

rs are more 

 
 

* * 

 
 
 

Diarrhoeal 
diseases 

62 227 
(incl. cholera) 

Food- and water-
borne transmission 

Worldwide  
 

* * * 

temperature and 
 rainfall associated 
cs.  Sanitation and 
viour are probably 
nt.  

 
 

* *  

 
 
 

Cholera (see 
diarrhoeal 
diseases) 

Food- and water-
borne transmission 

Africa, Asia, 
south 
America, 
Russia. 

 
 

* * * * *

sea and air 
 as well as El Niño 
iated with 
anitation and 

viour  also are 

 
 

* * * * * 

 
 
 

 
 
 
* source WHO (2002) 
† - no interannual variability, * very weak variability, * * some variability, * * * moderate strong variability, * * * * * very strong variability 
‡ - no climate link, * climate link is very weak, * * climate plays a moderate role, * * * c ificant role, * * * * climate is an important factor,  
* * * * * climate is the primary factor in determining at least some epidemics, and the s ociation between climate and disease outbreaks has been 
assessed on the basis of published quantitative (statistical) rather than anecdotal evid
 

al and sensitivity

al 
 † 

Climate-epid

No published
link. 

 

Decreases in
(winter) asso
epidemics.  A
related facto
significant. 

Increases in 
decreases in
with epidemi
human beha
more importa

 

Increases in 
temperatures
events assoc
epidemics.  S
human beha
important. 

 variability, * * * * 
limate plays a sign
trength of the ass
ence. 
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    Disease Global
burden  

 Transmission

(1000 
DALYs) 

Distribution Epidemic
potential †

Climate-epidemic link Strength 
of climate 
sensitivity 
‡

Climate –
epidemic 
relationship 
quantified? 

Childhood 
diseases 

50 380 Transmitted by 
person to person 
contact. 

Worldwide  No published evidence for climate link 
 

* * * * 

 
 
-  

 
 

N/A 

Malaria 40 213 Transmitted by 
the bite of female 
Anopheles 
mosquitoes. 

Currently endemic 
in >100 countries 
throughout the 
tropics and 
subtropics 

 
 

* * * * * 

Changes in temperature and rainfall 
associated with epidemics.  Many other 
locally relevant factors include vector 
characteristics, immunity, population 
movements, drug resistance etc. 

 
 

* * * * * 

 
 
 

Tuberculosis 
 

35 792 Air-borne 
transmission. 

Worldwide * * No published evidence for climate link. - N/A 

Meningococcal 
meningitis 

  5 751 Air-borne 
transmission 

Worldwide  Increases in temperature and 
decreases in humidity associated with 
epidemics. 

* * * * 
 

* * * 
 
 

Lymphatic 
filariasis 

  5 549 Transmitted by 
the bite of female 
Culex and 
Anopheles 
mosquitoes. 

Africa, India, south 
America and south 
Asia. 

 
- 

Temperature and rainfall determine the 
geographical distribution of vectors and 
disease. 

 
* * 

 
N/A 

Intestinal 
nematodes 

  4 811 Soil and faecal-
oral route 
transmission. 

Worldwide  Increases in temperature and soil 
humidity and changes in soil type can 
affect transmission and geographical 
distribution. 

- 
 
* 

 
 

Leishmaniasis   1 810 Transmitted by 
the bite of female 
sandflies. 

Africa, central Asia, 
Europe, India, 
south America. 

 
* * 

Increases in temperature and rainfall 
associated with epidemics 

 
* * * 

 
 

* source WHO (2002) 
† - no interannual variability, * very weak variability, * * some variability, * * * moderate variability, * * * * strong variability, * * * * * very strong variability 
‡ - no climate link, * climate link is very weak, * * climate plays a moderate role, * * * climate plays a significant role, * * * * climate is an important factor,  
* * * * * climate is the primary factor in determining at least some epidemics, and the strength of the association between climate and disease outbreaks has been 
assessed on the basis of published quantitative (statistical) rather than anecdotal evidence. 

Table 2. continued 



 

 
 

Table 2. continued 

Disease   Global
burden  

 Transmission

(1000 
DALYs) 

Distribution Epidemic
potential †

Climate-epidemic link Strength of 
climate 
sensitivity ‡

Climate –
epidemic 
relationship 
quantified? 

Schistosomiasis 1 713 Water-borne 
transmission 
involving 
intermediate snail 
host 

Africa, east 
Asia, south 
America. 

 
 
* 

Increases in temperature and 
rainfall can affect seasonal 
transmission and geographical 
distribution. 
 
 
 

 
 
* 

 
 
 

African 
trypanosomiasis 

1 585 Transmitted by the 
bite of male and 
female tsetse flies. 

Sub-Saharan 
Africa 

 
* * * 

Changes in temperature and 
rainfall may be linked to 
epidemics.  Cattle density and 
vegetation patterns also are 
relevant factors. 

 
* * 

 
 

Trachoma 1 181 Transmitted by 
person to person 
contact and flies 

Africa, Asia, 
east Europe, 
south America 

 
- 

No published evidence for climate 
link. 

 
- 

N/A 

Onchocerciasis    951 Transmitted by 
Simulid blackflies. 

Africa, south-
west Asia, 
south 
America. 

 
* 

   

Chagas Disease 
(American 
trypanosomiasis) 

   680 Transmitted by 
blood-feeding 
Reduviid bugs. 

South and 
central 
America 

 
* 

Presence of bugs associated with 
high temperatures, low humidity 
and specific vegetation types. 

 
* 

 
 

Dengue     433 Transmitted by the 
bite of female Aedes 
mosquitoes. 

Africa, 
Europe, south 
America, 
south-east 
Asia, west 
Pacific. 

 
 

* * * * 

High temperature, humidity and 
heavy rain associated with 
epidemic. 
Non-climatic factors may have 
more important impact. 

 
 

* * * 

 
 
 

 
 

* source WHO (2002) 
† - no interannual variability, * very weak variabilty, * * some variability, * * * moderate variability, * * * * strong variability, * * * * * very strong variability 
‡ - no climate link, * climate link is very weak, * * climate plays a moderate role, * * * climate plays a significant role, * * * * climate is an important factor,  
* * * * * climate is the primary factor in determining at least some epidemics, and the strength of the association between climate and disease outbreaks has been 
assessed on the basis of published quantitative (statistical) rather than anecdotal evidence. 
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 Table 2. continued 

Disease    Global
burden  
(1000 
DALYs) 

Transmission Distribution Epidemic
potential †

Climate-epidemic link Strength of 
climate 
sensitivity ‡

Climate –
epidemic 
relationship 
quantified? 

Japanese 
encephalitis 

426 Transmitted by the 
bite of female Culex 
and Aedes 
mosquitoes. 

South-east 
Asia. 

 
* * * 

High temperature and heavy 
rains associated with epidemics. 
Reservoir animal factors also are  
important. 

 
* * * 

 
 

St. Louis 
encephalitis 

N/A Transmitted by the 
bite of female Culex 
and Aedes 
mosquitoes. 
 

North and 
south America 

 
* * * 

High temperature and heavy rain 
associated with epidemic. 
Reservoir animal factors also are 
important. 

 
* * * 

 
 

Rift Valley fever N/A Transmitted by the 
bite of female Culex 
and Aedes 
mosquitoes. 

Sub-Saharan 
Africa 

 
 

* * * 

Heavy rains associated with 
onset of epidemic. 
Cold weather associated with end 
of epidemic.  Reservoir animal 
factors also are important. 

 
* * * 

 
 

West Nile virus N/A Transmitted by the 
bite of female Culex 
mosquitoes. 

Africa, central 
Asia, south-
west Asia, 
Europe 

 
 

* * * 

High temperatures and heavy 
precipitation associated with 
onset of epidemic.  
Non-climatic factors may have 
more important impact. 

 
 

* *  

 
 
 

Ross River virus N/A Transmitted by the 
bite of female Aedes 
and Culex 
mosquitoes. 

Australia and 
Pacific islands 

 
 

* * 

High temperature and heavy 
precipitation associated with 
onset of epidemic.  Host immune 
factors and reservoir animals also 
are important factors. 

 
 

* * * 

 
 
 

Murray Valley  
fever 
 

N/A Transmitted by the 
bite of female Culex 
mosquitoes. 

Australia  
* * 

Heavy rains and below average 
atmospheric pressure associated 
with epidemic. 

 
* * *  

 
 

* source WHO (2002) 
† - no interannual variability, * very weak variability, * * some variability, * * * moderate variability, * * * * strong variability, * * * * * very strong variability 
‡ - no climate link, * climate link is very weak, * * climate plays a moderate role, * * * climate plays a significant role, * * * * climate is an important factor,  
* * * * * climate is the primary factor in determining at least some epidemics, and the strength of the association between climate and disease outbreaks has been 
assessed on the basis of published quantitative (statistical) rather than anecdotal evidence.
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    Disease Global
burden  
(1000 
DALYs) 

Transmission Distribution Epidemic
potential †

Climate-epidemic link Strength of 
climate 
sensitivity ‡

Climate –
epidemic 
relationship 
quantified? 

Lyme disease 
 

N/A Transmitted by
ixodid ticks. 

  North 
America, 
Europe and 
Asia. 

 
* 

Temperature and vegetation 
patterns associated with 
distribution of vectors and 
disease. 

 
* 

 
 

Yellow  fever N/A Transmitted by the 
bite of female Aedes 
and Haemagogus 
mosquitoes. 

Africa, south 
and central 
America. 

