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Abstract 

The unplaced Fragment D of the Antikythera Mechanism with unknown operation, was a mystery 

since the beginning of its discovery. The gear r1, which was detected on the Fragment radiographies 

by C. Karakalos, is preserved in very good condition, but this was not enough to correlate it to the 

existing gear trainings of the Mechanism. According to recent researches and observations, the planet 

gearing indication on the Antikythera Mechanism is not probable, so the operation and position of 

gear r1, was still unknown. Based on Fragment A gearing trains, an ideal operation and proper 

position of this enigmatic gear/part of the Mechanism, is presented, analyzed and discussed, taking 

into account all of the mechanical characteristics and the other two parts of the Fragment D, visible in 

AMRP tomographies. The described operation and position of Fragment D, gives answers on several 

questions and improves the Mechanism functionality, contributing to the completion of the 

Antikythera Mechanism puzzle. 

1. Introduction. The Antikythera Mechanism, a geared machine based on the lunar 

cycles 

The Antikythera Mechanism, a creation of an ingenious manufacturer of the Hellenistic era, 

was a geared machine capable of performing complex astronomical calculations, based on 

the periodic cycles of the moon and the sun. After 2000 years under the Aegean/Ionian sea 

(Jones 2017; Voulgaris et al., 2019b), the Antikythera Mechanism is now a permanent exhibit 

at the National Archaeological Museum of Athens, Greece. 



At the Ancient Greece era, time calculations and predictions were directly correlated to the 

astronomical events and the position in the sky of the two celestial bodies, the Moon and 

the Sun. The astronomical events regulated the everyday life and human activities such as 

agricultural works, religious holidays, sacrifices to the gods, navigation etc. (Lehoux 2012; 

Anastasiou et al., 2013)  

At the ancient time, the lunar cycles were used as the main calendar time units (Hannah 

2013). Each month of the ancient Greek calendar begun with the New Moon, so the basic 

time unit was the synodic month (Bowen and Goldstein 1988; Hannah 2013). Even the 

Olympic Games started on the 8th or 9th Full Moon after the Winter Solstice (Vaughan 2002). 

Although one tropical year does not include an integer number of lunar synodic months, the 

lunar cycle prevailed instead of the tropical year, which was considered less important. 

It was Meton, a Greek mathematician and astronomer, based on older observations from 

the Babylonian astronomers (Bowen and Goldstein 1988; Danezis and Theodosiou 1995), 

that introduced a calendar using an integer number of 235 lunar synodic cycles (also 254 

sidereal cycles), which is equal to the integer number of 19 tropical years, known as 

“enneakedekaeteris”. Each Metonic year of 12 or 13 synodic months deviated from the 

actual start of the tropical year by several days, in order to keep the lunar synodic month 

intact (Geminus 1880 and 2002; Anastasiou et al., 2016a). 

The lunar cycles were chosen by the ancient astronomers and the “time keepers”, instead of 

the solar cycles for a number of obvious reasons: it’s easy to calculate a time span based on 

the moon’s every day changing phase, it is visible both at night and at day and it’s easy to 

observe bright stars when the moon is up on the sky. In contrast, the Sun does not exhibit 

any phases, it is impossible to detect stars when the Sun is above the horizon and the 

relative position of the Sun on the sky changes by about 1/12th of the lunar angular velocity. 

Also a special “solar phase”, i.e. a solar eclipse, is a rare astronomical event to observe from 

a specific place. All of these slow solar changes, lead the ancient astronomers to base their 

measurements and time keeping events on the lunar cycle. 

By studying the Antikythera Mechanism it is obvious that the operation, design and the gear 

teeth selection, were mostly based on the synodic lunar month: the bin axis-Lunar Disc-Input 

(the fastest of the rotating axes), the small Lunar phases sphere on the Lunar Disc and the 

cells on the two spirals (Saros and Metonic), were all precisely based on the synodic lunar 

month. The selection of the teeth number of most of the gear trainings was chosen in 

accordance to the synodic and sidereal lunar cycles, e.g. the number of the gear teeth e3 

(223 synodic months of Saros) and (c2/d1)*d2 (2 X 127 = 254 sidereal months of Metonic 



cycle). The rotation of the Lunar Disc, which is the proper input for the Antikythera 

Mechanism gearing trains, essentially defines the two lunar cycles - the sidereal and synodic 

month - as the basic time units for the calculations of the Mechanism. Only two out of the 

seven pointers of the Mechanism are related to the tropical year: the Golden Sphere-Sun 

pointer (which was probably adapted directly to the perimeter of the annular gear b1, 

Voulgaris et al., 2018b) i.e. one full rotation equals to one tropical year, and the athletic 

games pointer (one rotation per 4 tropical years). 

All of the above leads to the conclusion that the Antikythera Mechanism was a Luni-(solar) 

time/calendar geared machine computer, based on the lunar synodic cycle. 

2. The Lunar motions studied in the Hellenistic era 

The ancient Greek astronomers/geometers who had studied older observations by the 

Babylonians, Chaldeans and the Egyptians, continued the time measuring by observing and 

recording the positions of the celestial bodies (Evans 1998; Steele 2000; Hannah 2001; 

Steele 2002). We can assume that the ancient astronomers used an oblong, long length, 

papyrus with a central line calibrated with time subdivisions, representing the Ecliptic and 

with the zodiac constellation stars sketched, in which the astronomers noted the position of 

the Sun and the Moon every day. Obviously the study of this papyrus revealed the “strange” 

movement (anomaly) of the Moon relative to the stars and the Ecliptic. Based on these lunar 

movements, the astronomers introduced geometrical schemes/models using the line, the 

circle, the ellipse and the trigonometry, in order to represent the motions of the Moon 

(Ptolemy 1984). 

The four well known lunar motions, the synodic, sidereal, anomalistic and draconic cycles, 

where extensively observed and studied by the ancient astronomers, in order to find out a 

correlation i.e. a periodic coincidence of the start of these periodic cycles. Ptolemy 1984, in 

Almagest extensively referred on the main lunar cycles, giving a large number of calculations 

in tables (Pedersen 2011). The attempt of Ptolemy, Hipparchus and the previous era 

astronomers to (better) correlate - incorporate the four lunar cycles, it was obvious. 

The ancient astronomers realized that a correlation - phase synchronization (periodicity) of 

two of the four lunar motions/cycles, revealed a repeatability of the solar/lunar eclipses and 

the synchronization of three lunar cycles, presented eclipses with highly similar geometrical 

characteristics and classification (Oppolzer 1889; van den Bergh 1955; Meeus et al., 1966;  

Neugebauer 1975; Meeus 2004). The periodicity of the lunar motions, led to the adoption of 



the “interrelated cycles ratio in integer numbers”, a very useful canon, which was the key for 

the solar/lunar eclipses prediction. Ptolemy refers to the Saros cycle with the name 

“Periodic”, … since it is the smallest single period which contains an integer number of 

returns of the various motions” (Ptolemy 1984). 

Of course the most easily observed lunar cycle was the synodic month, i.e. the time span 

between two successive New Moons or Full Moons, which was easily measured with 

sufficient accuracy Fig. 1A,D. For this reason, the rest three of the lunar cycles were 

calculated based on the synodic month. 

The sidereal month is the time duration when the Moon returns approximately to the same 

star Fig. 1A,C, but the start of each cycle presents a different lunar phase. Moreover, it’s 

difficult to identify the start of each cycle: the daylight or the Full Moon light can erase the 

light of the nearby stars, making difficult the observations and the measurements. 

 

Figure 1: A pulley is adapted on the Lunar Disc of the Antikythera Mechanism functional model 

(designed/constructed by the FRAMe Project) and an electrical motor rotates the Lunar Disc via a belt 

(images taken from video frames). The position/phases of the Moon relative to the Golden sphere-Sun 

and the zodiac sky, are presented. A) The red dot that marks the Egyptian month of 1st MECHIR 

(ΜΕΧΕΙΡ), also the 18th zodiac day of Gemini (ΔΙΔΥΜΟΙ) is the starting position of the Lunar Disc 

and the Golden sphere. B, C, D) During the rotation of the Lunar Disc, the Golden sphere continuously 



changes its position relative to the zodiac sky (the small mismatch of the aiming, is a cause of the 

parallax error during the video recording). Each synodic month on the Antikythera Mechanism, started 

with the Full Moon phase (see Chap. 4). 

