
 
 

 

  

Abstract— This paper presents an efficient approach for the 
prediction of sunspot-related time series commonly used for 
monitoring solar activity, namely the Yearly Sunspot Number 
and the R12 Index. The method consists in matching a “de-
rectification” procedure of sunspot data with the use of 
nonlinear dynamics tools in order to design neural network 
based predictors with close-to-optimal performance. In fact, 
whereas the “de-rectification” process allows to obtain time 
series that can be modeled by neural structures much better 
than the original datasets, the incorporation of the prior 
knowledge extracted by using nonlinear dynamics into neural 
networks generates models able to fully capture the chaotic 
dynamics of solar activity. The proposed approach produces 
prediction results that outperform the most accurate methods 
existing in literature both for short and medium-term 
forecasting horizons.  

I. INTRODUCTION 
 

OWADAYS, it is well-known that high-frequency 
radio communications, electric power transmission 

lines, space activities concerning operations of low-Earth 
orbiting satellites, long term climate variations, weather and 
a number of ionospheric parameters are affected by the 
emission of solar particles and electromagnetic radiations 
reaching the Earth. Consequently, forecasting the future 
behavior of the solar activity, that is strongly related to the 
number of dark spots observed on the sun (Fig. 1), is a topic 
of growing interest in the scientific community. The 
monthly and yearly sunspot numbers as well as the related 
time series are the most suitable indexes that are used to 
characterize the level of solar activity.  
 In this work, we use data provided by the Sunspot Index 
Data Center of the Federation of Astronomical and 
Geophysical Data Analysis Services [1]. In the last years, 
several studies have revealed the chaotic nature of sunspot 
data [2], [3] and many prediction methods have been applied 
to the related time series. In most cases, the used predictors 
are based on learning machines, particularly Artificial 
Neural Networks (ANNs) [4]-[7]. This is surely due to their 
well-known characteristics of adaptability and nonlinear 
universal mapping approximation. Solar activity, in fact, is 
very difficult to predict using standard models due to high 
frequency content, noise contamination, high dispersion 
level, high variability in phase and amplitude [3].  
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Fig. 1. Dark spots observed on the sun. 
 
We can cite the work presented in [4], or the method in [7], 
that combines fossil and sunspot data to train a neural 
system to forecast the Yearly Sunspot Number. However, it 
is important to point out that interesting results have been 
also obtained using other prediction approaches [8], [9].  
 This paper describes a new methodology to forecast 
sunspot-related time series by exploiting Time Delay Neural 
Networks as prediction systems. Firstly, we “de-rectify” the 
original time series to obtain new data sets that can be 
modeled by neural architectures better than the original 
ones. According to one of our previous works [10], we use 
tools of the nonlinear dynamics theory to extract useful 
indications in order to generate the most suitable training set 
and design the network structure with close-to-optimal 
performance. Subsequently, after a pre-processing phase of 
training data and targets, we appropriately initialize the 
network weights and train the models. The proposed 
approach is fast, efficient, and allows to build neural 
architectures for sunspot-related time series that outperform 
the existing forecasting methods both for short and medium-
term prediction horizons. The organization of the paper is as 
follows. The next Section describes the sunspot data 
considered in this work. In Section 3, an overview on time 
series prediction approaches is presented. The description of 
the proposed methodology is provided in Section 4. Section 
5 is dedicated to the experimental results obtained and 
Section 6  gives the concluding remarks.  

II. SUNSPOT DATA 

 Solar activity is regularly monitored by many world 
observatories and research centers, that are able to provide 
the relative number of dark spots observed on the sun day 
after day. These data are recorded to give the so-called 
sunspot-related time series. In this work we consider the 
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Yearly Sunspot Number, shown in Fig. 2, that depicts the 
yearly number of dark spots from 1700 to 2004, and the R12 
Index, also called the International Monthly Smoothed 
Sunspot  Number, defined as follows: 

where MSNt is the number of dark spots observed during the 
month t. Most of the world observatories exploits this time 
series in order to forecast a part of solar activity. For 
example, the Paris-Meudon’s observatory currently uses an 
ANN-based predictor system, developed by Fessant [5], for 
long-term predictions of the R12 Index. The temporal data 
we take into account start from January 1849 and end in 
March 2005 but, obviously, they continue up to now.  