 
 

* * * * 

High temperature and heavy rain 
associated with epidemic.  
Intrinsic population factors also 
are important. 

 
 

* * 

 
 
 

 
 
* source WHO (2002) 
† - no interannual variability, * very weak variability, * * some variability, * * * moderate variability, * * * * strong variability, * * * * * very strong variability 
‡ - no climate link, * climate link is very weak, * * climate plays a moderate role, * * * climate plays a significant role, * * * * climate is an important factor,  
* * * * * climate is the primary factor in determining at least some epidemics, and the strength of the association between climate and disease outbreaks has 
been assessed on the basis of published quantitative (statistical) rather than anecdotal evidence. 
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5.  Climate-based early warning systems for infectious 
diseases 
 
This section presents an overview of the diseases 
highlighted in section 4 with respect to their 
climate sensitivity and the existence or potential 
development of EWS following the framework 
previously presented. On the basis of a literature 
review, each disease is assessed according to the 
progress made – i.e. which steps of the proposed 
framework have been completed successfully. 
 
 
5.1  Cholera 
 
The strong, well-studied link between cholera 
epidemics and fluctuations in climate, suggests 
potential for constructing climate-based EWS for 
this disease.  Cholera was the first disease for 
which surveillance and reporting was initiated on 
a large scale (WHO 2000). Due to its high impact 
(Table 2) it is one of three diseases currently 
reportable under the International Health 
Regulations (IHR) of 1969, which state that the 
first cases of cholera (both indigenous and 
imported) should be reported to WHO within 24 
hours.  Weekly notifications of these reports are 
published in WHO’s Weekly Epidemiological 
Records which are freely available. Annual cases 
and the number of deaths reported to WHO (with 
substantial gaps) are available for Africa, the 
Americas and Europe from 1970 onwards and for 
Asia from 1949.  In 1998, 74 countries reported 
annual cholera cases and deaths. 
 
It has been suggested that epidemics of cholera 
may be predicted by monitoring or forecasting 
the seasonal abundance of zooplankton in aquatic 
environments using remotely sensed vegetation 
images (Colwell 1996; Lobitz et al. 2000). 
Colwell (1996) suggested a positive relationship 
between the monthly abundance of Vibrio 
cholerae and the abundance of copepods in ponds 
in Bangladesh and presented graphical evidence 
that cholera cases occurred following rises in sea 
surface temperature (SST).  Lobitz et al. (2000) 
used weekly 1 km resolution NOAA AVHRR 
data for SST and sea surface height (SSH) in 
combination with weekly cholera cases in 
Bangladesh and found a significant correlation 
between cycles of cholera cases and  
 

 
 
SST during 1992, 1994 and 1995, but did not 
attempt to construct a predictive model.  The 
authors state that a predictive model for cholera 
in the Bay of Bengal is currently under 
development, but to date this model has not been 
peer reviewed. 
 
Despite the immense public health impact of 
cholera and the large amounts of data available, 
attempts to develop climate-based cholera 
predictions remain at an early research stage of 
development.  Possible next steps include 
evaluating the ability of existing quantitative 
models for Bangladesh and Peru (based on SST 
anomalies - Colwell 1996, Lobitz et al. 2000, 
Pascual et al. 2000, 2002) to predict historical 
epidemics, and extending similar approaches to 
test and quantify climate-epidemic links in 
Africa. Formal tests of predictive accuracy would 
indicate whether there should be further efforts to 
incorporate climate-based predictions into 
operational surveillance systems.  In either case, 
clearly it is important for national health services 
and their partners (e.g. NGOs and international 
donors) to ensure that existing disease monitoring 
and surveillance is improved, particularly in 
Africa. 
 
5.2  Malaria 
 
The early detection, containment and prevention 
of malaria epidemics constitute one of the four 
main elements of WHO’s global malaria control 
strategy3.  Within the past 20 years, a few 
countries have begun to develop EWS which use 
climatic transmission risk indicators. Progress 
towards operational systems has been limited, 
however, because of poor inter-sectoral 
collaborations and lack of evidence of the cost-
effectiveness of malaria EWS. WHO has 
supported the development of malaria EWS by 
establishing a technical support network together 
with a framework that not only defines generic 
concepts but also identifies early warning and 
detection indicators which potentially could 
predict the timing and severity of malaria 
epidemics (WHO 2001, 2002b).  Several field 

                                                 
3  http://www.rbm.who.int 
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projects have been initiated (e.g. in Ethiopia, 
Kenya and Sudan) but it is not possible to draw 
definite conclusions from these studies, as the 
results have yet to be analysed carefully. 
 
Quantitative spatial models of the relationship 
between malaria and climatic factors have been 
used numerous times for geographical mapping 
of disease risk, with an overwhelming focus on 
Africa (e.g. Craig et al. 1999, Snow et al. 1999, 
Kleinschmidt et al. 2000, 2001). Such risk 
mapping is a useful preliminary stage, as it can 
be used to differentiate areas that experience 
epidemic or highly seasonal transmission, from 
those with more stable transmission patterns 
where EWS are likely to be less useful. 
 
Monitoring of malaria cases can be used for early 
detection of an epidemic if collection and 
notification are timely (i.e. weekly). There are 
functioning weekly notification systems from 
sentinel sites in Zimbabwe, Uganda, Kenya, and 
Madagascar (Cox et al. 1999, WHO 2001). 
Computerized collection and organization of 
surveillance of data have begun in Niger and is 
proposed elsewhere (WHO 2001).  However, in 
most epidemic regions there remains a lack of 
regular surveillance. 
 
Disease surveillance for early detection of 
malaria epidemics has been used in Thailand 
where deviations from seasonal averages were 
used to detect outbreaks (i.e. where monthly case 
numbers exceed the long-term mean plus two 
standard deviations).  This approach detected 228 
out of 237 epidemics in 114 districts from 1973-
1981 (Cullen et al. 1984).  Using data for 
Ethiopia, Abeku et al. (2002) have since 
demonstrated that this simple approach 
outperforms more advanced methods – although 
the authors concluded that epidemic early 
warnings could be improved further by including 
meteorological factors. 
 
As outlined in section 3, early detection of 
malaria epidemics potentially can be 
supplemented by prediction.  Monitoring data on 
the various risk factors (e.g. temperature and 
precipitation measurements from remotely sensed 
images and ground-based meteorological 
measurements) can be used as an input to 
mathematical models, based on correlations 
between risk factors and disease rates in the past. 
Currently there are several constraints on this 
approach for malaria. The first is the relative 

paucity of long-term disease datasets for model 
construction. The most extensive collection of 
data has been undertaken by the Malaria Risk in 
Africa (MARA) project, which has established a 
database on all available malaria data in Africa4. 
Extensive historical datasets (with gaps) also are 
available for Europe (Kuhn 2002), India (D. 
Bradley personal communication) and north 
America (A. Ter Veen personal communication).  
However, these data sets lack continuous long 
time-series at high temporal resolution and 
therefore have been used principally for mapping 
geo-graphical variation in risk (e.g. Craig et al. 
1999) or investigating relatively long-term trends 
(Kuhn et al. 2003), rather than epidemic 
prediction. 
 
In addition, non-climatic risk factors such as 
vector abundance, population immunity and 
control activities are known to have a strong 
influence on the potential occurrence of an 
epidemic (e.g. Thomson and Connor 2001, 
Lindblade et al. 2000). At present, however, 
these relationships are not sufficiently well 
quantified to incorporate into mathematical 
models that can be widely applied.  In addition, it 
may be impractical or too expensive continually 
to monitor these risk factors in many endemic 
regions. 
 
Perhaps because of these constraints, relatively 
few studies have attempted to predict malaria 
epidemics by either monitoring or advance 
forecasting of the risk factors (i.e. seasonal 
climate forecasts)5. Within Africa, Hay et al. 
(1998) used a model containing NDVI to predict 
malaria seasons in Kenya, but there was no 
formal assessment of the accuracy of predictions 
(apart from a visual comparison to historical 
maps).  More recently, Hay et al. (2002b, 2003) 
concluded that a malaria emergency in four 
districts in western Kenya could have been 
predicted on the basis of rainfall data available in 
the previous month. In contrast, they suggest that 
early epidemic detection through case monitoring 
would not have been possible, due to the 
weakness of the surveillance system, and that 
seasonal rainfall forecasts were too unreliable to 
predict the epidemic with a longer lead-time 

                                                 
4  http://www.mara.org.za/ 
5 
http://edcsnw4.cr.usgs.gov/adds/imgbrowses1.php?im
g1='ml' 
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(although Thomson et al. (2003) suggest that 
seasonal forecasting remains a promising tool). 
 
Outside Africa, the only quantitative models 
which could be used for predicting malaria 
seasons based on climatic variables are those 
developed for the Punjab and Sri Lanka (Bouma 
et al. 1996, Bouma and Van der Kaay 1996), 
Venezuela (Bouma and Dye 1997) and Colombia 
(Bouma et al. 1997). These models are not very 
robust, however, mainly because they operate at a 
very low resolution for both climate and disease 
data. 
 
As concluded by previous authors, the recent 
advances in satellite imagery and GIS should 
provide sufficient environmental data to build 
satisfactory models of malaria transmission 
(Thomson and Connor 2001, Rogers et al. 2002). 
However, there are no existing climate-based 
EWS in use for malaria.  In research terms, the 
main limitations have been a lack of high-
resolution long-time series of malaria cases, 
insufficient explanatory (climate) data at an 
appropriate resolution and lack of funds for in-
depth studies.  Further progress towards accurate 
predictive models is likely to come through using 
a wider range of long-term datasets to quantify 
the links between climatic factors and interannual 
variability in malaria cases and/or deaths. 
Although most easily accessible datasets already 
have been investigated, there are non-
computerized surveillance records in Africa, Asia 
and potentially elsewhere, that could add to the 
evidence base relating variations in climate to 
malaria incidence. 
 