 

The anomalistic month, became evident by the variable, (increased-decreased) angular 

velocity of the moon in relation to the fixed stars. Geminus 2002 (Evans and Berggren 2006), 

refers that the minimum angular velocity is 11° 06’ 35” per day, at the start of the 

anomalistic month (apogee) and the maximum is 15° 14’ 35” per day, measured on the 

middle of the anomalistic month (perigee). Of course this angular variation is not easily 

detected without the use of an astronomical instrument (astrolabe) and by recording a 

number of observations and measurements, as Ptolemy presents in Almagest. Geminus also 

describes the mathematical process for the calculation of the mean lunar angular velocity 

and also refers the measuring error, as a result of the specific resolution of the instrument 

used. 

The variable lunar motion is also included on the Antikythera Mechanism (Freeth et al., 

2006), which is introduced by the operation of the pin&slot design on the gears k1/k2 

(Wright 2006; Gourtsoyannis 2010; Voulgaris et al., 2018b). The centers of gears k1 and k2 

are located in “off axis” position and the movement transmission, from gear k2 (slot) to k1 

(pin), presents a variable angular velocity, with values equal to the lunar variable motion. 

The fourth, more complex lunar motion is the continuous change of the position of the two 

lunar Nodes: The elliptical lunar orbit plane has an inclination to the Ecliptic about 5.15° and 

crosses the Ecliptic plane on two points, named Ascending and Descending Node. The line 

connecting the two Nodes, named Line of Nodes Fig. 2. The ancient astronomers, in order to 

justify the “strange” ecliptic latitude changes of the projected lunar movements in the sky, 

(correctly) introduced the model of the slow retrograde rotation of the Line of Nodes. 

Ptolemy 1984 in Almagest calls the time span in which the Moon crosses the same Node, as 

“Ἀποκατάστασις ἀνωμαλίας κατά πλάτος” (return to the same latitude), better known 

as draconic or draconitic month (by the Middle Ages myth of the Dragon which “eats” the 

sun during a solar eclipse, see Kircher 1646, page 548), also known as nodal or nodical 

month. The duration of the draconic month is about 27.2122d, a bit shorter than the sidereal 

month (27.3218d) Barbieri 2017. The two Nodes return to the same position relative to the 

stars, after 18.612 tropical years (a bit larger than a Saros cycle, see Espenak and Meeus, 

2008-NASA eclipse page). This means that the Nodes change their projected position on the 

sky, by about 1.564°/1 synodic month. Therefore, the Line of Nodes transits each 

constellation in about 19.2 synodic months. 



 

 

The draconic month is directly correlated to the solar/lunar eclipses: if at the start (first 

Node) or the middle (second Node) of the draconic month, there is a New Moon or a Full 

Moon, then a solar or a lunar eclipse will occur. 

One hundred years after Meton, Callippus based on his observations, improved the Metonic 

cycle into a more precise correlation between the lunar synodic cycles to the solar tropical 

year, known as a Callippic cycle (Waerden 1984b), which started on the New Moon and the 

Summer Solstice of 28 June 330 BC. On about 100 BC, Hipparchus further corrected the 

Callippic cycle, calculating a better approximation to the integer number ratio of the synodic 

month and the tropical year. 

Table I: The time measuring cycles measured in days and the corresponding duration in tropical years, 

as recorded by the observations of Babylonians and the ancient Greek astronomers. True and rounded 

values of the draconic month are presented. Note that 1/1000 of a synodic month is about 42.5 

minutes. The ratio of draconic to synodic month is rounded to 1.08520.  

Cycle 
(invented 

for…) 

Tropical 
years 

Number 
of Days 

Days per 
Year 

Synodic 
months 

Draconic 
months 

(rounded) 

Ratio 
Draconic/ 
Synodic 
month 

Draconic 
month 
(days) 

Saros 
(eclipses) 

 

18y 11.3d 

 
 

6585.322 365.2233  
223 

242 1.0852017 27.212074 

241.999 
(true) 

1.0851973 27.212186 

Metonic 
(tropical 

year) 

19y 6940 365.2631  
235 

255 1.0851063 27.215686 

255.021 
(true) 

1.0851957 27.213445 

Exeligmos 
(eclipses) 

 

54y 33d 19756 365.2235  
669 

726 1.0852017 27.212121 

725.996 
(true) 

1.0851958 27.212271 

Callippic 
(tropical 

year) 

76y 27759 365.25  
940 

1020 1.0851063 27.214705 

1020.84 
(true) 

1.0851957 27.192312 

Hipparchic 
(tropical 

year) 

345y 126010 365.246  
4267 

4630.5 1.0851886 27.213043 

4630.531 
(true) 

1.0851959 27.212861 

Babylonian 
(eclipses) 

441y 106.3d 161188 365.2646  
5458 

5923 1.0851960 27.213911 

5922.999 
(true) 

1.0851958 27.213916 

 

From Table I it can be seen that there is no satisfying relation of an integer number of 

draconic months to the tropical year cycles. The Metonic, Callippic and Hipparchic cycles 



were invented in order to better correlate the synodic month to the tropical year (Oppolzer 

1889; Meeus et al., 1966; Neugebauer 1975; Meeus 2004). Saros and Exeligmos, which 

remained unchanged to further corrections in future time (after Hipparchus), offer a better 

correlation to integer numbers between the draconic and the synodic cycle, but not for the 

tropical year and for this reason were the proper cycles for the eclipse predictions. 

3. Necessary Parameters for a solar/lunar eclipse - The Draconic cycle 

One of the most important astronomical events in antiquity and also today, is a solar eclipse 

(https://www.greatamericaneclipse.com/basics, https://sites.williams.edu/eclipse/2019-

chile/). In ancient Mesopotamia, Egypt and Greece, eclipses were correlated to an extended 

mythology, regarding the fight of Gods, the Kings and their thrones, dragons eating the sun, 

superstitions etc. In China of 2300 BC, the astronomers Hi and Ho were executed, because 

they failed to predict a solar eclipse (Brown 1931). The war between Medes and Lydians 

stopped during the eclipse of 28 May 585 BC, which was predicted by Thales (Panchenko 

1994; Stephenson and Fatoohi 1997; Herodotus 1998). Therefore, the prediction of a solar 

eclipse was a great challenge for the astronomers of the ancient world, who used their 

observations and calculations, in order to improve the accuracy of the eclipse predictions 

(Steele 2015). 

 

Figure 2: The cross section of the elliptical lunar orbit plane to the Ecliptic plane (not in scale). The 

limits of the Zone of Eclipses, are also presented. A) The Moon in apogee crosses the Ascending Node 

(i.e. the Draconic and the Anomalistic month start simultaneously). B)  60.5 draconic months (55.75 

synodic months) before, the Moon crosses the two Nodes with its mean velocity. Note that during a 

solar eclipse the corresponding Node is projected to (or close to) the same zodiac degree (constellation 

point) in which the Sun is located and during a lunar eclipse, the corresponding Node is projected to 

the opposite constellation point than the Sun. Schemes by the authors. 

 

https://www.greatamericaneclipse.com/basics
https://sites.williams.edu/eclipse/2019-chile/
https://sites.williams.edu/eclipse/2019-chile/


A solar/lunar eclipse will occur, only if two specific astronomical positional parameters are 

satisfied: 

1) The Moon is at its new phase (corresp. Full Moon), i.e. on the start (half) of the synodic 

month and 

2) At the same time, the New Moon (corresp. Full Moon) is located at (or close) to the 

Ascending or the Descending Node, i.e. close to the beginning (corresp. middle) of the 

draconic month Fig. 2. 

