
 

 

 

  

Abstract—In this paper, we will present a heuristic method 

in order to combine the information about the parametric 

space of a conceptual hydrologic model from two different 

sources. On one hand, multi-objective evolutionary 

optimization algorithm NSGA-II is used to find a set of pareto 

optimal solutions. On the other hand, a Markov Chain Monte 

Carlo-based algorithm, i.e. Shuffled Complex Evolution 

Metropolis (SCEM) is used to highlight a set of parameters 

with higher posterior distribution. By covering the interval 

between the most crowded locations in the parametric space 

extracted by both algorithms, we will identify a set of pareto 

optimal solutions which is more robust than the initial non-

dominated set extracted by only NSGA-II.      

I. INTRODUCTION 

HE strength of multi-objective evolutionary algorithms  

has been reported by several researchers in recent years. 

The key feature of these algorithms is being population-

based which enable them to find a diverse set of pareto 

optimal solutions in a single simulation run [1]. Having a 

vast interval for pareto optimal solutions is a great advantage 

in order to assess different regions of attraction for a 

particular model parameter; however, this diversity may 

reduce the certainty about the model output by producing a 

wide range of possible model response. This wide bound for 

possible model answer in many cases, is a disadvantage 

particularly when we are dealing with prediction or long-

term simulation of a process. This issue will be more 

highlighted when we are dealing with real world modelling 

problems which contain some other sources of uncertainty 

that can affect the performance of overall model output. 

Furthermore, having a fine approximation of multi-objective 

response surface is time consuming in the case of real world 

modelling which may limit the number of function 

evaluations and consequently the number of running 

generation for multi-objective algorithms. Taking these 

difficulties in to account, along with the complexity of 

response surface reported for many real world modelling 

problems, make us to have a re-evaluation on the pareto-

optimal solutions based on the model output robustness, in a 

way of focusing on a particular set of pareto-optimal 
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solutions that has more certainty in terms of model output.  

While considerable attention has been given to the 

development of powerful multi-objective evolutionary 

algorithms which aim to efficiently find a diverse number of 

parameters that simultaneously optimize a set of objective 

functions, much less attention has been given to a realistic 

assessment of parameters uncertainty in the multi-objective 

formulation. The lack of a well-defined method for 

estimating uncertainty makes it hard to prune the set of 

initial non-dominated solutions resulted by evolutionary 

algorithms and extracts a set of still non-dominated but less 

variant in terms of model output.               

In this paper, a simple heuristic method will be set up in 

order to combine different knowledge about response 

surface of a hydrologic model coming from two different 

formulations for model calibration. One is the set of non-

dominated parameters set estimated by NSGA-II and the 

other is the posterior distribution density of the model 

parameters inferred by single-objective formulation of the 

likelihood measure in the form of Bayesian statistics in order 

to maximize the model likelihood. The outline of this paper 

will be as follows: First, the considered real world modelling 

problem, i.e. rainfall-runoff modelling will be briefly 

introduced and the problems around modelling calibration 

will be addressed. In the next two sections the applied 

calibration formulations for rainfall-runoff models will be 

introduced for NSGA-II and SCEM respectively. By 

analyzing the most crowded parametric regions estimated by 

both methods, a heuristic rule will be introduced in order to 

combine the parametric knowledge coming from both 

algorithms. Then the applied conceptual hydrologic model 

will be used for simulating the rainfall-runoff process in a 

US catchment located in Kansas. Comparing simulation 

results, it will be proved that the applied heuristic method 

can result to a set of still non-dominated solutions with less 

variation in error indices. Finally, the paper will be 

summarized and the conclusions will be derived.         

II. RAINFALL-RUNOFF MODELLING 

The conversion of rain and snow to runoff has long been 

studied by engineers to design hydraulic systems and by 

scientist to develop an understanding of the process 

involved [2]. Rainfall-runoff process is assumed as the 

transformation of total amount of rainfall to the reduced 

amount of runoff [3]. This natural process has two main 

characteristics. First, the retained amount of water varies 

with time which is proving the non-stationary origin of the 
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process under consideration. The other main feature of 