Additional steps are necessary if research on 
EWS is to be implemented in control activities in 
the field. As for other diseases, these include 
strengthening of reporting systems to promote 
early detection of epidemics, and better definition 
of the control responses that should follow an 
epidemic warning.  For example, it may be 
important to differentiate between maintenance 
or intensification of regular control activities 
(Hay et al. 2003), as compared to a qualitatively 
different response. In east Africa, a major project 
to develop and test operational EWS within 
national malaria control programmes was 
initiated in 2001 and is exploring these and other 
operational issues6. Preliminary results from this 
project are expected in 2004. 
                                                 
6  http://www.himal.net.uk 

5.3 Meningococcal meningitis 
 
Climate’s role in meningitis outbreaks is poorly 
understood; as yet there have been no attempts to 
initiate the development of climate-based EWS 
for this disease.  Although the transmission of 
meningococci has been linked to areas with low 
absolute humidity, this relationship has not been 
quantified. However, it is well-known that more 
important risk factors for meningitis outbreaks 
are human-related, including vaccination 
programmes and socioeconomic determinants. 
 
In 1998, a total of 98 countries regularly reported 
meningitis cases to WHO (WHO 2000). Since 
1997, countries in the African meningitis belt 
have undertaken weekly surveillance of disease 
activity during the meningitis season and 
provided total annual case numbers to WHO as 
input for the International Coordinating Group on 
Vaccine Provision for Epidemic Meningitis 
Control (ICG). In addition, various NGOs in 
vulnerable areas regularly supply information on 
meningitis outbreaks. 
 
For modelling purposes, WHO holds non-
continuous annual data on meningitis cases from 
1966 onwards from reporting countries as well as 
the (more or less continuous) weekly reports 
from countries in the African meningitis belt. 
Although reporting differences mean that the data 
are not always completely reliable, they should 
still allow testing of potential correlations with 
climate variables at low resolution. 
 
Currently there is little basis for the development 
of climate-based EWS for meningococcal 
meningitis, as a link between epidemics and 
climate variability has not been established. 
However, the existence of the long-term datasets 
would allow such associations to be tested.  
Progress could be made by testing and 
quantifying the link between historical outbreaks 
of meningitis and climate variables using (1) 
annual data collected worldwide from 1966 
onwards and (2) weekly data from the meningitis 
belt from 1997 onwards.  Depending on the 
results of these analyses, prediction models could 
be constructed and tested.  As for all other 
diseases, strengthening of surveillance is 
essential to further develop and test predictive 
models and, more importantly, support control 
responses.  
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The MALSAT group, at the Liverpool School of 
Tropical Medicine in the United Kingdom of 
Great Britain and Northern Ireland, is currently 
developing a climate-based system for predicting 
meningococcal meningitis in Africa.  This 
involves the collection and quantitative analysis 
of epidemiological data as the baseline for 
developing a predictive model. The results of this 
study are not yet available. 
 
 
5.4  Dengue / dengue haemorrhagic 
fever (DHF) 
 
There has been considerable discussion of the 
development of dengue early warning systems 
because of its comparatively high impact in 
epidemic and endemic areas.  Significant 
progress was made towards the construction of 
EWS for this disease during the 1990s . 
 
Today, passive surveillance of dengue and DHF 
cases is undertaken in most endemic countries 
(Gubler 1989).  In the United States, local health 
departments monitor cases which are reported to 
the Centers for Disease Control and Prevention 
(CDC) and distributed by the VECTOR list 
server (Gubler et al. 2001). There has been 
particular interest in surveillance in Florida and 
Texas due to recent introductions of cases from 
nearby Mexico (Gill et al. 2000). In Puerto Rico, 
an active, laboratory-based surveillance 
programme receives serum specimens from 
ambulatory and hospitalized patients throughout 
the island, clinical reports on hospitalized cases, 
and copies of death certificates that list dengue as 
a cause of death. The WHO-managed DengueNet 
is a global surveillance of dengue and DHF 
which collects and analyses case data reported 
from participating partners.  Data can be entered 
directly and accessed via the Internet. 
 
Using the extensive dengue database from Puerto 
Rico, Schreiber (2001) developed a model to 
predict dengue cases with two week intervals and 
a three week lead-time. The model uses a 
quantified relationship between dengue cases and 
daily temperatures, precipitation and water 
budget to make predictions. Although this 
approach is promising, the predictive power is 
very low for epidemic years (definition of which 
also is unclear).  Additionally, the authors do not 
indicate whether the assessment was made on 

independent data (i.e. data not included in the 
model). 
 
A relatively basic system, the dengue early 
warning system (DEWS) is based on a malaria 
EWS, where simple comparisons of the monthly 
observed number of cases and the epidemic 
threshold (mean + 2SD, as above) provides 
information on the onset of an epidemic (Cullen 
et al. 1984).  DEWS uses data from Bangkok and 
the four main regions of Thailand in combination 
with remotely sensed environmental data to 
identify vulnerable areas. Forecasts are made on 
the basis of time-series analysis of past case 
numbers, but although the model accurately 
describes historical epidemics, as yet it is unable 
to capture epidemic cycles (Myers et al. 2000). 
 
A more complicated two-part model has been 
developed to predict various parameters of the 
dengue transmission cycle (Focks et al. 1993 
a,b). The model consists of the CIMSiM 
(mosquito) and the DENSiM (dengue) and 
estimates mosquito density and survival as well 
as the prevalence and incidence of dengue in a 
human population, according to site-specific 
variables such as microclimate. Model 
simulations have been validated in Bangkok, 
New Orleans and Honduras during epidemics and 
overall predictive accuracy of the number of 
cases ranged from 30-85 % (Focks et al. 1993a, 
1993b, Focks et al. 1995). This model represents 
a full biological approach to an EWS, and 
requires specific information on a range of 
parameters such as mosquito breeding, 
population density, virus serotypes, vertebrate 
hosts etc.  Such monitoring may be costly and 
time consuming for use in developing countries.  
Also, there is no attempt to predict deviations 
from the seasonal pattern (i.e. epidemics) 
although the authors mention that this may be a 
future use of the model. 
 
The development of EWS for dengue have 
reached an important stage.  In the context of this 
report, it is necessary to stress that the likelihood 
and severity of dengue epidemics probably 
depend at least as much on socioeconomic 
factors, virus characteristics and human-related 
variables such as immunity  as on climatic factors 
(Gubler et al. 2001). In light of this, the most 
important next steps for the establishment of 
climate-based dengue EWS are to:  
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• properly identify and quantify the re-

lationship between climatic factors and the 
occurrence of dengue epidemics in 
vulnerable locations above that explained by 
other variables,  

• simplify the CIMSiM and DENSiM models 
in order to make them more suitable for use 
in developing countries where funds and time 
resources are restricted,   

• ensure that local surveillance centres are 
maintained and expanded to facilitate case 
reporting at regular intervals (weekly or 
monthly). If possible, active case detection 
should be employed. 

 
 
5.5 African trypanosomiasis 
 
During the twentieth century there were three 
severe epidemics of African trypanosomiasis; the 
third began in the 1970s and is continuing. In 
endemic countries, systematic population 
screening is under-taken currently for Gambiense 
sleeping sickness (i.e. the non-epidemic form of 
disease). Although there are extensive national 
datasets on the annual prevalence of Rhodesiense 
trypanosomiasis in individual African countries, 
they are not reported automatically to WHO. Ge-
nerally, these data date back to the beginning of 
the twentieth century but it is expected that they 
contain large gaps: in Uganda, for example, no 
data are available for 1970 to 1975 (WHO 2000).  
In order to assess the quality of these data, first it 
is necessary to inspect national databases. The 
DAVID (disease and vector integrated database), 
which started in the 1990s, contains data on 
trypanosomiasis cases, tsetse distribution and 
abundance and cattle densities for Mozambique, 
Malawi, Zimbabwe, Zambia, South Africa and 
Ethiopia. It provides a promising means for 
linking long-term disease data with climate 
(Robinson 2002). A major limitation of this 
database, however, is the fact that it does not 
cover the areas most severely affected by human 
sleeping sickness (i.e. central and west Africa). 
 
Currently there is little evidence to suggest that 
outbreaks of African trypanosomiasis are linked 
to climatic factors. However, the DAVID 
database and WHO data from the early twentieth 
century should be used to investigate rigorously 
any potential link between climatic variables, 
non-climate factors (such as cattle density and 
environmental modifications) and sleeping 

sickness epidemics. The results of such analyses 
would indicate whether there is any potential to 
develop and test climate-based warning systems. 
 
 
5.6  Yellow fever  
 
Yellow fever is reportable to WHO under the 
International Health Regulations. Annual reports 
of cases and deaths date back to 1948, although it 
is thought that only a small fraction of cases are 
reported (WHO 2000). In 1998, only 10 out of a 
total of approximately 40 epidemic countries 
reported yellow fever cases and deaths to WHO. . 
 
Despite the current lack of quantitative evidence 
to support the role of climate in driving yellow 
fever epidemics, there is a biologically plausible 
link that could be explored using the extensive 
historical dataset. Statistical modelling could be 
used to test for and quantify climatic influences 
on the interannual variation of yellow fever cases 
and deaths. Where other potential predictor data 
are available (e.g. monitoring mosquito 
abundances in many affected urban areas of Asia, 
Africa and south America, and infection rates in 
sylvatic monkeys) they should be included in 
statistical models. 
 