The resonance of these two periods in about 0 or 2π phase, guarantees that somewhere on 

the Earth, a solar (lunar) eclipse will happen Fig. 3. Of course, in order to predict where on 

Earth the eclipse will be visible, additional calculations and parameters is needed. 

If the three celestial bodies were point-like, an eclipse would occur only when the New (Full) 

moon exactly crosses one of the Nodes. Because the moon and the Earth have angular 

dimensions of about 0.5° for the moon as observed from the Earth and about 1.5° for the 

Earth as observed from the Moon, their corresponding shadows are extended. So, an eclipse 

can occur even if the moon is located in an angular distance from the Node. This way a zone 

on the Ecliptic can be defined with angular dimensions of about ±17° 25’ on either side of 

the Nodes, called the Zone of Eclipses. The ecliptic limits vary depending on the angular 

dimensions of the Moon, as a result of its varying distance from the Earth (perigee and 

apogee) i.e. by the Anomalistic cycle Fig. 4. The exact phase of the anomalistic cycle 

(perigee/apogee position) during the resonance of the synodic and draconic cycles, defines 

the type of the eclipse event (total, annular or hybrid, also less affected by the Earth’s 

apogee/perigee), (Espenak and Meeus, 2008-NASA eclipse page) and the exact time in which 

the moon approaches the Nodes or crosses the ecliptic limits, acting as a variable timer (see 

chap. 7.3). 

 



Figure 3: Harmonic graph of the draconic vs synodic cycle, assuming that the two cycles start 

simultaneously. On each of the resonance (or close to resonance) points (phase π or 2π) of the two 

graphs, a solar or lunar eclipse will occur. The units on the x-axis are synodic lunar cycles. (On the 

calculations for the graph presentation, the phase variation as a result of the anomalistic cycle, was 

not included). 

The lower half area of the Back plate of the Antikythera Mechanism was dedicated on the 

eclipse events information (Freeth et al., 2008; Anastasiou et al., 2016b; Freeth 2019; 

Iversen and Jones 2019), presented on the Saros four turns spiral, divided in 223 cells 

(synodic months). The ancient manufacturer calculated, designed and constructed the 

proper gear training for this operation and at the same time he knew the information 

regarding the sequence of eclipses and the time they occur, which was engraved on the 

corresponding cells. 

 

Figure 4: Graphic representation of characteristic eclipse event sequences, occurring in a time span of 

1.5 synodic month, based on the synodic and the draconic cycle. For the two cycles representation, 

Geogebra software was used. The Zone of Eclipses is presented in yellow color. Column A, The total 

solar eclipse of 11th August 1999, on which the Sun and the Moon were located close to the Ascending 

Node (retracted data from the Starry Night planetarium software). One fortnight (half synodic month) 

before this eclipse, on 28th July 1999, a partial lunar eclipse. One fortnight after the solar eclipse, on 

27th August 1999 no lunar eclipse occurred, because the Moon was out of the Zone of Eclipses limit. 

Column B, The total lunar eclipse of 26th June 2029 will be accompanied with the two symmetrical 

partial solar eclipses (12th June and 11th July), visible from the north and south poles of the Earth. 

Column C, The annular solar eclipse of 21th June 2020 will occur when the Sun and the Moon are 

located just on the Ascending Node. This eclipse will be accompanied by two symmetrical penumbral 

lunar eclipses: A fortnight before, on 5th June 2020 and one fortnight after the solar eclipse, on 5th July 

2020. 

 

4. Eclipses information/prediction mechanism on the Antikythera Mechanism  



The Antikythera Mechanism could predict with relative high accuracy, the main phases of 

the Moon and the position of the Sun on the sky (zodiac constellation) at the corresponding 

zodiac and metonic months (Voulgaris et al., 2018a). The user of the Mechanism, by turning 

the Lunar Disc, the proper in handling, input of the Mechanism (Voulgaris et al., 2018b), he 

could observe when the lunar pointer aimed directly to the Golden sphere (or on the 

opposite position). At these positions the small half white/half blackened lunar phase sphere 

of the Lunar Disc, shows its black (white) hemisphere (Wright 2006; Carman and Di Cocco 

2016; Voulgaris et al., 2018b). 

Although the ancient Greek months started at the day of New Moon and the day of Full 

Moon occurred in mid-month, Διχόμηνις (Theodosiou and Danezis 1995), this is not the 

case on the Antikythera Mechanism: 

On the Saros spiral a number of pairs of successive cells are preserved, presenting eclipse 

events on synodic months Fig. 5 (cells 25-26, 78-79 and 119-120, Anastasiou et al., 2016, 

Freeth 2018). Let’s assume that each cell (synodic month) of the Saros spiral begins at New 

Moon. When the Saros pointer aims to the cell-25, a solar eclipse on the 1st day of the 

month will occur. On the next cell-26, a lunar eclipse will occur at mid-month of the next 

month. The time span between the two events is 29.53d+14.765d = 44.295d = 1.627 draconic 

month. A period of 1.5 draconic month, includes four successive Node transits (or four 

Nodes +/-x°, with x≤17°), in time duration of 40.818d. So, the solar eclipse of the cell-25 will 

occur when the Moon is on the first Node (or on Node +/-x°). Therefore, after 1.5 draconic 

month, i.e. when the moon crosses the second Node (fourth successive crossing), the moon 

phase is 44.295d - 40.818d = 3.477d before the Full Moon phase referred on the cell-26, i.e. 

14.765d - 3.477d = a waxing moon of 11.288d crosses the second Node and therefore a lunar 

eclipse event is impossible to occur. 

So, if each synodic month/cell starts at the time of New Moon, then the sequence “solar 

eclipse in cell x and lunar eclipse in cell x+1, (i.e. next synodic month), is impossible to occur. 

One could argue that to resolve this problem, the rotation of the Saros pointer should be 

CCW, but the rotation of this pointer is definitely CW, as resulted by the index numbering of 

the Saros events, which increases in CW direction (Freeth et al., 2008; Anastasiou et al., 

2016b).  

This problem is totally resolved, if each of the 223 Saros cells-synodic months, starts at the 

time of Full Moon. Therefore, when the Saros pointer aims to the cell-1 (begin of the Saros 

spiral), the Lunar Disc pointer must be in opposite direction to the Golden sphere (Full 

Moon). This result also explains why on the preserved cells with two eclipse events (Σ/Η, 



cells 125, 131, 137, 172, 178, and 184, Freeth et al., 2008; Anastasiou et al., 2016b), the 

ancient manufacturer engraved the lunar eclipse event (Σ) on the top and the solar eclipse 

event (Η) on the bottom Fig. 5. 

The start of each synodic month at the New Moon phase, presents a difficulty on the precise 

calculation of the 1st day of the month: because the New Moon is not visible and also the 2d 

or 28d phase moon are too close to the sun - practically non visible - there is an 

indeterminacy of about ±2.5 days of the exact day that the new month begins. Because of 

this five day gap, the date of the start of the month, can only be calculated indirectly. On the 

other side, the lunar phase of ±1d from the full moon, can be easily resolved by naked eye 

observation. It seems that the ancient manufacturer took into account the practical-visual 

observations for the designing of his creation. 

By each re-aiming of the Lunar Disc pointer to the Golden sphere (corresp. in opposite 

position-Full Moon), there was a possibility that a solar (corresp. lunar) eclipse would occur. 

By only observing the Front dial plate of the Mechanism, it was not possible to know for sure 

if a solar or a lunar eclipse would occur. Information about upcoming eclipses was only 

presented on the Saros spiral, on the Back plate of the Mechanism (Freeth et al., 2008; 

Anastasiou et al., 2016b). Therefore, after the re-aiming of the Lunar pointer to the Golden 

sphere, the user should check the Saros spiral, to see if the Saros pointer was located inside 

one of the 223 cells, in which there were the corresponding eclipse event inscriptions. So, 

the eclipse events of the Mechanism are detected only by observing the Saros pointer. It 

seems that the calculation of the draconic cycle, which is necessary for the eclipses 

prediction, is missing from the Antikythera Mechanism. 