III. REVIEW OF TIME SERIES PREDICTION APPROACHES  

 The prediction of a time series consists, given a set of past 
observations (xt , xt-1, …, xt-n), in finding the future value 
xt+m, with m>0. The forecast t mx + is generally computed on 
the past history as following: 

ANNs, that are well-known as universal function 
approximators, are extensively employed to estimate the 
unknown function f. In order to process temporal patterns, 
an ANN must contain memory. If the neural model is a 
Multi Layer Perceptron (MLP), the simplest way to build 
memory into the network is to feed it with a tapped delay 
line which stores past values of the input. This kind of 
architecture, shown in Fig. 3(a), is called Time Delay Neural 
Network (TDNN). However, the main problem is the choice 
of the optimal number of “taps” for the delay line. In fact, if 
the time window is too narrow, the network could not 
capture the information necessary for an adequate 
modelling, while if the window is too wide, some inputs 
may act as noise [11]. Recurrent Neural Networks (RNNs) 
do not need a time window to store the past values of a time 
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Fig. 2. Yearly Sunspot Number from 1700 to 2004. 

series, since they possess an internal memory and, for this 
reason, seem the most suitable architectures to process 
temporal patterns. The Back Propagation Through Time 
algorithm (BPTT) is the most used one to train this kind of 
neural models. Unfortunately, unlike standard back-
propagation algorithms, the BPTT is not guaranteed to 
converge to a local error minimum and it can be used with 
small networks sizes in the order of 3 to 20 units, because 
larger networks may require many hours of computation on 
current hardware [12]. So, it is not wrong to affirm that both 
feed-forward and recurrent models present advantages and 
disadvantages. RNNs, (Fig. 3(b)) are very useful when an 
unknown number of past values is necessary to correctly 
predict the next values, but when the time series under study 
presents chaotic behavior, TDNNs designed by 
incorporating the prior knowledge extracted from temporal 
data by using nonlinear dynamics tools can provide 
excellent performance [10]. In fact, given a chaotic time 
series (xi , xi-1, … ,xi-n), re-constructing the state space from 
which the time series originated and using the embedded 
data vectors xi, e. g. 

as inputs of a predictor network can allow to adequately 
capture the dynamics of the underlying system. In (3), τ is the 
“time delay”, an integer indicating when the values xi and xi-τ 
are least correlated, and d is the “minimum embedding 
dimension”, that is the number of variables necessary to 
reconstruct the dynamics. Both these parameters have to be 
correctly determined to obtain a good prediction accuracy.  
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Fig. 3. (a) Time Delay Neural Network;  (b) Recurrent Neural Network.  
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It is important to point out, indeed, that interesting results in 
time series prediction can be also obtained using local 
models, generally based on nearest-neighbor methods [13], 
clustering algorithms [9], and fuzzy inference systems [14].   

IV. INCORPORATING PRIOR KNOWLEDGE FROM NONLINEAR 
DYNAMICS INTO NNS FOR SUNSPOT TIME SERIES PREDICTION 

 
The methodology proposed in this work for sunspot data 

prediction has its strength in the efficient matching between 
the “de-rectification” process of the time series and the 
incorporation of the prior knowledge that can be extracted 
by nonlinear dynamics tools into TDNNs. In fact, we use a 
more natural representation of the sunspot time series, 
obtained by “de-rectifying” the temporal data in order that 
the sign of the signal is switched at every cycle minimum, as 
shown in Fig. 4 for the Yearly Sunspot Number. As 
suggested in [7], this is well motivated since the 
approximate 11 year solar cycle actually consists of a 22 
year magnetic cycle that flips polarity every 11 years. In this 
way, the new time series appears more like a sum of 
sinusoids, whose oscillating pattern can be “learnt” much 
better than the original time series. Taking into account the 
chaotic behavior of sun activity and one of our previous 
works [10], we design the forecasting TDNNs with only one 
hidden layer and a number of taps in the input delay line at 
least equal to d-1, with d the minimum embedding 
dimension provided by Cao’s method [15], an efficient tool 
that, unlike other classical methods, to compute the 
embedding dimension needs only the time delay τ, which 
can be determined by the first minimum of the Average 
Mutual Information function (AMI). The number of hidden 
units is fixed using the simple heuristic rule that the number 
of total parameters can be approximately equal to 1/5 of the 
training examples. After that, we normalize the training set 
and targets so that they have zero mean and unity standard 
deviation, initialize the weights with the Nguyen-Widrow’s  
method  [16]  and  train  the  network  using  the Levenberg  

 

1700  1750  1800  1850  1900  1950 2004
-200 

-150 

-100 

-50 

0 

50 

100 

150 

200 Yearly Sunspot Number (De-rectified)

Year 

N
um

be
r o

f d
ar

k 
sp

ot
s 

(D
e-

re
ct

ifi
ed

)  

Fig. 4. De-rectification of the Yearly Sunspot Number. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Flow chart of the proposed methodology for sunspot data prediction.   
 