 
5.7 Japanese encephalitis and St. 
Louis encephalitis 
 
To date, the only EWS for Japanese encephalitis 
(JE) is based on passive surveillance of human 
cases which are reported to national reference 
laboratories in endemic countries. To our 
knowledge, the most extensive long-term datasets 
of cases exist in Japan and Thailand (IDSC 
2002). A quantitative model has been developed 
to predict JE epidemics in Thailand using 
remotely sensed vegetation, rainfall and 
temperature (Suwannee et al. 1997).  It was 
estimated that increases in rainfall and 
temperature, of 10% and 20% respectively, 
would increase the expected number of JE cases 
by 2-5% in relation to the annual mean.  
However, there was no attempt to predict future 
inter-annual variation in JE. 
 
Surveillance of St. Louis encephalitis (SLE) in 
north and South America is part of the CDC 
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arbovirus surveillance programme7 which 
consists of vector abundance monitoring, 
surveillance of sentinel chickens and human case 
monitoring. In Florida, a state-wide sentinel 
chicken arbovirus surveillance system has been 
in place since 1978 (Day 2001). Human cases are 
detected by active surveillance either weekly or 
monthly, but so far there have been no attempts 
to develop climate-based EWS for SLE. This is 
due mainly to the success of bird monitoring in 
providing warnings a few weeks in advance of an 
epidemic, sufficient to initiate control responses 
(Day 2001). It also reflects the fact that links 
between climate and SLE epidemics still have to 
be quantified. 
 
The feasibility of developing EWS for both JE 
and SLE should be relatively easy to investigate 
using available datasets.  Existing long-term JE 
datasets from Thailand and Japan and SLE 
datasets from north American states could be 
used to build statistical models to quantify the 
role of climate. For SLE, it would be important to 
compare the predictive accuracy with that 
obtained from current bird monitoring, and 
evaluate the added-value of incorporating climate 
inputs.  In addition, efficient monitoring 
programmes in some areas could be expanded to 
include other endemic countries with less 
developed programmes (e.g. all affected south 
American countries for SLE, India and China for 
JE). 
 
 
5.8. Rift Valley fever 
 
There are no existing EWS in use for Rift Valley 
fever (RVF), although their development has 
been proposed and some important steps of the 
preliminary phase have been completed or are 
under way.   
 
In Kenya, the RVF activity database has 
facilitated initial risk mapping studies. The 
database contains monthly information on 
clinical RVF cases, infected mosquitoes, and 
antibodies in humans and animals dating back to 
1950 (Linthicum et al. 1999, Anyamba et al. 
2002). A similar database exists in Zimbabwe 
(with gaps from the mid 1950s to early 1990s) 
but information about the maintenance of this 
database is not available. The successful 

                                                 
7  http://www.cdc.gov/ncidod/dvbid 

prediction (but not prevention) of the 1987 
epidemic with a lead-time of only a week in 
Senegal, using only surveillance data on virus 
activity, indicates that such databases potentially 
are useful in determining the onset of an 
epidemic. More work is needed to assess whether 
the lead-times obtained through this approach are 
sufficient for planning effective epidemic 
response. 
 
To date the only attempt to predict RVF 
outbreaks using a quantitative, climate-based 
model, was published by Linthicum et al. (1999). 
Their model incorporated SST and NDVI and 
successfully predicted three out of three RVF 
outbreaks between 1982 and 1998.  Although this 
approach is promising, the predictive power of 
the model should now be assessed by its ability 
to forecast future epidemics. The main limitation 
of this model is the fact that it was not validated 
independently (i.e. the epidemics predicted were 
included in the model). Additionally there is no 
information on how an epidemic was defined. 
 
Recently, the CDC in the United States has 
established RVF International Programmes in 
south and east Africa with the aims of (1) 
assessing the relative importance of climatic and 
environmental factors on RVF transmission and 
(2) constructing an environmentally driven model 
to predict future RVF activity in these areas. 
These programmes are designed to use recent 
Landsat satellite images as well as historical 
climate and vegetation data from the FEWS 
database (see above). From the information 
provided, however, it is unclear whether active or 
passive disease surveillance will be included in 
the project. Another project, organized by FAO, 
is using environmental predictors to model RVF 
seroprevalence in domestic animal species. This 
project will use existing databases from Senegal 
and Ethiopia and begin new surveys in Ethiopia 
(D. Pfeiffer, Royal Veterinary College, personal 
communication). 
 
The development of EWS for RVF is at an early 
stage. Further progress could be made by 
ensuring that RVF activity surveillance is 
maintained in Kenya and Zimbabwe, and 
expanded to South Africa (where RVF research 
has been strong for many decades). In addition, it 
is important to assess the value of sentinel animal 
(lamb) surveillance to provide epidemic warning 
(see St. Louis encephalitis), and test the ability of 
the Linthicum model, using SST and NDVI, to 
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predict historical epidemics outside Kenya, and 
epidemics within Kenya not included in the 
model building process.   
 
 
5.9 Leishmaniasis 
 
As discussed above, there is some evidence that 
climatic factors can influence epidemics of 
visceral leishmaniasis (VL) and cutaneous 
leishmaniasis (CL) in Asia. The existence of 
current surveillance systems, at least for VL, 
provide the possibility to develop EWS for this 
disease. 
 
The worldwide increase in VL prevalence over 
the past 20 years has caused a renewed interest in 
disease surveillance that has generated 
considerable datasets useful for modelling 
purposes.  In Europe, this increase has been 
attributed mainly to the increase in HIV.  VL is 
notifiable in 33 out of 88 endemic countries and, 
since 1994, WHO has received annual data from 
13 countries, most of which are in Europe (WHO 
2000). Surveillance for CL, and VL in tropical 
countries, is patchy and the existence of full 
datasets is questionable.  Because of the lack of 
long-term time series there have been no attempts 
to quantify the role of climate in the epidemics of 
leishmaniasis and no EWS have been developed. 
 
Leishmaniasis is similar to other diseases 
described above, in that there is a likely link to 
climate, but no quantitative studies to test the 
relative importance of climatic and non-climatic 
influences have been carried out. This could be 
addressed by quantifying climate’s role in the 
interannual variation in VL using the existing 
datasets from southern and eastern Europe, and 
the output from these models to predict 
epidemics of both human and canine VL in 
selected areas of the Mediterranean. It is also 
important to strengthen surveillance in other 
areas subject to epidemics, particularly for VL in 
south Asia, east Africa and south America, and 
for CL in Asia. In these areas, it would be useful 
to identify possible long-term datasets which 
could be used to quantify climate-epidemic links. 
 
 
5.10 West Nile virus 
 
The well-publicised recent epidemics of West 
Nile virus (WNV) in the United States have all 

occurred during years with warm winters 
followed by hot, dry summers (Epstein 2001). 
Although there has been much debate about the 
role of climate changes in the emergence of 
WNV in north America (Epstein 2000, Reiter 
2000, Epstein 2001) the relative importance of 
direct climate influences, as opposed to factors 
such as the availability of mosquito breeding 
sites and avian hosts, remains a matter of 
speculation. 
 
Since the first outbreak in 1999, surveillance of 
WNV in the United States has reached a highly 
efficient stage. A total of 49 states, five cities 
(e.g. New York) and the District of Colombia 
have initiated special WNV surveillance 
programmes which include active monitoring of 
dead or ill birds, active surveillance of 
mosquitoes and passive detection of human cases 
(CDC 2001). Virus activity is reported regularly 
by state health departments of the CDC from 
which data are freely available via the Internet. 
Reports of infected birds, mosquitoes, humans 
and horses are accumulated at state level and 
used to produce retrospective maps of disease 
occurrence (Figure 2). 
 
To date, no climate-based EWS have been 
developed for WNV mainly because the link 
between climate and WNV epidemics remains 
unquantified. Instead there has been much focus 
on predicting outbreaks using surveillance of 
animal hosts. Eidson et al. (2001) evaluated a 
system of dead bird surveillance as an EWS for 
WNV in the state of New York. They found that 
dead bird reports preceded confirmation of viral 
activity in humans by at least three months. In 
2000, a system based on dead bird surveillance 
(both sightings and laboratory testing of birds) 
provided temporal and geographical early 
warning of virus activity before the first human 
cases (Eidson et al. 2001). 
 
The emphasis on animal surveillance so far has 
provided encouraging results, but it is not clear 
whether climate-based models would improve 
predictive accuracy. However, the extensive data 
collected in North America show continuous 
monthly trends in virus activity and can be 
combined easily with low (state-level) resolution 
climate and vegetation data to test for possible 
associations. This analysis could be used to 
identify climatic risk factors which should be 
monitored in order to make predictions about 
coming outbreaks. As for other diseases, if 
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climate variables are shown to be important they 
should be incorporated into predictive models, 
and their precision and economic costs compared 
to predictions from bird surveillance alone. Again 
as with many other diseases, ongoing 

surveillance could be expanded to other 
epidemic-prone areas, such as southern Europe, 
North Africa and Asia. 
 