Let’s study the “nature” of the Antikythera Mechanism, as a measuring instrument. The 

synodic month was presented on the Antikythera Mechanism by several indications. 

According to Table II it is obvious that the ancient manufacturer constructed this machine-

time calculator, by utilizing two different speeds on its outputs. The Front plate pointers are 

High Speed/High resolution pointers, whereas the Back plate pointers are Low speed/Low 

resolution. 

For example, the High Speed pointer of the Lunar Disc rotates about 389° in order to 

complete one synodic month (360° for one sidereal month) Fig. 1. This means that the 

pointer moves relatively fast, making a large travel in one lunar month, thus offering a High 

Resolution information of its position (of all the Mechanism gears, the Lunar Disc rotated 

with the fastest angular velocity). The aiming of the Lunar Disc pointer to the Golden sphere 

can be achieved with very high accuracy by hand rotating the Lunar Disc (input). The High 



Speed pointers of the Mechanism present results that are based on precise geometrical 

characteristics e.g. the Full moon phase is depicted when the Lunar Disc pointer and the 

Golden sphere pointer are in opposite direction (180°).  

On the other hand, a large number of compressed information, is engraved on the scales of 

the Low Speed pointers: 235 words (months) on each cell of the Metonic spiral and a 

number of eclipse events on some of the 223 Saros spiral cells. Each Metonic cell (synodic 

month) of 29.53 days, has a mean dimension of about 7mm X 4mm and the pointer moves 

through this cell during 29.53 days. So, the Metonic pointer changes its position about 

7.6°/29.53 days ≈0.257°/day, (6.4°/29.53 days for the Saros spiral) Fig. 5. It is of course 

totally impossible to detect/measure time in precision of days directly on each of the 

Metonic/Saros cells (7mm/29.53  ≈0.237mm/day). 

By the above theoretical calculation it results that the minimum unit of time of the Metonic 

and the Saros spirals is one cell i.e. one synodic month, which is the minimum measurable 

unit. Therefore, it is impossible to measure time with an accuracy below this limit, e.g. if the 

pointer aims on the middle of the cell, this does not mean that the date is precisely middle 

month. This calculation “inconsistency” arises from the small dimension of each minimum 

unit, the engagement of the gears with triangular teeth shape, the gear periodic errors, the 

small precession of the training axes, the (small) off-center positioning of the central gear 

holes, the random teeth shape mismatches, the mechanical limits of the specific gear 

training etc. (Edmunds 2011; Jones 2017). 

 

Figure 5: A close up of the Saros spiral with the eclipse information. The angle which the Saros pointer 

travels in one cell/synodic month is about 6.4°. Note also the two pairs of successive cells in which the 



solar eclipse (Η) is referred on the first cell and the lunar eclipse (Σ), on the next cell. Also, the cells with 

two eclipse events on the same synodic month, are visible (the lunar eclipse on the first line and the 

solar on the second line). 

Such mechanical limits on the resolution, are present in all of the machines, even the optical 

instruments, such as telescopes, microscopes, spectrographs (resolution limits because of 

the diffraction of light, Hecht 2017). A simple paradigm for the above description is the 

resolution of the micrometer dial on the tool post slide hand-wheel (which moves the lathe 

support in y-axis): these subdivisions usually have a resolution of 0.025mm/subdivision line 

(or better) Fig. 6. This does not mean that in the middle between two lines, the position of 

the support has moved by 0.025mm/2, because the mechanical resolution of the support 

movement is 0.025mm. So, between the two lines there is an indeterminacy of the 

measurement. 

 

Figure 6: Close up of the micrometer dial of the tool post slide hand-wheel of a conventional lathe. 

Each line of the micrometer dial changes the tool post slide position by 0.025mm. Note that in any 

position between two lines, the movement of the tool post slide could not be defined.  

 

Finally, the speed of a gear train output, defines the resolution of the measurement i.e. the 

accuracy of the pointer (gearing output) regarding the presented result (output 

information). The output of Low Speed pointers represents a large capacity information, but 

in a low resolution of the calculation. Therefore, the two spiral pointers (Metonic and 

especially Saros), are indicators for information rather than for precise calculations based on 

geometry, as are the Lunar Disc and the Golden sphere. According to Table II the mean ratio 

of the two speeds of the Antikythera Mechanism is about 1/55. 

A significant notation, arising from the results of Table II, is that the eclipse events on the 

Antikythera Mechanism, are presented only by the Saros pointer, a low speed output, i.e. a 

low resolution calculation, without results based on the geometry. Moreover, the Saros 

pointer, is a long length pointer (≈82mm), with thickness of about 2mm (or less) (Anastasiou 

et al., 2014) and it is a delicate and mechanically sensitive part. 



Although the geometrical aligning of the Lunar Disc and the Golden sphere, is directly 

correlated to the Metonic spiral information, this specific geometrical aligning, only offers a 

probability and not a certainty (a precise calculation) for an eclipse event. 

Moreover, because of its low resolution, the Saros spiral is more of an “eclipse information 

table”, rather than an eclipse prediction scale. Therefore, it seems that the Antikythera 

Mechanism lacks a high speed gear training for eclipse predictions/calculations that could 

present high resolution results by means of a pointer, which is exclusively based on the 

geometry. 

Table II: The Low and High speed gear trains and pointers of the Antikythera Mechanism. Note that all 

of the (gearing) cycles present Low and High resolution measurements except the Saros gearing. 

 Periods of the 
Antikythera 
Mechanism 

pointers 

Low Speed gear training-
Low Resolution 

calculation 

High Speed gear train-
High Resolution 

calculation 

Angular Ratio 
High Speed / 
Low Speed 

1 Synodic month: 
Lunar phase Full 
moon of 1st day / 

New moon 15th day 
of synodic month 

Decorative Lunar phase 
little sphere on the lunar 

disc (6mm diameter). 
Black or White, no scale 

Central front dial Lunar 
pointer: Aiming to the 

Golden Sphere/Opposite 
position to the Golden 

Sphere, (0°/180°) 

 
No ratio 

2 Metonic period 
(19y) 

Five full turns on 
Metonic spiral, 1800° 

spiral dimension (travel ≈ 
1130mm) 

254 full rotations of the 
Lunar Disc (sidereal)= 

91440°, (travel ≈ 
79756mm) 

91440°/1800° 
≈ 50.8 

3 Saros period 
(18y 11d 8h) 

Four full turns on Saros 
spiral, 1440° (spiral linear 

dimension ≈ 1445mm) 

≈ 241 full rotations of the 
Lunar Disc 

(sidereal)= 86760°, (travel 
≈ 75674mm) 

86760°/1440° 
≈ 60.25 

4 Tropical year: 
Golden Sphere full 

rotation 

Metonic spiral pointer: 
5 turns/19y = 

0.263 turns per tropical 
year (≈ 94°).  

 

13.368 turns of the Lunar 
Disc ≈ 4812.5° (travel ≈ 

3358mm), one full turn of 
the Golden Sphere 
(travel ≈ 440mm) 

4812.5°/94° 
≈ 51 

5 Tropical year: 
Golden Sphere full 

rotation 

Saros spiral pointer: 
4 turns/18.03y = 

0.221 turns per tropical 
year (≈ 80°). 

