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Abstract. Reconstructions of solar–terrestrial (ST) phenomena, in sufficient quality, several thousands of
years backward by means of radiocarbon (14C), 10Be or18O isotopes have been employed for study of possible
responses of the ordered (trefoil) and disordered intervals (types) of the solar inertial motion (SIM) as well as
of the 370 yr exceptional segments occurring in steps of 2402 yr in these phenomena. The trefoil intervals are
about 50 yr long, and the Sun returns to the trefoil intervals always after 178.7 yr, on average. During interme-
diate intervals the Sun moves along chaotic (disordered) lines. It was also found that very long (nearly 370 yr)
intervals of the solely trefoil orbit of the SIM occurred in steps of 2402 yr. Such exceptional intervals occurred
in the years 159 BC–208 AD, 2561–2193 BC, 4964–4598 BC, etc. A stable behaviour of ST phenomena during
these long segments is documented. It was also found that the deepest and longest solar (temperature) minima
(of Spörer or Maunder types) occurred in the second half of the 2402 yr cycle in accordance with the respec-
tively most disordered types of the SIM. The SIM is computable in advance: the SIM comparable with that
after 1873 is before us. Corresponding behaviours of ST phenomena can be expected.

1 Introduction

In recent years many papers considering possible planetary
influences on solar–terrestrial (ST) and climatic variability
were published (Beer et al., 2000; Abreu et al., 2012). These
authors primarily dealt with the tidal influences of the plan-
ets on the Sun and computed the spectral analyses of ST and
climatic data. The results show good correlations. The papers
published up to the 1970s showed that a tidal enhancement
from planets is in the order of millimetres. The latest pa-
pers employ the data (reconstructions) from nearly the whole
Holocene.

This paper will deal with the solar inertial motion (SIM).
The SIM is not negligible, it is a very noticeable phe-
nomenon. The Sun moves within an area of a diameter of
4.3 rs, wherers is the solar radius (see Fig. 1), or 3×106 km.
Our contributions (several tools) for the SIM-ST and climatic
studies have been employed as follows:

1. The periods found in the SIM (in all its motion charac-
teristics such as the velocity, the acceleration, the radii
of curvature, etc.) are higher harmonics of the basic

period of 178.7 yr (Bucha et al., 1985; Jakubcová and
Pick, 1987). The basic period of 178.7 yr was found
by Jose(1965) and further described byFairbridge and
Shirley(1987). Charvátová and Střeštík(2004) detected
such periods, between 6 and 16 yr, in European temper-
ature series andCharvátová-Jakubcová et al.(1988) de-
tected these periods between 10 and 60 yr in global au-
rora records (cf. alsoScafetta, 2012b). Since the solar
motion characteristics are underlaid by variable geome-
tries of the solar orbit, the results of spectral analyses are
dependent on the intervals being employed (Charvátová
and Sťreštík, 1995). Scafetta and Wilson(2013) detected
these periods in Hungarian aurora records since 1523.

2. Separation of the SIM into two basic types, the or-
dered (in JS trefoils) and disordered (Charvátová, 1990,
1995).

3. The very long, regular cycle of 2402 yr represents a rep-
etition of the exceptional, nearly 370 yr-long interval of
trefoil solar motion.

Published by Copernicus Publications.



22 I. Charvátová and P. Hejda: Responses of the basic cycles in ST phenomena2 I. Charvátová and P. Hejda: Responses of the basic cycles in ST-phenomena
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Figure 1. Above: The solar orbit divided into two basic types, the one ordered in JS-trefoils (yellow) and one disordered (chaotic) (green).
The Sun is returning at the trefoil orbits after 178.7 years. The Sun moves in the area with a diameter of 4.3 rs, where rs is solar diameter
or 3 · 106 km. The yellow circles denote the Sun. Below: A solar modulation record based on 14C and on 10Be since 1000 AD (taken from
Muscheler et al., 2007). Long term maxima in these records tend to coincide with the trefoil intervals (yellow triangles mark their centres).
Grand prolonged minima occurred in accordance with the intervals of the chaotic motion of the Sun (see lower green orbits), S = Spörer, M
= Maunder, D = Dalton minima. A moderate chaotic (green) type of the SIM (1980-2040) indicates lowered both solar activity and surface
air temperature.