 

 
 
 
Figure 2. Spread of West Nile Virus by State, 1999-2002. West Nile Virus Activity in the U.S. in Birds, 
Horses, Mosquitoes, Animals, or Humans (based on information form the United States Centers for Disease 
Control, CDC )
 
 
5.11 Ross River virus and Murray 
Valley encephalitis 
 
Ross River virus (RRV) is the most important 
arbovirus in Australia so there has been 
significant regional interest in both surveillance 
and epidemic prediction of this disease. Since 
1991, RRV has been a notifiable disease in all 
Australian states and territories, from which 
monthly and annual cases are reported directly to 
the Communicable Diseases Network Australia 
(CDNA).  The CDNA now possesses annual and 
monthly data at national and state level from 
1991 to the present, freely available via the 
Internet8. These data serve partly as an EWS in 
their own right, but also have provided the basis 
for the development of early warning models 
based on rainfall (Woodruff et al. 2002). The 
models were constructed for early and late season 
and predicted 62-96% correct in 38 districts, with 
non-epidemics predicted more successfully  
                                                 
8  http://www.cda.gov.au/cdna/index.htm 

 
 
than epidemics. This shortcoming most likely is 
due to the lack of data (because of passive 
disease surveillance) and the non-inclusion of 
host-related factors such as virus population 
dynamics (Woodruff et al. 2002). In spite of the 
limitations, this study shows that a relatively 
simple method based on easily obtained variables 
can be used to construct a functioning EWS.   
 
Murray Valley encephalitis (MVE) also is a 
notifiable disease in Australia with monthly and 
annual cases reported to the CDNA at state and 
national level. However, this disease became 
separately notifiable only in January 2001 
therefore the reliability of data before this date 
may be questionable. The potential for assessing 
the impact of climate on the interannual 
variability of MVE is therefore weaker than for 
RRV. Nicholls (1986) suggested that Darwin 
spring pressure could be used for predicting 
MVE epidemics (with a lead-time of weeks 
rather than months) but made no attempt to 
develop a predictive model. However, as Kay 
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(1980) concluded, mammalian host and mosquito 
factors also play a crucial role in transmission; 
ideally these should be included in an EWS if the 
improvements to predictive power justify the 
costs of data collection. 
 
Clear climatic influences, coupled with relatively 
long-term, reliable datasets, suggest that RRV 
and MVE are strong potential candidates for the 
development of climate-based EWS.  Progress 
towards this could be made through: 
  
1. Expanding the RRV model to include non-

climatic factors and assess whether this 
improves the predictive ability of epidemics.  

 
2. Developing a similar model, initially based 

on Darwin spring pressure, to predict 
epidemics of MVE using existing data from 
1991 onwards.  

 
3. Improving surveillance of RRV particularly 

in the affected southern states of Australia, 
continuing the separate surveillance of MRV 
to establish a longer running dataset, and if 
feasible, changing passive case detection to 
active surveillance. 

 
 
5.12 Influenza 
 
Although influenza epidemics are associated with 
winter and thus lower temperatures (Fleming and 
Cohen 1996), the existing EWS relies on the 
constant monitoring of virus activity in humans 
and animals (WHO 2000). 
 
The international network for influenza 
surveillance was established with WHO in 1948. 
It now consists of 110 National Influenza Centres 
in 83 countries and 4 WHO Collaborating 
Centres for Virus Reference and Research 
(Figure 3). The network is complemented by a  
 
 

web-based database (FluNet) in which weekly 
reports of influenza activity in each location are  
entered9. Results from the network are reviewed 
by WHO in February and September in order to 
assess the likelihood of an influenza epidemic 
and make recommendations to vaccination 
manufacturers about the antigenic strain likely to 
be prevalent in the following year. This system 
has operated for more than 50 years and 
generally is considered to be successful (WHO 
2000), although there have been no formal 
assessments of the accuracy of epidemic 
prediction.   
 
A collaboration of eight European networks, The 
European Influenza Surveillance Scheme is an 
integral part of WHO’s influenza surveillance 
system which collects information on, among 
other things, the number of influenza encounters 
per general practitioner, virus isolation and 
mortality (Snacken et al. 1992). These data are 
assessed in comparison to the epidemic threshold 
discussed above and previous background rates 
of influenza (Fleming and Cohen 1996) in order 
to provide early warning of an outbreak. 
 
This system of influenza surveillance and early 
warning is a useful example of how similar 
systems can be set up for other infectious 
diseases. Indeed, it is feasible to envisage a 
scenario where these influenza centres could be 
equipped to monitor other infectious diseases in 
the region: for instance, the National Center for 
Infectious Diseases Surveillance Resources esta-
blished by the CDC in Atlanta, Public Health 
Laboratory Services (PHLS) in the United 
Kingdom and Agence Française de Sécurité 
Sanitaire des Aliments in France.  However, the 
WHO influenza network suffers from a lack of 
geographical coverage, and could be expanded. 
 
 

                                                 
9  http://rhone.b3e.jussieu.fr/flunet/www/ 
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Figure 3.  WHO influenza surveillance network (WHO 2000). 
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6.  General discussion and conclusions 
 
It is generally accepted that the transmission of 
many infectious diseases is affected by climatic 
conditions. Diseases caused by pathogens which 
spend part of their life cycle outside of human, or 
other warm-blooded, hosts are particularly 
climate-sensitive. Some of these diseases are 
among the most important global causes of 
mortality and morbidity, particularly in poorer 
populations in developing countries. In many 
environments, these diseases occur as epidemics, 
possibly triggered by changes in climatic 
conditions favouring higher transmission rates. 
 
Efforts to develop climate-based disease EWS 
date back to the work of Gill and co-workers in 
India in the 1920s. Interest has been rekindled in 
recent years, however, reflecting in part 
increasing levels of concern over possible future 
impacts of climate change on human society. At 
the same time climate and other environmental 
data have become widely available and relatively 
inexpensive, as have GIS and other tools required 
to link these observations with disease data. 
There is, therefore, clear justification for in-
vestigating climate based EWS’ potential to 
allow advance planning of control interventions. 
The case for such EWS has been made repeatedly 
in review papers, particularly in the context of 
malaria. 
 
In this report, we have reviewed the degree to 
which important infectious diseases are sensitive 
to climate variations, and used this as a basis for 
identifying diseases for which climate EWS may 
be most useful. We have adapted existing work 
on malaria to form a generalized framework for 
developing EWS for infectious diseases. 
Subsequently we review the extent to which 
existing systems provide accurate advance 
warnings of the likelihood and size of epidemics, 
which are useful in making control decisions. 
 
 
These sections show that there is considerable 
research activity in this area.  Of the diseases that 
meet our criteria for having the potential for 
climate-based EWS, only a few (African 
trypanosomiasis, leishmaniasis, yellow fever and 
Murray Valley encephalitis) have no reports of an 
EWS being developed. For others (St. Louis 
encephalitis and West Nile virus in the United 
States) there are operational and effective  

 
warning systems, but these rely solely on rapid 
detection of virus activity – i.e. similar to the 
strategy employed for early detection and pre-
diction of influenza outbreaks. It remains unclear 
whether adding climatic predictors would 
improve predictive accuracy or the lead-times 
associated with these systems. For the remaining 
diseases (cholera, malaria, meningitis, dengue, 
Japanese encephalitis, Rift Valley fever and Ross 
River virus) research projects have demonstrated 
a temporal link between climatic factors and 
variation in disease rates. In some of these 
projects the power to predict epidemics has been 
tested already, although in many cases the tests 
are preliminary, based either on a very limited 
dataset, or with little description of the methods 
used. There are no published reports indicating 
that any of these systems currently are used for 
influencing control decisions (see Table 3), 
although efforts are being made to set up and 
validate such EWS for malaria (Southern Africa 
Malaria Control (SAMC), unpublished reports). 
 
It is not clear why such systems are not widely 
used, but we suggest a number of likely 
explanations. Firstly, affordable and accessible 
data and analytical tools have become widely 
available only recently so that the field is at a 
relatively early stage of development. Many 
more studies should be available in the next two 
to three years as systems are completed and 
tested in other locations. Secondly, as few studies 
have been published there are no generally 
agreed criteria for accessing predictive accuracy. 
Consequently it is difficult to judge the utility of 
existing systems. Thirdly, most research projects 
have been carried out on relatively limited 
resources and therefore have not been tested in 
locations outside of the original study area. 
Fourthly, most studies in this area focus solely on 
climate factors and do not explicitly test other 
explanations for variations in disease rates 
through time. Finally, as such studies are often 
under-taken as pure research it is not clear to 
what extent they address specific control 
decisions and are of use to health policy-makers. 
 
Of the several possible ways to help to address 
these issues, perhaps the most urgent is the need 
to maintain and strengthen systems for reporting 
incidence of epidemic diseases. High-quality, 
long-term disease data are essential for 
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generating models relating climate to infectious 
disease.  It is probably true to say that 
development of EWS for some diseases has 
stalled because of a shortage of suitable 
epidemiological data. More commonly, 
disease/climate modelling has been restricted to 
discrete datasets for relatively small areas. These 
exercises are useful for exploring methodological 
issues and in many cases have produced 
promising results although there are questions 
concerning the extent to which findings from 
these studies can be generalized. The 
implications of this are that before EWS can be 
widely tested or applied, usually it will be 
necessary to bolster existing disease surveillance 
systems.  In some cases there may be a need to 
begin this process from scratch – in others, viable 
systems may exist but require modification to 
ensure timely transfer of data from the point of 
collection to the point of analysis. For diseases 
such as malaria, which often are diagnosed 
clinically, further work needs to be carried out to 
determine the extent to which quality of 
diagnosis affects our ability to recognise (and 
predict) epidemics. 
 