13.368 turns of the Lunar 
Disc ≈ 4812.5° (travel ≈ 

3358mm), one full turn of 
the Golden Sphere 
(travel ≈ 440mm) 

4812.5°\80° 
≈ 60 

6 Tropical year: 
Golden Sphere full 

rotation 

1 quadrant of the 
Athletic Games scale, 90° 

(travel ≈ 12.5mm) 

13.368 turns of the Lunar 
Disc ≈ 4812.5° 

4812.5°/90° 
≈ 53 

7 Synodic Month on 
Metonic spiral 

Each cell on Metonic 
spiral ≈ 7.6°/cell, 
(travel ≈ 7mm) 

Re-aiming of the Lunar 
pointer to the Golden 

Sphere, after one turn ≈ 
389.1° (travel ≈ 2715mm) 

389.1°/7.6° 
≈ 51 

8 Synodic Month on 
Saros spiral 

Each cell on Saros spiral 
≈ 6.4°/cell, 

(travel ≈ 6.5mm) 

Re-aiming of the Lunar 
pointer to the Golden 

Sphere, after one turn ≈ 
389.1° (travel ≈ 2715mm) 

389.1°\6.4° 
≈ 60 

9 Solar/Lunar Eclipse 
prediction 

Probable Saros spiral cell 
(synodic month) 

  



≈ 6.4°/cell 
(travel ≈ 6.5mm) 

??? - - - 

 

The authors believe that the ancient manufacturer would not rely on the Saros pointer, a 

low resolution pointer and on the Saros spiral inscriptions (an information table), for the 

prediction of the eclipses – the most important prediction events of the Mechanism – 

without taking into account geometrical, high resolution calculations for these events. 

Because of the existence of the two different speeds on the Mechanism, the authors 

consider that the Antikythera Mechanism must have had an additional gear training, with an 

output dedicated on the eclipses prediction. This pointer should be the output of a high 

speed gear training, based on geometry, thus offering a high resolution calculation, so that 

the eclipse prediction calculation results, would be highly accurate and certain (see Chap. 7).  

5. The Fragment D - description and analysis of the gear r1 

Fragment D is an enigmatic and unplaced part of the Antikythera Mechanism. It was first 

noted by I. Svoronos and captured by A. Rehm in 1903, it was then misplaced and re-found 

in 1973 (Price 1974; Lazos 1994; Freeth and Jones 2012). Fragment D is strongly 

corroded/calcified in multiple thin layers, visible by naked eye. Its mechanical design 

information cannot be clearly detected Fig. 7. Fragment D is not correlated with the rest 

parts of the Mechanism. 

 

Figure 7: A) The front (original image) and B) back (mirrored image) visual photographs of Fragment D 

(Credits: National Archaeological Museum, Athens, K. Xenikakis, Copyright Hellenic Ministry of Culture 

& Sports/Archaeological Receipts Fund). C) Same scale AMRP corresponding radiography.  



D), Composite AMRP selected tomographies in pseudo colors, processed by the authors. The difference 

of the hole and the pin positions, as a result of the displaced parts after the breakage of the gear 

shaft, is clearly visible. 

By studying the AMRP Tomographies (AMRP, www.antikythera-mechanism.gr), Fragment D 

consists by three parts (Freeth and Jones 2012). 

The first part is a partially preserved Circular plate, with diameter 43mm (thickness about 

1mm, authors’ measurements), with a square central hole. On this Circular plate, three 

perpendicular pins placed symmetrically by 120° relative to the center, are clearly detected 

Fig. 8. By observing the preserved circular perimeter shape, it arises that this plate could not 

be a gear. On this plate surface area, there is no detection of any engraved line or 

subdivisions, that could lead someone to hypothesize that the plate was a measuring scale. 

 

Figure 8: Selected AMRP tomographies of a) the Circular plate, b) the gear r1, c) the Additional plate. 

A) the digital reconstruction of the Circular plate tomography, using well preserved areas of the plate, 

B) the digital “cleaning” of r1 gear, from its corrosion and the deposits, in order to make its 



mechanical characteristics, better visible. The stabilizing pin has also been placed on its correct 

position, C) the digital “cleaning” of the Additional plate, from its corrosion and the deposits. Also, the 

circular hole of the plate and the circular cross section of the gear shaft (probably the end of the 

shaft’s edge), which is placed on the circular hole of the Additional plate, are presented. AMRP 

tomographies were processed by the authors. 1), 2), and 3) the corresponding original bronze material 

reconstructions of the three parts of Fragment D, designed/constructed by the first author. 

In contact to the Circular plate, the gear r1 is clearly visible (thickness about 1.5mm) 

preserved in very good condition. Its radius slightly varies because of the contractional 

deformation and the random cracks (Voulgaris et al., 2019b), between 16.7mm-17.2mm. 

This gear also has a square central hole. C.Karakalos (Price 1974); Wright 2005; Freeth et al., 

2006; Freeth and Jones 2012, measured 63 gear teeth (61 teeth well preserved and 2 teeth 

missing). Around the perimeter of the gear stacked deposits of salts, calcites and petrified 

silt are located, following the shape pattern of the teeth, but a large percentage of these 

formations have been peeled out of the teeth boundaries. On this gear, the three pins are 

also clearly detected Fig. 8, with which the gear is stabilized on the Circular plate (stabilizing 

pins have also been detected on the gears c1/c2 and the l1/l2). This means that the gear r1 

and the Circular plate rotate with the same angular velocity, as one body. It seems that this 

Circular plate is a base for r1 gear, increasing the stability of the gear. 

 

Figure 9: The four stages for the relocation on the correct position of the Additional plate and the 

broken r shaft. A) The present position of the Additional plate and the shaft. B) Digital relocation of 

these two parts, in order to align the broken shaft to the same axial direction with the main part of the 



shaft (i.e. the remaining shaft on the gear). C) Relocation of the shaft and the stabilizing pin, in order 

for the pin to be in contact up to the gear surface (white line). By the specific position of the hole on 

the main part of the shaft (i.e. below the gear surface), it is evident that the main part of the shaft 

(which is preserved inside the gear) is also displaced or shrunk, because of the contractional 

deformation (Voulgaris et al., 2019b). D) A digital relocation of the main part of the shaft in 

perpendicular direction up to the stabilizing pin, is presented. The relocation travel is about 0.4mm-

0.5mm. 

Close to the gear surface and perpendicular to the gear shaft, a hole can be detected, in 

which the stabilizing pin of the gear was adapted. On this area, the shaft is broken. Above 

this hole, the AMRP tomographies reveal the stabilizing pin, the rest part of the broken axis 

and a strange shape piece, the Additional plate. These pieces have been displaced from their 

original position, as is evident by the difference in position of the corresponding formations 

(gear shaft, hole and pin) Fig. 8,9. The Additional plate (thickness about 1mm-1.5mm) is 

partially preserved in a particular shape, Fig. 8,9. Visible on the Additional plate is a circular 

hole, in which the broken and displaced circular axis, is adapted. 

The extended study of the AMRP Tomographies (original and also processed by the authors),  

does not reveal any proof for the existence of the three pins on the Additional plate, that 

could lead someone to consider that the Additional plate was fixed/stabilized on the gear r1. 

The clearly visible edges of the three pins are detected only between the Circular plate and 

the gear Fig. 9. Moreover, one of the three pins is totally out of the boundaries of the 

Additional plate Fig. 10E. 

Additionally, the existence of the perpendicular stabilizing pin of the shaft, between the gear 

and the Additional plate, prevents any contact between the surfaces of the two parts 

Fig. 8B, and 10C,D. Of course, before the material corrosion/calcification, the distance 

between r1 gear and the Additional plate, was at least 0.9mm-1.0mm, which is the thickness 

of the perpendicular stabilizing pin. Therefore, the Additional plate is not in contact to the r1 

gear and is totally independent from it. 

Inside the circular hole of the Additional plate, the broken part of the gear shaft is also 

preserved, which at this point has a circular cross section Fig. 8,10. The circular cross section 

design means that during the rotation of the r1 gear and its shaft/axis, the Additional plate 

does not rotate and it is totally independent to the gear/shaft rotation. 

The authors cannot find any other realistic mechanical operation for this Additional Plate, 

except that it was a simple oblong plate-artistically curved by one side (of which today only 

this part remains), acting as one out of two bearing points-plates for r1 shaft (see Chap. 7 



and Fig. 15): most of the Mechanism axes/shafts, are supported on two opposite points-

plates. For example, the preserved shafts f, g, h, i, are supported between two parallel plates 

Middle and Back (this is also mandatory for the lost shafts m, n and o) and the d shaft, 

between the Middle plate and the Ω-shape Retention bar (Voulgaris et al., 2018b). 