 

Marquardt algorithm with Bayesian regularization [17]. Fig. 
5 in detail describes the proposed method to design sunspot 
data predictors that will be explained as follows. After the 
de-rectification process, the time series under study is 
examined with AMI function and Cao’s method. In the case 
of multi-step ahead predictions, we must select the 
forecasting method. In fact, multi-step ahead predictions can 
be obtained by means of the “direct method”, consisting in 
training the model to directly predict the desired value, or 
the “iterated method”, that recursively uses a single-step 
predictor until the required prediction horizon is reached. 
Subsequently, we can design the TDNN with the indications 
given by the analysis, generate the learning set, whose training 
sequences correspond to the embedded data vectors, 
normalize the data, initialize the network weights, train the 
network and, finally, verify the prediction accuracy.  
 To improve the performance of the model, we can 
increase the number of taps of the delay line and repeat the 
design procedure. However, increasing too much the 
number of taps does not always lead to better performance. 
This can be well explained taking into consideration the 
nature of sunspot data: in the case of chaotic time series, in 
fact, all relevant information about a next event is contained 
in a number of past values related to the dimension of the 
attractor from which the time series originated [10], [18], 
and too many inputs may act as noise.   
 



 
 

 

V. EXPERIMENTAL RESULTS 
 

 Sunspot-related time series are often used to test the 
quality of a prediction method, so we can compare our 
approach with numerous results found in literature. 
MATLAB® is the exploited computing environment. 
According to the common practice, the prediction accuracy 
is evaluated in terms of the Normalized Mean Squared Error 
(NMSE), also called by some authors the Average Relative 
Variance (ARV):  

where:  
xi = actual value of the ith point of the series of length N; 
   = predicted value; 
σ2 = variance of the true time series in the interval N. 
 

A. Yearly Sunspot Number 
 The Yearly Sunspot Number is the first time series we 
take into account. Data from 1700 to 1920 are generally 
used for the training phase, and the performance of the 
model is evaluated on three testing sets: from 1921 to 1955 
(Test1), from 1956 to 1979 (Test2), and from 1980 to 1994 
(Test3). After the de-rectification process, we use AMI 
function and Cao’s method to determine τ, d and to generate 
the embedded data vectors. As depicted in Fig. 6, the 
minimum embedding dimension is 7, so we have trained 
TDNNs with a minimum number of 7 inputs (6 taps in the 
delay line) obtaining very interesting results with 8 inputs (7 
taps in the delay line) and 5 neurons in the hidden layer for a 
total number of weights approximately equal to 1/5 of the 
training set. The Levenberg-Marquardt algorithm with 
Bayesian regularization allows to reach optimal performance 
in terms of speed convergence and generalization ability, but 
for this first time series we have found excellent results by 
exploiting the back propagation algorithm with variable 
learning rate and momentum1.  
   
 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 6. Cao’s method for the Yearly Sunspot Number. 

 
1The MATLAB m-file to test the predictors designed in this work as well as 
the network weights and biases can be found in the “download section” of 
the page: http://neurolab.ing.unirc.it/salvatore.marra 