There is a need for clear definitions of 
terminology and methods for assessing predictive 
accuracy.  If the aim of an EWS is to predict 
epidemic versus non-epidemic time periods, the 
definition of an epidemic (i.e. number of cases in 
a specific population over a specified time) 
should be determined before the modelling 
process is carried out. The accuracy of such 
systems could be measured using standard 
epidemiological measures such as sensitivity, 
specificity, positive and negative predictive 
value, and kappa statistics. The accuracy of 
models which attempt to predict case numbers 
could be measured as the root mean square error, 
or as correlation coefficients between observed 
and predicted case numbers. In all cases, model 
accuracy should be assessed against independent 
data (i.e. not included in the original model 
building process) to give an accurate replication 
of an attempt to predict a future epidemic.  

Predictive models ideally should be tested in a 
wide range of locations and, if necessary, 
adjusted to take account of geographical 
variations in climate-disease relationships. 
 
It is important for any EWS to test for non-
climatic influences (e.g. the effects of population 
immunity, migration rates, drug resistance) on 
variations in disease rates. Thorough testing of 
alternative explanatory factors should avoid 
incorrectly attributing disease variations to 
climate. More importantly in practical terms, 
measurements of all relevant factors for which 
data are available should allow the generation of 
more accurate predictive models.   
 
As research into EWS moves beyond the pure 
research stage, it becomes increasingly important 
to include health policy-makers in all stages of 
system design. For example, local disease control 
personnel should be involved in defining an 
epidemic and in determining the most appropriate 
lead-times over which predictive accuracy should 
be assessed (e.g. whether it is more important to 
have an accurate prediction with a lead-time of 
one to two weeks, or a more uncertain prediction 
with a lead-time of several months). These 
discussions should take place in relation to 
specific control decisions, and consider local 
(particularly resource) constraints on the 
implementation of the EWS.  Experience with the 
famine EWS in the 1990s showed that its 
effectiveness depended less on the accuracy of 
warnings than on political factors.   
 
The final decision over whether an EWS should 
be implemented ideally should be made on the 
basis of a cost-effectiveness analysis. This should 
measure the value of information in collecting 
data on the various climatic and non-climatic 
influences, in terms of  both predicting the 
occurrence and size of epidemics and increasing 
the effective use of control resources. In some 
situations, for example, adding climatic 
information to an early warning system may give 
only a small increase in predictive power and 
therefore cost-effectiveness of control: however it 
may be sufficiently cheap and simple to collect to 
justify inclusion. 
 



 

 
 
Disease 
 

Current 
areas of 
interest 

Data availability Early warning 
systems 
 

Lead- 
time 

Future 
areas of 
interest 

Key variables of 
interest 

Action plan 

Influenza Worldwide  Ongoing surveillance
(weekly). 
Historical data 1948 - 

Active disease 
surveillance in 83 
countries. Separate 
system in Europe 

Weeks Worldwide Virus type and 
subtype 

Improve 
surveillance in 
Africa and central 
Asia 

Cholera Asia, south 
America 

Ongoing surveillance 
(weekly). 
Historical data 1949 - 

Passive disease 
surveillance in 74 
countries 

Weeks  Africa, Asia,
south 
America 

Zooplankton 
abundance, SST, 
ENSO, human 
factors, 
socioeconomic 
variables 

1. Use models for 
Bangladesh and 
Peru to predict 
epidemics 
2. Maintain and 
improve 
surveillance (Africa) 
3. Quantify the role 
of climate in Africa 

Malaria Sub-Saharan 
Africa, south 
America, 
Asia 

Ongoing surveillance 
(weekly) in Zimbabwe, 
Uganda, Kenya and 
Tanzania. 
Historical datasets 
(India, Africa, south 
America, Europe) 

1. Passive disease 
surveillance 
2. Model-based EWS 
development under 
way 

1. Weeks 
2. Months 

Sub-
Saharan 
Africa, south 
America, 
Asia 

Temperature, 
rainfall, ENSO, 
EIR, vector 
abundance, 
population 
immunity, control 
activities. 

1. Maintain 
surveillance and 
extend to new 
areas 
2. Quantify role of 
climate (Africa and 
Asia) 
3. Use models to 
predict epidemics 

Meningococcal 
meningitis 

Sub-Saharan 
Africa 

Ongoing surveillance 
(weekly). 
Historical data 1966- 

Passive disease 
surveillance 

Weeks Sub-
Saharan 
Africa 

Humidity, 
socioeconomy, 
vaccination 
coverage 

1.Quantify role of 
climate 
2. Maintain and 
improve 
surveillance 
3. Construct 
predictive models 

Table 3. Summary of the development of EWS for infectious diseases: current state of the art and future requirements 
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Disease 
 

Current 
areas of 
interest 

Data availability Early warning 
systems 
 

Lead- 
time 

Future 
areas of 
interest 

Key variables of 
interest 

Action Plan 

Leishmaniasis South and 
east Europe 

Ongoing surveillance 
(monthly/annually). 
Historical data 1994 - 

Passive disease 
surveillance but no 
warning 

N/A  Europe,
south 
America, 
central Asia 

Temperature, 
precipitation, soil 
humidity, 
vegetation, HIV, 
socioeconomy 

1. Quantify role of 
climate 
2. Improve 
surveillance in 
tropics 
3. Identify long-term 
datasets from 
tropics 

African 
Trypanosomiasis 

Sub-Saharan 
Africa 

Population screening 
(for non-epidemic form 
of disease). 
Historical datasets 
1900 - 

No warning N/A Sub-
Saharan 
Africa 

Temperature, 
precipitation, 
vegetation, 
reservoir animals 

1. Quantify role of 
climate 
2. Improve 
surveillance 
3. Construct 
predictive models 

Dengue/Dengue 
Haemorrhagic 
Fever 

South 
America, 
north 
America, 
Thailand 

Ongoing surveillance in 
all areas, but data 
quality (active vs. 
passive detection) and 
timing varies greatly.  

1.Active disease 
surveillance in Puerto 
Rico 
2.DEWS testing 
underway 
3.CIMSiM and 
DENSiM models 
predict dengue 
prevalence 

1. Weeks 
2. 6-12 
months 
3. Weeks 

South 
America, 
north 
America, 
Thailand 

Dengue 
seroprevalence, 
socioeconomy, 
virus type, human 
immunity, 
precipitation, 
temperature and 
humidity 

1. Quantify role of 
climate 
2. Maintain and 
improve 
surveillance 
3. Simplify CIMSiM 
and DENSiM 
models 
4. Construct 
predictive models 

Japanese 
Encephalitis 

Japan. 
Thailand 

Ongoing surveillance 
(monthly/annually). 
Historical data 

1. Passive disease 
surveillance  
2. Predictive model 

1.Weeks 
2.Months/ 
years 

China, 
Japan, 
Thailand 

Temperature, 
rainfall, reservoir 
animals 

1. Quantify role of 
climate 
2. Maintain, 
improve and extend 
surveillance 
3. Construct 
predictive models 

Table 3. Continued 
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Disease 
 

Current 
areas of 
interest 

Data availability Early warning 
systems 
 

Lead- 
time 

Future 
areas of 
interest 

Key variables of 
interest 

Action Plan 

St. Louis 
Encephalitis 

North 
America 

Ongoing surveillance in 
all US states. 
Historical data 1978 - 

1. Surveillance of bird 
infections 
2. Surveillance of 
mosquito abundance 
and infection 
3. Active surveillance 
of human cases 

1. Months 
2. Months 
3. Weeks 

North and 
south 
America 

Bird infections, 
temperature, 
rainfall 

1. Quantify role of 
climate 
2. Set up 
surveillance in 
south America 
3. Construct 
predictive models 
for US 

Rift Valley Fever Kenya, 
Zimbabwe 

Historical (non-
complete) disease data 
1950-1998. 

None confirmed  
(possibly disease 
surveillance) 

Weeks  Kenya,
Zimbabwe, 
South Africa. 

RVF activity, 
ENSO years, 
vegetation, 
rainfall and 
temperature. 

1. Ensure that 
surveillance is 
maintained. 
2. Set up sentinel 
animal surveillance. 
 

West Nile Virus North 
America. 

Virus surveillance 
(passive) in birds and 
humans in north 
America. 

1. Surveillance of 
dead birds and 
infected mosquitoes  
2. Surveillance of 
human cases.  

1. At least 
3 months. 
2. Weeks 

North 
America, 
southern 
Europe, 
Asia. 

Dead birds. 1. Quantify link 
between climate 
and disease 
outbreaks in US. 
2. Set up 
surveillance in 
Europe and Asia. 

Table 3. Continued 

 41



 

 42

 
 
 
 
Disease 
 

Current 
areas of 
interest 

Data availability Early warning 
systems 
 

Lead- 
time 

Future 
areas of 
interest 

Key variables of 
interest 

Action Plan 

Murray Valley 
Encephalitis 

Australia Ongoing surveillance in 
all states. 
Historical data 1991 - 

Passive disease 
surveillance 

Weeks   Australia Atmospheric
pressure, 
reservoir animals 

1. Quantify role of 
climate 
2. Maintain and 
improve 
surveillance 
3. Construct 
predictive model 

Ross River Virus Australia and 
Pacific 
islands 

Ongoing surveillance in 
all states. 
Historical data 1991 - 

1. Passive disease 
surveillance 
2. Predictive model 

1. Weeks 
2. Months 

Australia and 
Pacific 
islands 

Rainfall, virus 
dynamics, 
reservoir animals 

1. Expand model 
and try to predict 
future epidemics 
2. Maintain and 
improve 
surveillance (active) 
3. Quantify role of 
other factors 

Yellow fever Africa and  
south 
America 
 
 

Ongoing surveillance in 
at least 10 countries. 
Historical data from 
1948. 