In Efstathiou et al., 2011; Anastasiou 2014; Basiakoulis et al., 2017; Seiradakis 2018 (slides 

224-238), the Additional Plate is represented as fixed on the gear r1 and rotating with the 

same angular velocity. It is also suggested that this plate acts as a cam leading to the 

calculation of the Equation of Time. This consideration does not agree with the AMRP 

tomographies and the observations presented in this paper. Moreover, this suggested 

design, has lots of additional real disadvantages, related to the suggested position of the 

gear r1, its stabilization, its operation, the way the results are displayed and the nature of 

these results. 

It is obvious that if the ancient manufacturer wanted to make the Additional plate to rotate 

with the same angular velocity to the s1 gear, he should have at least made the hole of the 

Additional plate and also the corresponding cross section of the r shaft, square. Moreover, 

the stabilizing pin between the r1 gear and the Additional plate, prevents any immobilization 

of the Additional plate on the gear, even if it had square cross section. 



 

Figure 10: A) A 3D representation using the 3D Slicer software (Fedorov et al., 2012), of the digitally 

reconstructed and “cleaned” AMRP tomographies of Fragment D, processed by the authors. B) The 

Fragment D represented in transparent layers. C and D) Two side views, in order to make the pin 

position visible. E) Left, the transparent and Right, the 3D representation of the “artificial 

radiographies” of the three assembled original bronze reconstructed parts, using the 3D Slicer 

software. Photos and processed images, by the first author. 

 

The existence and the specific position of the perpendicular stabilizing pin, leads to the 

conclusion that the pin was adapted in order to stabilized the gear on the specific position. It 

also results that gear shaft, was extended beyond the side of the Circular plate-base (today 

is missing), as is also observed on most of the preserved gear shafts of the Mechanism (e.g. 

shafts g, h, i). 

The engraved letters “ME” are detected on three different places on the Fragment D. 

Engraved letters have also been detected on two other gears of the Mechanism, on m1 

(letter H) and on b1 (letter N). These letters could be the assembly numbering of the parts 

(?), or it could be a more secret scenario, e.g. the manufacturer could have written his name 

or a phrase spread out on several parts of the Mechanism (?). 



6. The engaged gears b1-a1, the output on the a shaft 

The b1 gear is the largest gear of the Mechanism (Freeth et al., 2006). In contrast to e3 gear 

(the second larger), which is made by one piece of circular plate, the b1 gear consists of 

several assembled parts, which form four radial bars and a ring with teeth. The rest surface 

area of the gear does not have any bronze material. The absence of the material resulted to 

the irregular and relative strong, three dimensional deformation (shrinkage) of the b1 gear, 

mostly by the long-time stand still of the Mechanism on the sea bottom and its abrupt 

dehydration after its retraction from the sea (Voulgaris et al., 2019b). 

Teeth number measurements of b1 gear (in its present condition) were made by C.Karakalos 

(223-226 teeth), D.S.Price (225 teeth), M.T.Wright (216-231 teeth) and Freeth et al., 2006, 

(223-224 teeth). An additional problem for the precise measurement of the teeth number, is 

the difficulty for the detection of the true teeth boundaries and tip position: many of the 

preserved gear teeth are filled with deposits (salts, calcites etc., as also observed on the r1 

gear) that are following the shape of the gear perimeter, but at the same time they are 

altering or covering or erasing, the triangular shape of the teeth Fig. 13. In some areas, the 

teeth are worn out or destroyed or totally missing. Moreover, the b1 gear radius varies 

about ±1.1mm (Freeth et al., 2006, see also graph of Fig. 11). 

The calculation of the total teeth number is achieved by first measuring the preserved teeth 

and the corresponding epicenter angle (of course on their present condition and position) 

and afterwards according to the equation: total gear teeth = (teeth number/corresponding 

epicenter angle) X 360°. Obviously, the corresponding epicenter angle is not the original-true 

angle, because of the gear’s 3D (contractional) deformation (Voulgaris et al., 2019b). The 

epicenter angle measured between the teeth tips on a part with shorter radius (i.e. shorter 

perimeter), results to a smaller calculated gear teeth number (see Fig. 11). Obviously, the 

calculation of the mean value of the authors’ measurements was avoided, because the 

statistic average values of the measurements does not approach the initial/original teeth 

position, as most (or all) of the teeth positions are displaced by the deformation. All of 

these, make difficult the precise detection of the true teeth boundaries and tip position. 

Of course, before the contractional deformation of the Mechanism, the original radius of the 

gear was larger. The authors’ measurement of the gear teeth number is in the range of 219-

225 teeth (see the graphs of Fig. 11). This, leads to the conclusion that the original teeth 

number of the (bronze un-corroded/non-deformed) gear, must have been closer to the 

upper number of this measurement. 



 

Figure 11: A) The graph of the b1 gear radius vs angle position. Because the geometrical/mechanical 

centers of the two axes bin and bout, differ by about 0.4mm (as a result of the contractional 

deformation), the geometrical center of b1 gear central circular hole, was selected as the center for 

the radius and epicenter angle measurements. B) The graph of the calculated gear teeth number of b1 

gear vs angle position. This graph more or less has similarities in the monotonicity to the above graph, 

as a result of the radius variation. Authors measurements. 

The contrate gear/shaft a1 was ceremonially considered as the “input” of the Mechanism. 

Based on the observations of Voulgaris et al. 2018b, for several, very important mechanical 

and operational reasons, the most probable input is the Lunar Disc. This observation creates 

an additional output of the Mechanism with unknown operation, the shaft of a1 gear. 

Gear a1 with (definite) 48 teeth (Freeth et al., 2006), is located on the right side of the 

Mechanism and is engaged with b1 gear Fig. 12. Gear a1 and its shaft, rotate in 

perpendicular direction to the rest gearing trains. The gear has a rectangular central hole, in 

which the poorly preserved rectangular shaft is adapted. A central conical hole, a result of 

the shaft material processing during the construction by an ancient lathe (Voulgaris et al., 

2018b and 2019a), is visible by naked eye. In AMRP tomographies, a relatively thick pin with 

oblong cross section, perpendicular to the gear a1, is detected, Fig. 12F,G. This pin differs 



than the usual stabilizing pins, and it seems that it is an immobilizing pin, in order to fix a 

cylindrical bronze material (gear) to its shaft, probably before the material processing. 

 

Figure 12: A) The position of the contrate gear a1 relative to the gear b1. B) Front face close-up of the 

contrate gear a1. The (conical) central hole on the shaft is slightly visible, C) Back face close-up of the 

contrate gear a1 (Credits: National Archaeological Museum, Athens, A. Voulgaris-Copyright Hellenic 

Ministry of Culture & Sports/Archaeological Receipts Fund Photos), D) AMRP right side view 

tomography of the gear a1. Some of the gear teeth are visible and also the gear shaft with rectangular 

cross section and the (conical) central hole of the shaft, E) Bronze reconstruction of the a1 contrate 

gear, by the first author. F) The large pin, which immobilizes the a1 gear to its shaft, and the 

driver/nest of the gear, are clearly visible, G) AMRP top side view tomography of the gear a1. The 

rectangular cross section of the large and thick immobilizing pin is visible. 

 

Between the a1 gear and the Middle plate, a part is detected which is stabilized on the 

Middle plate by the use of an adhesive material (an alloy of and tin and lead, Voulgaris et al., 

2018c). This part acts as a driver (nest) for the a1 gear, in order to avoid the (probable) 

precession or displacement during its rotation, causing its disengagement with the b1 gear 

Fig 12F. 