rainfall-runoff process is non-linearity which is coming from 

a large scale process, containing several sub-processes and 

internal complexities. These two aspects make the rainfall-

runoff modelling a difficult modelling task. Regardless to 

the intensive research attempts, there is still no rainfall-

runoff model being able to simulate the process in all 

circumstances [4]. Several modelling paradigms have been 

applied in the context of rainfall modelling ranging from 

crisp physical mechanistic models, based on solving 

governing partial differential equations [5, 6], to conceptual 

models, based on a realistic representation of the process 

with two simple lumped modules for Soil Moisture 

Accounting (SMA) and routing respectively [7, 8]; and from 

statistical system theoretic models such as ARMAX [9] to 

some pure data-driven models such as neural networks [10, 

11], fuzzy systems [12], and recently some hybrid soft 

computing-based models [13]. Because of many practical 

reasons, conceptual rainfall-runoff models are still the most 

accepted way to describe this process in time (local 

modelling) and space (regionalization). The latter task is an 

important goal in current rainfall-runoff modelling 

investigations when it is required to extrapolate the model 

parameters to a similar catchment which does not have 

enough measurements in order to calibrate the model. As 

mentioned, all conceptual hydrologic models contain two 

general parts (modules). The function of the moisture 

accounting modules is to transform total rainfall into 

effective rainfall, the rainfall that will occur as the runoff, 

and includes a number of different indications for 

evapotranspiration and soil moisture storage. The routing 

module simulates the lateral flow processes through various 

pathways, i.e., overland flow, throughflow and groundwater 

flow which convert the amount of effective rainfall to its 

corresponding runoff quantity. A variety of soil moisture 

accounting and routing modules have been introduced in the 

literature. 

From the modelling point of view all the conceptual 

models confirm two criteria [14]: (1) the structure of these 

models should be selected before any modelling activity and 

(2) the structure contains some parameters that do not have 

any explicit physical interpretation and should be 

approximated through calibration; therefore the 

identification process of conceptual models consists of two 

general steps: first, selecting an appropriate model structure 

which is mainly subjective and then approximating the best 

parameter set of this structure regarding to the input/output 

measurements, which can be formulated as an objective 

optimization problem. Previous studies in the area of model 

calibration reveal the model calibration as a complicated 

task due to different sources of uncertainty around 

modelling process which can affect the model output [15]. 

These uncertainties are mainly from following sources [16]: 

• Immeasurable randomness which is an inherent part of 

all natural phenomena.   

• Data uncertainty, i.e., error in the measurements or by 

data pre-processing. 

• Model specification uncertainty, i.e., the lack of 

convergence to a single best parameter set, regarding to the 

calibration versus available data. This problem is basically 

known as the identifiability problem and can be represented 

in calibration as producing a complex response surface with 

multiple local optima containing both small and large region 

of attractions and lots of discontinuities. 

• Model structure uncertainty, which is resulted from 

simplifications and/or assumptions in the description of 

natural process. It can be represented in calibration 

procedure as observing quite distinct optimal parameter sets 

for different periods in hydrograph such as low and high 

flow periods.  

There are several calibration procedures applied in the 

literature, ranging from primitive manual calibration 

procedures [17] to some complicated population-based 

approaches [18]. Most of previous attempts are 

concentrating around single objective formulation of 

calibration [19], but recent practical experiences with the 

calibration of hydrological models suggest that single 

objective function, no matter how carefully chosen, are often 

inadequate to properly measure all of the characteristics of 

the observed data and corresponding simulated values [20]. 

This is mainly because of structure uncertainty of the 

conceptual models which makes the modeler to consider a 

trade-off for modeling performance in different periods of 

hydrograph particularly for long-term daily simulations in 

which there is no explicit priority can be considered for any 

period and/or characteristic in the hydrograph. These 

observations have opened a new direction to the multi-

objective calibration of rainfall-runoff models.   

III. THE EVOLUTIONARY-BASED MULTI-OBJECTIVE 

OPTIMIZATION PROCEDURE NSGA-II FOR CALIBRATION OF 

RAINFALL-RUNOFF MODELS   

Non-dominated Sorting Genetic Algorithm II is a state-of-

the-art multi-objective evolutionary algorithm introduced in 

2002 [21] in order to improve the main drawbacks of 

previous algorithms, such as computational complexity, lack 

of elitism and not being parameterless. Analyzing some test 

problems, it was shown that NSGA-II has a better diversity 

preservation comparing to other elitist multi-objective 

evolutionary algorithms and it is able to compete with them 

regarding to its convergence to the true pareto-optimal front 

in both constraint and non-constraint problems. From then, 

NSGA-II has been used successfully in several real world 

problems such as multi-speed gearbox design [22], 

designing industrial cracking units [23], long-term 

groundwater monitoring design [24], traffic signal timing 

optimization [25], water distribution network design [26] 

and medicine [27]. 