TABLE I 
PERFORMANCE COMPARISON FOR THE SINGLE-STEP PREDICTION  

OF THE YEARLY SUNSPOT NUMBER  
 

 
This is not surprising since it is known that any training 
method is problem dependent and cannot pretend to be 
completely universal. Table I summarizes the achieved 
results for the single-step prediction obtained by the TDNNs 
designed and compares them with the best ones of many 
previous works on this time series. For each design method 
we give the number of free parameters used and the lowest 
NMSE (see [7], [11] and [19] for the main comparison 
results). From the results in Table I it is possible to observe 
that our approach outperforms feed-forward MLPs such as 
the Weight Elimination Feed Forward Network (WNet) 
[20], fully recurrent neural networks as the Dynamical 
Recurrent Neural Network (DRNN) [21], the Soft Weight 
Sharing Network (SSNet) [22], the Scale Neural Network 
(ScaleNet) [23], the Hybrid NN [24], the Committee 
Prediction method (COMM) presented in [7], the Hybrid 
Clustering Algorithm (HCA) [9], the recurrent networks 
trained with the BPTT algorithm and one of its variant, the 
Constructive BPTT (CBPTT) [11]. Only the Violation 
Guided Back Propagation technique (VGBP) [19] is able to 
reach a better performance on the Test 2. Fig. 7 shows the 
global aspect of the results on the three tests and for the 
period between 1995 and 2004, for which we obtain a 
NMSE of 0.045 (there are no comparison results for this test 
at moment). As regards the multi-step prediction task, by 
iteratively using the designed single-step predictor we have 
obtained the results gathered in Table II.  
 

TABLE II 
NMSES OBTAINED FOR MULTI STEP PREDICTIONS OF THE YEARLY 

SUNSPOT NUMBER CUMULATED TEST SET (1921-1979) 

2)(1NMSE
1

2 i

N

i
i x~x

N
−= ∑

=σ
 (4)

  NMSE 
Design Methods Param. Test1 

(1921-1955) 
Test2 

(1956-1979) 
Test3 

(1980-1994) 
WNet 113 0.086 0.350 0.313 
SSNet N/A 0.077 N/A N/A 
DRNN 30 0.091 0.273 N/A 
COMM N/A 0.065 0.240 0.188 

Hybrid NN N/A 0.085 0.157 N/A 
ScaleNet N/A 0.057 0.130 N/A 

RNN+BPTT 155 0.084 0.300 N/A 
RNN+CBPTT 15 0.092 0.251 N/A 

HCA N/A 0.045 0.071 N/A 
VGBP 11 0.033 0.052 0.033 

Proposed  51 0.022 0.065 0.027 

Design Method Steps 
ahead Proposed RNN+EBPTT RNN+CBPTT RNN+BPTT 

2 0.12 0.53 0.69 0.88 
3 0.18 0.79 0.99 1.14 
4 0.23 0.80 1.17 1.22 
5 0.28 0.88 0.99 1.01 
6 0.27 0.84 1.01 1.02 
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In order to make comparisons with the most recent results 
published in literature about a medium-term horizon 
prediction of the Yearly Sunspot Number [26], we have 
computed the NMSEs on the cumulated test set involving 
Test1 and Test2. As one can see from Table II, in all the 
multi-step ahead predictions the TDNN designed presents 
the best performance.  
 Furthermore, for a correct comparison with the 4-steps 
ahead forecasting model proposed in [24], we use points 
from 1700 to 1955 as training set and data covering the 
period between 1956 and 1997 as testing set. The achieved 
forecasting accuracy is reported in Table III, whereas Fig. 8 
graphically illustrates the considered multi-step prediction. 
 

TABLE III 
PERFORMANCE  COMPARISON FOR THE 4-STEPS AHEAD PREDICTION OF THE  

YEARLY SUNSPOT NUMBER FROM 1956 TO 1997 
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Fig. 8. 4-steps ahead prediction of the Yearly Sunspot Number from 1956 to 
1997. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. R12 Index  
 The International Monthly Smoothed Sunspot Number, 
also called R12 Index, is a particular filtered signal of the 
monthly sunspot number, that is the mean number of dark 
spots observed month by month. Fig. 9 shows both the time 
series from the January 1945 – January 2005 period, 
approximately. Various studies have revealed the intrinsic 
nonlinear dynamics of this time series [2], [3], [25]. In 
particular, on the basis of the nonlinear dynamic systems 
theory, Zhang [2] estimated accurately the fractal dimension 
D = 2.8 ±0.1, and the largest Lyapunov exponent λ 1= 0.023 
± 0.004 bits/month for the 1850-1992 period. The important 
information that can be obtained from this data is the 
existence of an upper limit for reliable predictions: 3.6 ± 0.6 
years, that is 43 ± 7 months, approximately.  