The gear b1 is stabilized on the gear b2 by four pins and rotates with the same angular 

velocity (Freeth et al., 2006; Voulgaris et al., 2019b revised gearing scheme). Gear b2 

belongs to the main gearing of the Mechanism and its rotation represents the tropical year 

on the Mechanism. The larger b1 gear does not have any correlation to the main gearing of 



the Mechanism and regardless of its teeth number or even if it did not exist, it would not 

affect the main gearing sequence of the Mechanism. Therefore, this gear was adapted by 

the ancient manufacturer in order to introduce a new additional gearing, which started its 

movement by the engagement of the a1 contrate gear with b1 gear. The contrate gear 

transmits the movement in perpendicular direction to the rest gearing axes direction. The 

presence of the a1 contrate gear, leads to the conclusion that the ancient manufacturer 

wanted to extent the gearing in perpendicular direction, in order to be continued to the 

right side of the Mechanism. If he wanted the new gearing to continue the rotation on the 

same direction, he could use a simple gear with 48 teeth instead of a contrate gear. 

In contrast to most of the other gearing trains, which are engaged in reducing/dividing 

ratios, the a1 gear/shaft rotation originates from a multiplying ratio: b1/a1 ≈ 4.6 rotations of 

a shaft per one rotation of b1(b2) gear-tropical year. 

7. Adapting the Fragment D on the Antikythera Mechanism 

From Chapter 4 results that there is no High Speed (High Resolution) gearing for the eclipse 

prediction based on geometrical calculations. At the same time, an unknown output of the 

Mechanism and an unplaced gear exists. Following is a presentation of the thinking, the 

design, the gearing mathematical calculations, the use and the results of a new gearing, 

suggested by the authors, in order to achieve precise eclipse predictions based on 

geometrical calculations. 

 A new gearing can be introduced, in order to represent the second necessary parameter for 

the eclipse prediction: a gearing representing the draconic cycle - the fourth lunar cycle, is 

needed (see chap. 3). The output of the draconic gearing is a draconic pointer. This gearing 

train must be a High Speed (High Resolution), in order to extract results based on 

geometrical calculations. 

Therefore, the draconic gearing must be adapted in a position where the gears’ speed is high 

and at the same time, the candidate position must allow the adaptation of the additional 

mechanical parts. A proper position for the new gear training, is difficult to be placed close 

to the Lunar Disc (which easily presented the synodic/sidereal rotation), because the ratio 

draconic month/synodic month, cannot be precisely represented using small numbers, i.e. 

via a train of 2-3 engaged gears/also in small diameters i.e. small teeth number (see Table I). 



 

Figure 13: Same scale, digital placement of Fragment D on Fragment A, via the r(a)-shaft (partially 

preserved today), which is also the common shaft of the a1 contrate gear. The Circular (Bearing) base 

of Fragment D is on the right side of the External Wooden Decorative casement (Voulgaris et al., 

2019b). Fragment D is presented, according to the digital restoration/correct placement of the 

displaced parts, see Fig. 9,10. The AMRP radiography (Fragment A) and tomography (Fragment D) 

were processed by the authors. 

A proper position for this new-draconic gearing can be achieved on the a shaft-output, 

which starts by the engaged gears b1-a1. On the other edge of the a shaft, the r1 gear is 

adapted Fig. 13. The mechanical design and the dimensions of the a shaft, allows the 

adaptation of r shaft/r1 gear. A hypothetical gear s1, engaged to r1 gear is needed for the 

output of the draconic gearing train. The draconic pointer is adapted on the s shaft Fig. 

13,14. 

One full rotation of the draconic pointer corresponded to one draconic month. The 

measuring scale of the draconic pointer depicts the Ascending and Descending Node-points. 

Two simple pins in up/down position, anti-diametrically placed and stabilized on the External 

Wooden decorative casement (Voulgaris et al., 2019b), represent the two Nodes, one gold 

pin for the Ascending Node and one silver pin for the Descending Node. On either side of 

each Node-pin there must also be an arc shaped bronze strip, depicting the max limits of the 



Zone of Eclipses, ±17° for each Node Fig. 14. A draconic month is completed, whenever the 

draconic pointer returns to the same Node-pin, after one rotation. 

 

Figure 14: A, The position of the mechanical parts and the gear teeth number of the draconic gearing. 

B, the draconic scale: the draconic pointer, the Ascending (ΑΝΑΒΙΒΑΖΩΝ) and the Descending 

(ΚΑΤΑΒΙΒΑΖΩΝ) pin-Nodes and the two eclipse limits, are depicted. When the Draconic pointer 

aims inside the Zone of eclipses limit, a solar or lunar eclipse will occur (depending on the relative 

position of the Lunar disc and the Golden Sphere-Sun). If the pointer aims outside the Zone of Eclipses 

limit, there will be no eclipse. 

For the gear teeth calculations, the lunar cycles of Saros period (Table I) were selected, as 

the most proper period for the eclipse prediction.  

One Saros period of 223 synodic months = 242 draconic months. Therefore, on the 

Antikythera Mechanism, 242 full rotations of the draconic pointer are equal to 223 synodic 

rotations of the Lunar Disc (i), and also from the Metonic gearing 235 synodic rotations = 

254 sidereal rotations or 1 synodic rotation of the Lunar Disc Input = 254/235 sidereal 

rotations (ii). 

Therefore, 242 draconic rotations = 223 * 254/235 sidereal rotations (iii). Applying this 

equation on the Antikythera Mechanism gearing: 

[223 * (254/235)] * (b3/e1) * (e6/k2) * (k1/e5) * (e2/d2) * (d1/c2) * (c1/b2) * {(b1/a1) * 

(r1/s1)} = 242 rotations of draconic pointer (iv), therefore 

(b1/a1) * (r1/s1) = 13.42223271 (v). 

For a1 = 48 teeth (definite) and r1 = 63 teeth (definite), the equation (v) becomes 

b1/s1 = 10.22646302 (vi). 

For a gear teeth number of b1 = 225 (see Chap. 6), the equation (vi) results 

s1 = 22.00174 teeth, rounded to 22 teeth for the gear s1. 



 

Figure 15: The bronze reconstruction of the Additional (bearing) plate on Fragment D, taking into 

account Figures 14,16. The holes for the r and s shafts are presented. The two holes on the left, were 

made for stabilizing the Additional plate on the Internal Wooden casement, by the use of two pins. 

Reconstructed parts by the first author. 

From the above calculations, it results that for one rotation of b1 gear (one metonic tropical 

year of 365.2631579d), the draconic pointer rotates 13.42329545 times (draconic months), 

so 365.2631579d/13.42329545 = 27.21113896d/draconic month, instead of 27.21218683d 

(resulting from the true values of Saros cycle presented on Table I). The gearing exhibits a 

phase difference-error of -0.00104787d/1 draconic pointer rotation, i.e. about -1.5 

min/draconic month. Of course, such an error is too small compared to the mechanical 

errors of the Mechanism gearing (Edmunds 2011). 

Table IV: Continuing from Table I: the Low and High speed pointers for the Antikythera Mechanism 

eclipse prediction, introducing the draconic gearing on the Mechanism.  

Periods of the 
Antikythera 

Mechanism pointer 

Low Speed gear 
training-Low 

Resolution calculation 

Draconic High Speed 
gear train-High 

Resolution 
calculation 

Angular 
Ratio 

High Res / 
Low Res 

Eclipses 
calculation/prediction 

4 turns of Saros 
pointer/ 

1 Saros cycle 

242 turns of Draconic 
pointer /1 Saros 

cycle 

 
87120°/1440° 

= 60.5 



 

7.2 The “scenic” operation of the draconic gearing on the Antikythera Mechanism 

By introducing the draconic gearing on the Antikythera Mechanism, the operation of the 

high resolution eclipse prediction based on the geometry, is achieved. The specific position 

of the draconic pointer on the right side of the Mechanism Fig. 16, has also a special scenic 

operation: as the user rotates the Lunar Disc, when the lunar pointer aligns with the Golden 

Sphere-Sun i.e. New Moon phase (corresp. in opposite direction-Full Moon), he can also 

easily observe at the right side of the Mechanism, to see if the draconic pointer is located 

inside one of the two arc limits-Zone of Eclipses (bronze strip). If so, then he knows for sure 

that a solar (corresp. lunar) eclipse will occur. Afterwards, he turns the Mechanism to the 

other side (Back plate) and by observing the cell that the Saros pointer aims, he can read the 

eclipse information for the time of the eclipse event and also the metonic month in which 

the eclipse occurs. Of course, if the draconic pointer aims anywhere out of the limits of two 

arc-Zone of Eclipses, it is totally sure that the corresponding Saros cell, is empty (see Fig. 4). 