In order to implement NSGA-II for calibrating rainfall-

runoff models, it is necessary to introduce an error vector, 

which should be optimized via the algorithm. Classically, 

there are several goodness-of-fit measures which have been 

used for calibrating or checking the performance of rainfall-

6793



 

 

 

runoff models [28]. Among these measures, we will stick to 

six:  
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which is well-known RMSE measure, frequently used in 

different fields. In this equation iQ is observed runoff at 

time step i , n is the total number of time steps and iQ̂ is the 

estimated runoff in time step i produced by model.  
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which is correlation coefficient, showing the degree of 

linear dependency between model output and observed 

runoff. Relating to the above formulation, Q  and Q̂ are the 

mean values of observed and simulated runoff respectively.  
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which is derived by Nash and Sutcliffe , which allows 

comparison of a model’s performance over different 

catchments.   
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which is the error of model in simulating the peak of 

hydrograph. It is trying to measure the performance of 

model in confronting with the extreme flood measured in 

catchment. 
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which is error in volume, representing the ability of model 

in satisfying long-term mass conservation.  

There is also another objective, rather important for water 

resources management, which is simulating the drought 

periods in a catchment. In order to quantify the ability of 

model in confronting with low-level flows, we used the 

logarithmic form of RMSE measure as follows: 
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Although each error measure tries to capture different 

characteristics of simulated runoff, all of the above 

equations use the whole period of simulation for calculating 

the efficiency index. In other words, it is assumed that a 

unique parametric set is capable to simulate the entire 

hydrograph. Recent studies of Boyle et al. [17] showed the 

existence of different response modes on catchment’s 

hydrograph, during the wetting up and drainage periods. It 

can be also shown that there are different response modes 

during high and low flows in both wetting and drainage 

periods. These observations inspired some researchers to 

apply some segmentations procedures in order to cut the 

whole hydrograph into different response modes and trying 

to find a behavioral error measure relating to each segment. 

In this study we applied a heuristic segmentation approach 

introduced by Wagener and Wheater [29] which is using the 

gradient of the hydrograph and an additional threshold as 

segmentation criteria to cut the whole hydrograph into 

different response modes. The flow gradient separates the 

hydrograph into wetting up and drainage periods in a way 

that positive gradient shows the rainfall periods, i.e. wetting 

up times and negative gradient shows the drainage periods. 

A threshold is used to separate period of high and low flow, 

which is mean flow for wetting periods and 50% of mean 

flow for drainage periods. In order to quantify the behavior 

of the model for each segment, the RMSE in each mode was 

used. For instance for Driven High flows (FDH), the 

following error measure can be defined:  

FDHi
nFDH

QQ

RMSE

nFDH

i

ii

FDH ∈

−

=

∑
= ,

)ˆ(
1

2

 
(7)

The above formulation can be easily extended to other 

response modes on the total hydrograph, i.e. Driven Low 

(FDL), Non-driven quick (FNQ), and Non-driven Slow 

(FNS) flows.      

IV. SHUFFLED COMPLEX EVOLUTION METROPOLIS (SCEM) 

ALGORITHM FOR UNCERTAINTY ASSESSMENT OF RAINFALL-

RUNOFF MODELS 

While classical calibration procedures treat model 

parameters as a fix but unknown variables, Bayesian 

approaches assume them as probabilistic variables; each has 

a joint posterior probability density function, which 

represents the probabilistic belief to the parameter’s value in 

the presence of observed data. This posterior probability 

distribution would be proportional to the product of the 

likelihood function and the prior density function. The prior 

density is the information about parameter’s value before 

any data is collected. Beven and Binley [30], showed that 

regarding to the complexities of response surface of 

hydrologic models, the prior density should be a uniform 

(non-informative) distribution over the feasible parameter 

space.  