According to the procedure described in [8], we train 
TDNNs by using a learning set ranging from January 1849 
to August 1991 and test the predictor models exploiting 
September 1991 - November 1995 data. The forecast of 
interest is 6-months ahead.  
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Fig. 9. Monthly sunspot number and R12 Index from January 1945 to 
January 2005. 
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           Fig. 7. Single-step prediction of the Yearly Sunspot Number test sets 



 
 

 

For a further evaluation of the proposed method, we also 
verify the prediction accuracy on a larger testing set 
covering the period between September 1991 and March 
2005. Firstly, we “de-rectify” the time series as previously 
explained for the Yearly Sunspot Number. The mutual 
information analysis gives the first minimum at 12, so we 
use this value as time delay whereas the Cao’s method, 
depicted in Fig. 10, indicates a minimum embedding 
dimension of 6. Consequently, we have trained TDNNs with 
a minimum number of 5 “taps” in the input delay line 
obtaining optimal results with 8 “taps” and 5 neurons in the 
hidden layer. In this case, we use the direct method to 
forecast the R12 Index 6-months ahead. After generating the 
embedded data vectors that constitute the training set, we 
carry out their normalization with zero mean and unity 
standard deviation, train the network using Bayesian 
regularization and test the prediction accuracy. The achieved 
results are summarized in Table IV. We think that it is also 
important to consider the Strong Error Percentage (SEP), 
which represents the percentage of examples of the testing 
set for which the distance between the actual value and the 
predicted one is more than a fixed threshold, for example 20 
(R12 values range from 0 to 201). This statistic is useful 
since allows to check if there are many small errors than few 
important ones.  

For purpose of comparison, results of significant 
published prediction approaches have been considered [8]. 
From Table IV it is possible to observe that our TDNN 
outperform the recent Conditional Distribution 
Discrimination Tree method (CDDT) [8], but also the 43-
12-1 MLP designed by Fessant [5], the McNish-Lincoln 
method [27] and the Stewart-Ostrow technique [28]. It is 
important to point out that the testing set of the last three 
approaches covers the period between September 1991 and 
November 1994 [5]. As regards the first two testing sets, we 
achieve not only the lowest NMSE, but also a SEP(20) of 
0%, that  is  no  6-months  ahead  prediction  error is  greater  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

than 20, whereas only the 8.5% of 163 predictions on the 
last testing set presents an error greater than 20. Fig. 11 
depicts the 6-months ahead prediction carried out on part of 
the training set and the largest testing set (September 1991 - 
March 2005).    
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Fig. 10. Cao’s method for the R12 Index. 
  
 

TABLE IV 
PERFORMANCE COMPARISON FOR THE  6-MONTHS AHEAD PREDICTION 

OF THE R12 INDEX ON DIFFERENT TESTING SETS  

Training Set Testing Set Design Method NMSE SEP(20)

McNish - Lincoln 0.37 N/A 

43-12-1 MLP  0.028 N/A 

Stewart - Ostrow 0.026 N/A 

Sep. 1991- 
Nov. 1994 
(39 points) 

Proposed 0.021 0% 

CDDT 0.021 N/A Sep. 1991- 
Nov. 1995 
(51 points) Proposed 0.014 0% 

 
 Jan. 1849- 
Aug. 1991 

 

Sep. 1991- 
Mar. 2005 

(163 points) 
Proposed 0.026 8.5% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. 6-months ahead prediction of the R12 Index. 
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VI. CONCLUSION  
 

In this paper, an efficient methodology for predicting the 
future behavior of solar activity has been presented. The 
idea to match the “de-rectification” process of sunspot data 
with the incorporation of the prior knowledge extracted by 
nonlinear dynamics tools into Time Delay Neural Networks 
has proved to be the ideal solution to forecast this kind of 
temporal patterns. In particular, the indications provided by 
the Average Mutual Information function and the Cao’s 
method for the de-rectified R12 Index data have been of 
fundamental importance to generate not only a suitable 
training set for the predictor model, but also a neural 
architecture with close-to-optimal performance.  

To our knowledge, the achieved results outperform  most 
of accurate sunspot data forecasting methods highlighting 
the great ability of the proposed approach to reach a high 
prediction accuracy. Finally, we would like to point out the 
great importance of sunspot time series predictions, 
remembering that Skylab, the space laboratory launched by 
the USA in the 1973, was brought to a premature demise in 
1979 due to improperly forecasting increased atmospheric 
drag associated to a sunspot maximum. 
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