It is possible that the ancient manufacturer engraved the eclipse events sequence (glyphs) 

on the corresponding cells of the Saros spiral, by observing the relative position of the Lunar 

Disc pointer to the Golden sphere-Sun and at the same time the position of the draconic 

pointer relative to the Zone of Eclipses limits, while rotating the Lunar Disc-Input of the 

Mechanism. 

Regarding the letters “ME”, referred three times on the Fragment D parts, they could also be 

considered that they are the headings of the words “ΜΗΝ ΕΚΛΕΙΠΤΙΚΟΣ” or “ΜΗΝ 

ΕΓΛΕΙΠΤΙΚΟΣ” (Ecliptic Month), which is related to the three draconic gearing parts. The 

Ecliptic (ΕΚΛΕΙΠΤΙΚΗ) is referred on the Mechanism Back cover inscriptions as 

“ΧΡ(ΟΝΟΙ)…. ΕΓΛΕΙΠΤΙΚΟΙ” (times of eclipses) Bitsakis and Jones 2016. 

 



 

Figure 16: The draconic gearing scheme-Fragment D, positioned on the right side of the Antikythera 

Mechanism. The r(a) shaft, the Circular base, the (hypothetical) gear s1, the draconic pointer and the 

two Node-pins, are presented. The Circular plate enhances the stabilization of the a1 and the r1 gears. 

A) The first gearing scheme design, with the gearing parts adapted on the Internal Wooden Casement 

(Voulgaris et al., 2019b). B) The same design, adapted on the External Wooden Decorative Casement. 

This design has the disadvantage that the mechanical parts of the gearing are located outside the 

boundaries of the Mechanism. The r shaft penetrates the Internal Wooden Casement (design A) and 

also the External Wooden casement (design B). 

7.3 The variable velocity of the Moon - pin&slot gearing motion, visible on the 

draconic pointer 

From Voulgaris et al., 2018b, it is obvious that the variable velocity achieved by the gears k2-

k1 and transferred on the following gearing sequence, is not visible to the naked eye by 

observing any part of the Mechanism, because the gears’ rotation is in reduced angular 

velocity (slower motion) than the input/pin&slot gearing, and therefore the variability in the 

velocity is also reduced. 



On the other side, the rotation period of the draconic output-pointer, is about equal to the 

Lunar Disc sidereal rotation period: from the equations (a) and (b) it results that 1 Saros = 

242 draconic cycles ≈ 241.029 sidereal cycles i.e. 1 sidereal rotation (360°) of the Lunar Disc 

≈ 1.004028 draconic rotations (≈ 361.45°) (Voulgaris et al., 2018b), i.e. the draconic pointer 

rotates a bit faster than the Lunar Disc pointer Fig. 17. 

 

Figure 17: Left, harmonic graph of the draconic and anomalistic cycles, assuming that they start on the 

same phase (draconic in Ascending Node, anomalistic in apogee) and during the New Moon phase. 

The units of the x-axis (time), are in synodic cycles. Right, the white arrow represents the position of 

the Line of Apsides relative to the Nodes, which changes its position during the rotation of the draconic 

pointer (not depicted in the scheme). The draconic cycle starts with the arrow head pointing to the 

Ascending Node (Anomalistic month start - apogee), so that the moon crosses the Node with the 

minimum velocity. After 121 Draconic cycles (half Saros-Sar), the draconic pointer crosses the 

Ascending Node with the maximum velocity-perigee. On the 60.5th and also on the 181.5th draconic 

cycle, i.e. when the draconic pointer aims to the Descending Node, the pointer crosses the two Nodes 

with about its mean angular velocity. 

On the Saros cycle, 242 draconic months are also equal to ≈239 anomalistic cycles i.e. 1 

anomalistic month (from apogee to the next apogee) ≈1.01255 draconic months. This means 

that the Line of Apsides (the line connecting the points of min and max lunar velocity), 

delays on each draconic rotation, i.e. rotates in opposite direction relative to the Line of 

Nodes Fig. 17. 

On the Antikythera Mechanism, this change is visible on the draconic pointer. The draconic 

pointer rotation presents a variable angular velocity and the max-min velocities (Line of 

Apsides) change their position relative to the Nodes. The imaginary Line of Apsides, slowly 

rotates in opposite direction (CW) to the direction of the draconic pointer rotation (CCW). 

This means that the draconic pointer returns to the same Node-pin, each time by a different 

velocity, as it also happens every time the moon approaches a Node Fig. 17, see also Fig. 2. 



8. Epilogue 

The Fragment D/gear r1 was an unplaced part of the Antikythera Mechanism, with unknown 

operation. In this work, an ideal position and operation for this enigmatic part is presented, 

taking into account the present condition and the preserved parts of the Antikythera 

Mechanism. According to the authors’ opinion, the existence of the draconic gearing offers 

the necessary precise eclipse prediction/calculation of the Mechanism. The authors tried to 

correlate, by using the minimum hypotheses required, an unplaced gear with an unknown 

gear training output of the Mechanism, without adding any too hypothetical or theoretical 

parts and scenarios. For this attempt, the dimensions of the preserved parts, were taken 

into account. The simple design/construction of the draconic gearing, includes the use of the 

three existing gears (b1, a1, r1) and also a new gear (s1). No additional, hypothetical 

complex parts and engraved scale, was needed. 

This additional gearing train improves the efficiency of the instrument, which can now 

perform precise eclipse predictions/calculations. The adaptation of the draconic 

gearing/cycle on the Antikythera Mechanism, presents a complete representation of the 

four lunar motions that were well-known and studied in the Hellenistic era. The authors 

strongly believe that the ancient manufacturer of the Antikythera Mechanism, took into 

account the four integrated lunar motions in order to represent the celestial Cosmos on his 

creation. 

Summarizing: 

1) A realistic and relevant to the Antikythera Mechanism operation for the unknown a1 

output, was found, 

2) The multiplying rotation of the a1 gear, leads to a gear train output a few times shorter in 

rotation than the tropical gear, 

3) A mechanically accepted position and role for the unplaced gear r1, was detected, 

4) The existence of the two other parts of Fragment D was justified, 

5) The mathematical calculations of the draconic gearing are highly accurate, 

6) There is adequate space for the draconic training adaptation at the right side of the 

Mechanism and this specific position assists the Mechanism user during the operation, 

7) The teeth number of b1 gear was specified, 

8) The existence of the specific high speed gear training, offers the geometrical calculations 

needed for the eclipse events prediction/high resolution calculation of the Antikythera 

Mechanism, improving the accuracy of the eclipse predictions,  



9) The addition of the draconic gearing on the Mechanism, introduces the two mandatory 

lunar cycles for the eclipse prediction, 

10) The invisible to the naked eye, variable angular velocity produced by the gears k2/k1/ 

(adapted on the e5 gear), becomes visible on the draconic pointer rotation, 

11) Finally, by introducing the draconic gearing on the Antikythera Mechanism, the 

incorporation on the Antikythera Mechanism gearing of the four, well-studied in antiquity, 

interrelated lunar motions, is achieved. 

Although someone should be skeptical and wary when introducing new hypotheses 

regarding the Antikythera Mechanism, the authors believe there is a large number of logical 

reasons justifying the existence of this new operation/gearing. At the same time, they 

cannot find any mechanical or malfunctioning or non-correlation or teleology reason, in 

order to doubt or reject this new gearing. 

The main conclusion arising from this work, is that the ancient manufacturer found a way to 

engage the four main lunar motions that were recorded, well studied and extensively used, 

during the time of the Antikythera Mechanism construction. 
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