If the model residuals are independent random variables, 

with constant variance and Gaussian distribution, Box and 

Tiao [31] proved that the likelihood of a parameter set 
)(tθ for representing data y can be calculated using: 
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In the above equation ( )ite )(θ is the model residual at time 

step i using parameter set )(tθ . Considering a uniform prior 
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in the form of 1)( −∝σθp , it can be shown that the influence 

of σ can be integrated out which is giving the following 

form of the posterior density [32] 
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SCEM is a Markov chain Monte Carlo sampler introduced 

in 2003 for optimization and uncertainty assessments of 

hydrologic models [33]. This algorithm is a modified 

version of original Shuffled Complex Evolution algorithm 

developed by Duan et al. [34]. SCEM algorithm tries to 

combine the strengths of the Metropolis algorithm, 

controlled random search, competitive evolution and 

complex shuffling, in order to continuously update the 

proposal distribution and evolve the sampler to the posterior 

target distribution. The algorithm can be briefly explained as 

follows: First an initial population is generated from the 

priory distribution and the posterior density of the 

individuals is computed using Equation (9). Based on the 

calculated posterior density, the population is ranked in 

order of decreasing posterior density, i.e., the sample with 

the highest posterior density gets the first position. Then a 

number of parallel sequences are initialized by choosing the 

first q points of the ranked population in which q is the 

number of considered sequences. Then for each parallel 

sequence a complex is composed from the ranked 

population. If the initial population has p samples and 

q parallel sequences are considered then each complex will 

have p/q samples. By applying these configurative steps, the 

algorithm is ready to evolve the population. The population 

is evolved by applying Metropolis algorithm in each parallel 

sequence and its corresponding complex. After all parallel 

sequences and their corresponding complexes evolved, the 

complexes are shuffled together and make the new 

population which substitutes the initial population. The new 

population is ranked again and the algorithm is repeated 

again up to the time that the termination criterion is satisfied. 

The detailed explanation of SCEM can be found in the 

original paper by Vrgut et al. [33]. They also extend this 

algorithm to multi-objective optimization [20]. In the 

original paper, the algorithm was successfully tested on 

three test problems including a conceptual hydrologic 

model. The MATLAB implementation of the algorithm is 

downloadable via [35], which was used for uncertainty 

assessment of applied model in the considered case study. 

V. HEURISTIC COMBINATION PROCEDURE  

NSGA-II and SCEM extract different information from 

the response surface of the model. NSGA-II is a multi-

objective optimization procedure which tries to highlight a 

set of non-dominated parametric values without considering 

uncertainty; whereas SCEM is a single objective Monte 

Carlo sampler for inferring the most likely parametric values 

in the light of observed data and considers uncertainty about 

the exact parametric values. Obviously, the posterior 

distribution of the parameters found by SCEM is not an 

uncertainty description for the results of NSGA-II, but 

combining both pieces of information in a proper way may 

integrate the strengths of both algorithms and reduce their 

drawbacks. On one hand, NSGA-II is producing a diverse 

set of non-dominated parametric values which may be 

located in the whole feasible parametric region. 

Consequently the variation of model prediction resulted by 

using the set of non-dominated parametric values can be 

quite high.  On the other hand, SCEM converges to 

narrower parametric region which is more robust (less 

variant) in terms of model output. However, SCEM results 

are only based on a single objective function. The 

motivation for combining the results of NSGA-II and SCEM 

is checking the possibility for extracting a parametric region 

which is still non-dominated but it is more robust in terms of 

model output. Here, we developed a simple heuristic 

procedure in order to combine the information about the 

response surface extracted from both algorithms.           

i) For each parameter identify the most crowded region 

in non-dominated parametric values computed by 

NSGA-II. Also identify the most likely region for the 

parameter value inferred by SCEM. 

ii) Identify the upper bound and lower bound of these 

regions.  

iii) Select the region between the minimum of lower 

bounds and maximum of upper bound as the 

extracted region. 

iv) Uniformly sample number of parametric values in the 

extracted region. Store the non-dominated parametric 

values. 

Figure (2) shows schematically how this heuristic 

combination works in a simple two dimensional parametric 

space X1-X2. Consider that the results of NSGA-II are 

highlighted by circular dots while the results of SCEM are 

shown by square dots. The rectangular region which 

contains the most crowded regions results from both 

algorithms is the new extracted region identified by applying 

introduced heuristic combination procedure.      