Disease surveillance. Weeks Africa and 
south 
America 

Temperature, 
rainfall, vector 
abundance and 
breeding, socio-
economy, 
vaccination 
coverage 

1. Quantify role of 
climate 
2. Maintain and 
improve 
surveillance 
3. Set up animal 
surveillance 

Table 3. Continued 
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Appendix 1.  Selection of infectious diseases for inclusion 
in the report, starting with the diseases with the strongest 
evidence for interannual variability and link between 
climatic factors and disease outbreaks.   
 
 
Cholera 
 
Cholera is a bacterial infection causing both local 
outbreaks and worldwide pandemics of which the 
current, and longest running, began in 1961 
(Colwell and Patz 1998). Regional epidemics 
occur seasonally and are associated with periods 
of excessive rainfall, warm temperatures and 
increases in plankton populations (Colwell and 
Patz 1998, Shope 1991, Lipp et al. 2002).  The 
plankton link is due to cholera-carrying algae 
which are eaten by shellfish and other crustacea 
and thereby incorporated into the human food 
chain (Colwell 1996). To date it has been 
suggested that monthly and annual cholera deaths 
are positively correlated with SST (an ENSO 
correlate) in Bangladesh (Pascual et al. 2000, 
Rodo et al. 2002) and Peru (Epstein 1993, 
Colwell 1996, Speelmon et al. 2000).  Air 
temperatures also have been positively associated 
with outbreaks in Peru (Speelmon et al. 2000). 
 
Malaria 
 
Malaria is the most important vector-borne 
disease in the world today, causing an estimated 
annual one million deaths worldwide, 90% of 
which occur in sub-Saharan Africa (Greenwood 
and Mutabingwa 2002). It is a disease of tropical 
and temperate countries between the latitudinal 
limits of northern Korea and southern Africa with 
prevalence increasing generally towards the 
equator. Often outbreaks occur following periods 
of increased rain and temperatures. It is thought 
that primarily this is due to positive effects on 
vector breeding (e.g Kilian et al. 1999), 
development rates (e.g Jetten and Takken 1994), 
parasite sporogony (MacDonald 1957) and 
ultimately entomological inoculation rates. 
 
Several studies have demonstrated a positive 
association between the abundance of Anopheles  
gambiae s.l  and rainfall (e.g. Molineaux and 
Gramiccia 1980, Smith et al. 1995).  Gill (1921) 
found that increased malaria mortality in the 
Punjab correlated with high rainfall the previous  

 
month. More recent studies have shown a 
significant relationship between fluctuations of 
SST (associated with ENSO) and malaria cases 
or mortality rates in south America (Barrera et al. 
1999, Bouma et al. 1997, Bouma and Dye 1997, 
Poveda et al. 2001) and Asia (Bouma et al. 1996, 
Bouma and van der Kaay 1996). Hay et al. 
(2002a) concluded that there is no similar 
connection between malaria in Kenya and ENSO. 
 
The role of climate as a driving force for malaria 
epidemics still is fiercely debated, mainly 
because in some areas the link is clear (e.g. fringe 
areas) while in others it is more complicated or 
absent. In this respect, the importance of intrinsic 
population and extrinsic non-climatic factors also 
should be assessed when deciding whether to 
proceed with the construction of operational 
climate-based EWS. 
 
Meningococcal meningitis 
 
Meningococcal meningitis is an air-borne 
bacterial disease which shows a highly seasonal 
and epidemic pattern in sub-Saharan Africa 
where outbreaks occur during the hot, dry season 
and decline when the rainy season begins 
(Colwell and Patz 1998, Molesworth et al. 2002). 
In northern Benin, Besancenot et al. (1997) 
suggested a positive relationship between low 
absolute humidity and interannual variability in 
meningitis. Cheesbrough et al. (1995) reviewed 
geographical locations of epidemics and found 
that outbreaks were concentrated within a zone 
where absolute humidity remained below 10 g/m3 

throughout the year.   
 
 
Dengue / dengue haemorrhagic fever 
 
Dengue epidemics in urban areas are due to 
transmission by Aedes aegypti and can involve 
up to 70-80% of the population (Gubler and 
Trent 1993). Historical outbreaks of dengue and 
DHF characteristically have been associated with 
high rainfall as well as elevated temperatures and 
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humidity (Gubler et al. 2001) due to direct and 
indirect effects on pathogen and vector biology.  
Hales et al. (1999) suggested a positive 
relationship between monthly dengue incidence 
and temperature and rainfall in the south Pacific. 
More recently, Hay et al. (2000a) analysed 
monthly time series of DHF in Bangkok in 
correlation with mean monthly temperature and 
precipitation and found that the interannual 
periodicity of dengue was not matched by similar 
periodic cycles in temperature and rainfall. The 
authors concluded that intrinsic factors such as 
population immunity were more likely than 
climate to be the driving factors behind the 
epidemics. 
 
Yellow fever 
 
Yellow fever is a zoonotic viral disease which 
causes severe epidemics among humans in urban 
settings where Ae. aegypti is the only vector. The 
recent expansion of the geographical distribution 
of Ae. aegypti in many parts of the world (e.g. 
Asia and Europe) has caused concern about the 
emergence of yellow fever transmission, 
particularly in relation to climate changes (IPCC 
2001). The development of Ae. aegypti as well as 
the extrinsic incubation period of the yellow 
fever virus are highly dependent on temperature 
(Shope 1991) but the importance of temperature 
fluctuations in the inter-annual variation of 
disease is unclear (Reiter 2001). Vasconcelos et 
al. (2001) recently suggested that an increase in 
temperatures and rainfall in Bahia State, Brazil, 
may have contributed significantly to the 
epidemic in 2000. The role of rainfall in yellow 
fever epidemics also remains unquantified, but 
increases in precipitation are thought to be the 
principal driving factor behind epidemics by 
increasing the number of mosquito breeding sites 
(Reiter 2001). 
 
African trypanosomiasis 
 
Large scale epidemics of Rhodesiense African 
trypanosomiasis (sleeping sick-ness) are 
currently spreading across central and eastern 
Africa (Rickman 2002). There has been much 
recent interest in analysing the relationship 
between spatial patterns of African 
trypanosomiasis and climatic factors (Rogers 
2000), with particular focus on constructing 
predictive maps of tsetse distributions and 
abundance for future control purposes (e.g. 

Rogers et al. 1996, Robinson 1998, Hendrickx et 
al. 1999). Past studies have suggested a link 
between temperature and vegetation and the 
distribution of tsetse in Africa (e.g. Robinson et 
al. 1997, Rogers and Williams 1994, Brightwell 
et al. 1992). At present there is no clear link 
between climate and interannual variability of 
sleeping sickness. Rogers (2000) reported a 
significant correlation between monthly cases of 
sleeping sickness and LST in Uganda.  Also it is 
likely that rainfall patterns may be related to 
temporal distribution of disease. However, 
because of the strong association between cattle 
and human infections (e.g. Fevre et al. 2001, 
Rogers 2000) and other non-climatic factors such 
as population movements, deforestation and drug 
resistance, the climate’s exact role in sleeping 
sickness epidemics remains unclear. 
 
Japanese encephalitis and St. Louis 
encephalitis 
 
Japanese encephalitis (JE) is the leading cause of 
viral encephalitis in Asia with 30 000 – 50 000 
cases reported annually10. The disease is 
transmitted by Culex mosquitoes and maintained 
in a zoonotic system of pigs, water birds and 
humans. JE causes severe epidemics which are 
highly seasonal, occurring during the monsoon 
season when temperatures reach 30 °C or above 
(Mellor and Leake 2000). Rao et al. (2000) 
observed that JE cases peaked with an increase in 
temperature and rainfall in India while epidemics 
in China have been shown to be associated with 
rice cultivation (Okuno et al. 1975). 
 
St. Louis encephalitis (SLE) is transmitted by 
Culex mosquitoes and normally circulates in wild 
birds with occasional outbreaks in humans.  
Before an SLE epidemic, the number of virus-
infected mosquitoes increases through amplifi-
cation, resulting in a rapidly increasing number 
of infected birds and humans (Day and Stark 
2000). It has been proposed that certain biotic 
and abiotic conditions favour early season virus 
amplification and transmission.  For instance, an 
increase in temperature favours the development 
of mosquitoes and virus incubation (Hurlbut 
1973). The 1999 outbreak in New York City 
occurred during the hottest and driest summer on 
record (Day 2001). Recently, Shaman et al. 
                                                 
10 
http://www.cdc.gov/ncidod/dvbid/jencephalitis/index.
htm 
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(2002) suggested a positive relationship between 
droughts and SLE in chickens in Florida, 
indicating that periods of drought followed by 
heavy rain may be a driving factor behind SLE 
epidemics (Day 2001). 
 
Rift Valley fever 
 
Rift Valley fever (RVF) is a zoonotic disease 
which is transmitted by female culicine 
mosquitoes and causes occasional serious 
outbreaks in humans. Throughout history, these 
epidemics have been associated with above 
average rainfall and temperatures but until the 
late 1980s this link was based mainly on 
observations and anecdotal evidence (Davies et 
al. 1985). Linthicum et al. (1990) were among the 
first to provide evidence that significant increases 
in rainfall results and associated flooding were 
linked to RVF outbreaks.  Recently, it has been 
shown (Anyamba et al. 2002) that RVF outbreaks 
are positively associated with warm ENSO 
events and above-normal precipitation (indicated 
by remotely sensed vegetation patterns). A 
quantitative analysis of Kenya data from 1950 to 
1998 suggested that RVF activity was 
significantly correlated with SST and NDVI 
obtained from satellite images (Linthicum et al. 
1999). 
 