X1

X
2

 

 

 
Fig 2. Schematic application of the introduced heuristic combination 

procedure      
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VI. APPLIED CONCEPTUAL MODEL AND CONSIDERED CASE 

STUDY 

Different researches have reported that there is no need to 

consider too many parameters to describe key behavior of 

natural hydrologic process. In other words, increasing the 

number of free parameters does not significantly increase 

the model performance [36]. On the other hand, some other 

studies have suggested that usually up to six model 

parameters can be approximated using daily measurements 

with single objective calibration [37]. Therefore some 

researchers concluded that only conceptual models that have 

less than six free parameters should be used for describing 

the daily hydrologic response of natural catchments. These 

findings support the application of simpler (parsimonious) 

conceptual structures that only try to describe the key 

response modes of natural hydrologic systems. 

One of the frequently used parsimonious soil moisture 

accounting modules is Catchment Wetness Index (CWI) 

which is used in PC-IHACRES model and recently 

implemented in RRMT. This loss function is related to the 

well-known Antecedent Precipitation Index, used in several 

conceptual models. The detailed description of this module 

can be found in [38], [39], [40], and [41]. In brief, in this 

interpretation, the portion of effective rainfall at each time 

step is the average value of modulated system moistures at 

the considered time step and one step before. Modulated 

system moisture at each time step equals to the sum of the 

rainfall input at this time step and the modulated system 

state at one step before minus the depletion due to losses to 

stream and evapotranspiration. The depletion itself is an 

exponential function of temperature. In total, this loss model 

contains five parameters. Among them, two parameters are 

needed to be calibrated: time constant of catchment losses, 

and modulation factor. The other two, i.e. initial moisture of 

the catchment and reference parameter can be fixed and the 

fifth parameter, volumetric constant, is explicitly calculated 

from data.  However, in this work it is assumed that initial 

catchment state is also variable and will be estimated via 

calibration. 

The simplest routing module that has been used in the 

context of conceptual modelling is a single parametric 

reservoir that can be linear or nonlinear. The behavior of this 

reservoir can be described by combining two equations: a 

storage function describes the relationship between outflow 

and the amount of reservoir storage, which can be linear or 

nonlinear and a mass balance equation describing the rate of 

change in storage as the difference between inflow and the 

outflow. This module has two free parameters which should 

be calibrated: time constant and nonlinearity parameter. 

Details can be found in [42]. 

In this study, the conceptual model resulted from 

combination of these two modules is used. MATLAB 

implementation of this model is available in RRMT package 

and can be called by functions SMA_CWI and R_CRES in 

MATLAB platform. The RRMT model is available in 

internet and can be downloaded from the Imperial college 

portal website [43]. The acceptable range of parameters 

applied in this study is reported in Table I based on 

recommendations on [44]. 

 
TABLE I 

FEASIBLE PARAMERTIC VALUES FOR CWI_CRES CONCEPTUAL MODEL, USED 

IN THIS STUDY 

Model parameter Definition  

Feasible range used 

for the considered 

case study 

A)SMA_CWI    

Tau Time constant of the 

catchment losses 

 

[0    40] 

Refp Reference 

temperature 

[20    20] 

 

Mf Modulation factor 
 

[0     5] 

s(1) Initial moisture state 

of the catchment 

 

[0     1] 

Volc Volumic constant [0     0] 

 

B) R_CRES    

K Time constant [0    15] 

 

N Nonlinearity 

parameter 

[0.2      1]  

 

The 2038 2km  catchment, NINNESCAH River basin at 

CHENEY (USGS ID, 07144780), located in Kansas is one 

of the US catchments used in Model Parameter Estimation 

Experiment (MOPEX) of NOAA’s National Weather 

Service. Daily gauge measurements including rainfall, 

runoff and evapotranspiration along with physical 

characteristics of the catchment is available via [45]. 10 

years period (1966/10/1-1976/9/30) is selected for 

calibrating the introduced conceptual model. In order to 

have estimation about the shape of the model’s response 

surface, 5000 models was randomly chosen from feasible 

parametric space. Figure 2 shows the response surface for 

routing module parameters, i.e. time constant and non-

linearity parameter regarding to RMSE, which shows the 

complexity of response surface and existence of several 

local optima in the feasible parametric space. Analyzing the 

shape of response surfaces resulting from other error 

function introduced in Section III, shows that this 

complexity can be observed in all response surfaces. In 

addition the shape of resulting response surface will 

dramatically change when different error measures are 

applied, proving the multi-objective orientation of model 

calibration with high number of objectives. Further 

investigations showed that except correlation coefficient and 

Nash-Sutcliffe response surfaces, which can be described by 

RMSE, the other response surfaces are completely 

independent from each other. 

Khare, et al [46] pointed out that most of multi-objective 

evolutionary algorithms, including NSGA-II, have been 

mainly tested in the problems with two or three objectives. 

This observation motivated them to test these algorithms in 

some test problems with higher number of objectives with 

concentration on their ability to converge to the global 

pareto-optimal front, preserving diversity and running time. 
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The results showed that NSGA-II performed well on 

convergence and diversity maintenance and it was found 

faster in comparison with other considered algorithms. 
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Fig. 2.  RMSE response surface of the applied routing module in considered 

case study. Instead of plotting actual RMSE, -RMSE was plotted. 

 

MATLAB implementation of NSGA-II was used to 

calibrate the model on the applied case study. Objective 

functions are considered as all of ten error measures 

introduced in Section III. Real coding was used and the 

algorithm started with 50 randomly distributed individuals 

as initial population. Binary tournament selection and scatter 

crossover with probability 0.8 were used for selection and 

crossover operators respectively. For mutation, we used 

uniform mutation with probability 0.01. The algorithm was 

run for 100 generations producing a set of non-dominated 

parametric values. 

In order to find the most probable parametric values, 

SCEM algorithm was used. The algorithm started with 200 

random samples covering the feasible parametric space. This 

set was then divided to 10 parallel sequences each 

containing 20 samples. Each parallel sequence was evolved 

20 times before reshuffling. The maximum number of 

function evaluation was set at 5000.The last 1000 draws 

were used to infer the most probable parametric values.   

Figure 3 shows this combination procedure for the applied 

model parameters. Each row represents a model parameter. 

The first three rows are free parameters of SMA module, 

which are the time constant for catchment losses, 

modulation factor and initial storage of the catchment 

respectively. The last two rows are the parameters relating to 

routing module which are time constant and nonlinearity 

parameter. The left column shows the crowding distribution 

of the non-dominated set assigned by NSGA-II. The most 

crowded region is within the parametric interval with the 

highest bar. The middle column shows the posterior 

parameter distribution. The most likely parameter region is 

assigned by the highest bar. The right column shows the 

interval extracted by the introduced heuristic procedure. By 

applying the combination procedure, it is also possible to 

define a representative parametric region for each model 

parameter regarding to the considered catchment.   

0 10 20 30 40
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0 0.5 1

0 5 10 15

0.2 0.4 0.6 0.8 1

1 1.05 1.1

0.265 0.27 0.275 0.28

0 0.5 1

2.6 2.8 3 3.2

0.202 0.204 0.206 0.208

1 1.2 1.4 1.6 1.8

0.26 0.28 0.3 0.32 0.34

0 0.1 0.2 0.3

1 1.5 2 2.5 3

0.2 0.25 0.3
 

Fig 3. Extracted parametric region resulted by applying the heuristic 

combination procedure for the applied model in considering case study. 

VII.   RESULTS AND DISCUSSIONS 

Simulation results of this study are summarized in Table 

II. The results of NSGA-II are the lower and upper bounds 

of error indices resulted from using non-dominated 

parametric set extracted by the algorithm. For SCEM, these 

lower and upper bounds are related to simulation with most 

likely parameters assigned by SCEM. First of all, it would 

be interesting to compare the best error indices resulted by 

these algorithms. As it can be investigated, Equation (9) 