Leishmaniasis 
 
Leishmaniasis is caused by a protozoan parasite 
which is transmitted by the bite of phlebotomine 
sandflies. Visceral leishmaniasis (VL) is highly 
epidemic in certain areas such as Afghanistan, 
where a serious epidemic was reported recently11, 
and in large areas of north Africa, south-west 
Asia and south America (e.g. Seaman et al. 1996, 
Sundar et al. 2000, Werneck et al. 2002). 
Outbreaks of VL have been associated with 
population movements (Mansour et al. 1989), 
environmental modifications such as dam 
constructions and deforestation (Molyneux 1997) 
and changes in the availability of zoonotic 
reservoirs.  Climatic factors are thought to have 
been responsible for outbreaks in Sudan in 1985 
and 1986 where heavy rains favoured sandfly 
breeding (Elsafi et al. 1991). Franke et al. (2002) 
demonstrated a positive relationship between the 
incidence of VL and ENSO in Brazil. In 

                                                 
11  
http://www.who.int/emc/diseases/leish/leisdis1.html 

Turkmenistan, Neronov and Malkhazova (1999) 
suggested a significant positive relationship 
between the incidence of zoonotic cutaneous 
leishmaniasis, soil moisture and temperatures.  
Broutet et al. (1994) concluded that epidemics of 
CL in Brazil between 1986 and 1990 may have 
been attributable to climatic factors.  In addition, 
the seasonal abundance of sand-flies in south-
west Asia also has been shown to be dependent 
on temperature and humidity (Cross and Hyams 
1996, Cross et al. 1996). 
 
West Nile virus 
 
West Nile virus (WNV) is a zoonotic arbovirus 
which is transmitted by urban culex mosquitoes 
and occasionally produces illness in humans. 
Despite the relatively low importance to human 
health, WNV has received intense attention 
during the past two to three years because of 
much publicised outbreaks in United States’ 
cities (e.g. Crook et al. 2002, Epstein 2001).  All 
recent WNV epidemics have occurred during 
unusually hot and dry periods (Epstein 2001), 
fuelling speculation about a strong climate-
disease link. It has been suggested that the 
emergence of virus transmission in north 
America and parts of Europe (Hubálek and 
Halouzka 1999) may be due to climate change 
(Epstein 2001). Although there have been no 
attempts to identify and quantify statistically the 
link between climate and outbreaks of WNV, the 
disease is considered relevant to this report. 
 
Ross River virus and Murray Valley 
encephalitis 
 
Ross River virus (RRV) is an enzootic arthritic 
infection transmitted by Aedes and Culex 
mosquitoes with occasional spill-over to humans 
following virus amplification (see above). 
Epidemics of RRV occur mainly in southern 
Australia (Hales and Hearnden 1999) and 
typically are initiated in early summer. Previous 
studies have suggested a positive association 
between interannual RRV fluctuations and 
rainfall and temperatures (Tong and Hu 2001, 
Woodruff et al. 2002) as well as ENSO patterns 
(Maelzer et al. 1999). Woodruff et al. (2002) 
undertook the first quantitative analysis of 
monthly RRV cases and climatic factors which 
suggested that excess winter and summer rainfall 
were significantly associated with RRV cases. 
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Murray Valley encephalitis (MVE) is caused by a 
JE-related flavivirus, transmitted by culex 
mosquitoes in Australia. Epidemics have been 
associated with above average rainfall (e.g. Kay 
1980). Nicholls (1986) suggested that below 
average atmospheric pressure (an index of the 
Southern Oscillation and a precursor of heavy 
rainfall) was positively related to the occurrence 
of MVE the following year. 
 
Epidemic diseases with a weak or non-
existing climate link 
 
Influenza is highly epidemic and local outbreaks 
or pandemics occur due to changes in the viral 
antigenic proteins. Although seasonal flu-
ctuations are associated with decreases in 
temperatures (Lina et al. 1996), non-climatic 
factors such as virus type, vaccination pro-
grammes, human behaviour etc. are more 
strongly related to epidemics.   
 
Non-cholera diarrhoeal diseases present a very 
strong seasonal pattern with an increase in cases 
during hotter seasons in developing countries 
with poor sanitation. Studies have indicated that 
hospital admissions for diarrhoea can increase 
with increasing temperatures in Asia and south 
America (e.g. Pinfold et al. 1991, Callejas et al. 
1999). Checkley et al. (2000) demonstrated that 
temperature increases related to an ENSO event 
in Peru coincided with a 200 % increase in 
diarrhoea-related admissions. Singh et al. (2001) 
suggested a negative association between water 
availability and diarrhoea rates indicating that 
non-climatic factors such as sewage system 
quality and general sanitation also are strongly 
related to outbreaks, both independently, and 
through interaction with climate effects. 
 
Childhood diseases, including measles, pertussis 
and poliomyelitis, are highly epidemic in nature 
with outbreaks in the western world concentrated 
mainly during the school season.  There is no 
direct link between climate factors and epidemics 
of these diseases which are strongly influenced 
by vaccination programmes, human behaviour 
(contact rates) and population movements. 
 
Sexually transmitted diseases, including HIV, are 
listed as the most important infectious diseases 
worldwide. Although moderately epidemic in 
nature, there is no evidence that the prevalence or 
outbreaks of these diseases are associated in any 

way with climatic factors. The most important 
determinants of outbreaks are human-related and 
include sexual habits, contraception use and a 
range of socioeconomic variables.   
 
Tuberculosis (TB) is a contagious air-borne 
disease which kills approximately two million 
people each year. The current worldwide 
epidemic is increasing and becoming more 
dangerous due to the emergence of multi-drug 
resistant TB and the spread of HIV/AIDS. 
Epidemics of TB are strongly linked to drug 
resistance, HIV prevalence and general 
socioeconomic conditions but there is no 
immediate connection to climatic factors. 
 
Non-epidemic diseases with some 
climate link 
 
Intestinal nematodes develop in soil and it is 
known that factors such as soil humidity and 
temperature have a strong influence on the 
developmental rates of the immature stages 
(Brooker and Michael 2000). As there is little or 
no interannual variation in helminth infection 
incidence, research has focused on developing 
geographical risk maps (Brooker et al. 2002a). 
Thus, remotely sensed and ground-measured 
climate data have been used to construct risk 
maps of helminth infections in west Africa 
(Brooker et al. 2002b) with the aim of designing 
mass treatment programmes.   
 
The geographical distribution of schistosomiasis 
is related to environmental factors such as 
rainfall, temperature and water body composition 
(Brooker and Michael 2000). Remotely sensed 
surrogates of these climatic variables have been 
used for preliminary risk mapping of 
schistosomiasis in the Caribbean, Philippines and 
Egypt (Malone et al. 1994, Cross and Bailey 
1984, Cross et al. 1984). Although infection 
patterns in most areas show a seasonal trend, 
following rainfall and temperature fluctuations 
(Brooker and Michael 2000), transmission is 
usually relatively stable from year to year. 
 
Lymphatic filariasis is transmitted by a range of 
culicine and anopheline mosquito species in the 
tropics. Epidemics do not occur because the 
disease is chronic and clinical symptoms usually 
do not arise until years after infection. Recent 
studies have demonstrated that the geographical 
distribution of filariasis and its vectors in Africa 
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is related to temperature and precipitation 
(Lindsay and Thomas 2000). This information 
was used to predict the distribution of lymphatic 
filariasis and construct disease risk maps for 
Africa. 
 
Chagas disease (South American trypano-
somiasis) is caused by the protozoan parasite 
Trypanosoma cruzi. The disease is primarily a 
zoonotic infection with small sylvatic mammals 
such as opossums and rodents acting as 
reservoirs. Human disease is chronic with a long 
latency period and infection often can be 
asymptomatic. Chagas disease is not epidemic in 
nature and therefore EWS are not considered 
important for this disease. As with the other 
examples discussed above, there has been much 
interest in identifying the climatic correlates of 
disease and vector distributions (Peterson et al. 
2002).  Thus, it has been demonstrated that the 
presence of triatomine bugs is associated with 
high temperatures and low humidity (Carcavallo 
1999, Lorenzo and Lazzari 1999) as well as 
particular types of vegetation (Dumonteil et al. 
2002). 
 

Lyme disease is widely distributed in endemic 
foci in north America, Europe and Asia and 
limited only by the distribution of the ixodid tick 
vector.  The relationship between environmental 
factors and the distribution of ticks and Lyme 
disease is well understood.  A series of studies in 
north America have suggested that NDVI and 
temperatures are good predictors of both tick 
distributions and Lyme disease risk (Kitron et al. 
1997, Estrada-Peña 2002) and these relationships 
have been used for predictive risk mapping at 
state and national level (Nicholson and Mather 
1996, Dister et al. 1997, Kitron et al. 1997, 
Estrada-Peña 1998). Similar approaches, using 
remotely sensed vegetation data, have been taken 
for Europe (Randolph 2001, Randolph 2000). 
 
The incidence of Lyme disease shows a peak 
during the summer months (Orloski et al. 2000). 
There is no evidence that such peaks are climate-
related and it is commonly accepted that seasonal 
increases are due to changes in human behaviour 
(i.e. outdoor activities) which increase the rate of 
contact between humans and ticks. 
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