which is the objective function of SCEM is proportional to 

sum of squared error. Thus, comparing the result of NSGA-

II with SCEM for RMSE can show the ability of NSGA-II 

in converging to the model index when calibrated in a single 

objective form. Comparing 0.4466, the best RMSE of 

NSGA-II, with 0.4359 resulted from SCEM; it is shown that 

NSGA-II can nearly converge to this value. Comparing the 

upper bounds of correlation coefficient and Nash-Sutcliffe 

indices is also supporting this fact, since the shape of their 

response surfaces are very similar to RMSE. Comparing 

other error indices, it can be observed that for all remaining 

measures, NSGA-II can find better error index proving its 

success in extracting a set of non-dominated parameters 

regarding to all objectives. However, there is an outstanding 

difference between the lower and upper bounds for all error 

measures in NSGA-II, which is duo to great diversity in 

pareto-optimal parameters. Having such a wide bound for 

model performance is not approved when the use of model 

is required for prediction or long-term simulation of the 

rainfall-runoff process. In addition, as it can be found from 

Figure 3, it is difficult to assign a reliable representative 

region for model parameters using just NSGA-II, in case the 

purpose of modeling is regionalization.  

By applying the simple heuristic method, introduced in the 

last section, it will be possible to merge the advantages of 

both algorithms, which is extracting a set of non-dominated 

parameters set with less amount of uncertainty, i.e., 
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narrower possible model output range. As it can be 

investigated from Table II, combination approach, in all 

error measures can result to nearly the same optimal value 

identified by NSGA-II (upper bounds for correlation 

coefficient and Nash-Sutcliffe measures, lower bounds in 

the case of other objectives). The new set of non-dominated 

parameter set can also preserve the multi-objective 

optimality of the original NSGA-II results by providing less 

amount of lower bound compared with SCEM for last seven 

objectives.  

It should be noted that, by applying the introduced 

combination approach, we are not only prune the original set 

of pareto-optimal solutions extracted by NSGA-II; but it is 

also possible to find some new pareto-optimal solutions 

which could not be extracted previously by NSGA-II, since 

the minimum of lower bounds and maximum of upper 

bounds were used as the borders of extracted region. 

     
TABLE II 

POSSIBLE ERROR RANGES FOR NSGA-II, SCEM AND EXTRACTED REGION 

FOR APPLIED CONCEPTUAL MODEL CONSIDERING THE CASE STUDY             

 

Error function 

 

NSGA-II SCEM Combined 

 

RMSE 

 

0.4466 - 0.7569 0.4359 – 0.4417 0.4486 – 0.5024 

Correlation 

coefficient 

 

0.3654 – 0.7310 0.7368 – 0.7474 0.6368 – 0.7299 

Nash-Sutcliffe 

Coefficient 

 

-0.3644 – 0.5251 0.5354 – 0.5476 0.3989 – 0.5208 

Error in 

volume 

 

1.25
610−× - 

0.0995 
0.0014 – 0.1187 1.17

410−× - 

0.0641 

Error in peak 

 
0.5506 – 0.9926 0.7366 – 0.7492 0.6515 – 0.7348 

Logarithmic 

RMSE 

 

1.4846 – 7.2309 2.9490 – 6.9366 2.0263 – 5.7682 

RMSE of FDH 

 
1.3855 – 2.1546 1.3931 – 1.4445 1.3641 – 1.5430 

RMSE of FDL 

 
0.0828 – 0.8534 0.1705 – 0.2023 0.1270 – 0.3605 

RMSE of FNQ 

 
0.4154 – 0.7659 0.5522 – 0.5791 0.4413 – 0.6605 

RMSE of FNS 

 
0.0964 – 0.1522 0.1194 – 0.1329 0.0992 – 0.1178 

VIII. CONCLUSION 

Multi-objective evolutionary algorithms provide a set of 

non-dominated pareto-optimal solutions with a considerable 

amount of diversity. In the context of real world modelling, 

this diversity may result to a wide bound of possible model 

output which limits the applicability of model. In this study 

we proposed a simple heuristic procedure in order to 

combine the information from non-dominated parameters set 

resulted from NSGA-II with the posterior parameter density 

inferred by SCEM in order to extract a set of still non-

dominated but less variant in the terms of model possible 

output. The simulation results for a simple conceptual 

rainfall-runoff model show that the combination procedure 

can result a set of non-dominated parameters, which is more 

robust than the original results obtained by NSGA-II in 

considered case study.  
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Fig.3. Comparison between the possible model output ranges for a period of 

300 days of the hydrograph. The upper figure shows the possible model 

output using NSGA-II pareto-optimal parametric set. The lower one is 

produced by using the new pareto-optimal set extracted by the introduced 

procedure. In both figures, dots are representing observed runoff.  
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