3. Very long, regular cycle of 2402 years. It represents a
repetition of the exceptional, nearly 370 years long in-
terval of trefoil solar motion.

4. Nearly identical parts of the SIM were found (e.g. 1840-
1905 and 1980-2045 AD). It was employed for predic-
tive assessments (Charvátová, 2009) .

2 The cycle of 178.7 years in the SIM, ST and climatic
relations

Important insight into the SIM, ST and climatic relations
gradually appeared since the geometry of the SIM was stud-
ied. The geometry of the SIM consists of loops and arcs. It
was found that the geometry of the SIM can be divided into
two basic types, the ordered (in JS-trefoils) and disordered
(chaotic) types (Charvátová, 1988, 1989, 1990; Charvátová
and Střeštı́k, 1991). The average length of the loop-arc pair
is 19.85 years (Jupiter/Saturn synodic period). The Sun re-
turns at the trefoil orbit after 9 cycles, i.e. 178.7 years, on
the average. The precise basis for the study of the relations

between the SIM and solar-terrestrial and climatic variability
thus arose. The SIM can be computed into the future, provid-
ing new predictive possibilities.

The trefoil is a stable shape. A movement of the Sun along
one loop or arch lasts for 10 years (JS/2). Here it seems per-
tinent for a short review of our previous results dealing with
behaviour of solar-terrestrial (ST) phenomena during the tre-
foils: The last trefoil occurred in 1906-1956. The lengths of
the respective sunspot cycles (15-19) varied between 10.0
and 10.6 years, being 10.3 years on average, a mean value
of the lengths of cycles -1 – +3 (in the previous trefoil) is
also about 10 years. This supports a bimodality of sunspot
cycle lengths with modi of 10 and 12 years found by Ra-
bin et al. (1986). The dominant period in geomagnetic in-
dex aa is also 10 years (Charvátová and Střeštı́k, 2007). The
series of sunspot cycles in the trefoil interval of the 18th
century nearly coincide with that in the trefoil in the 20th
century. This was also confirmed by methods of nonlinear
dynamics, i.e. quantitatively (Paluš et al., 2000). Instrumen-
tal temperature series measured in central Europe in Jesuit
monasteries since 1750 show temperature maxima in centres
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Figure 2. Triplet of loops (brown) and characteristic triangle
(green). The trefoils are characterized by nearly equilateral trian-
gles.

of the trefoils (in about 1760 and in about 1940) (Charvátová,
1995). During the trefoil intervals volcanic activity is atten-
uated, there is a general absence of large volcanic events
(Charvátová, 1997).

Further back in time we can use reconstructed data. Fig.
1 shows the reconstruction of solar activity by means of
amount of 14C (radiocarbon) in tree rings and surface tem-
perature by means of 10Be since 1000 AD. It is seen that
long-term maxima of both solar activity and of surface tem-
perature tend to coincide with the mid-points of the trefoil
intervals. The great prolonged minima such as the Spörer
or Maunder minima, on the other hand, coincide with the
chaotic motion of the Sun. The last prolonged solar minima
were recently studied by Cionco and Compagnucci (2012);
Mörner (2013); Salvador (2013); Solheim (2013).

We may conclude that the SIM is the central factor which
causes ST and climatic variability. It can be held as a driving
force of climatic changes

3 The cycle of 2402 years in the SIM and its response
in ST-phenomena

The ordered (trefoil) intervals of the SIM are characterized
by a triplet of loops whose vertices form a nearly equilateral
triangle (see Fig. 2). On the other hand, loops in disordered
parts are often distributed along a straight-line and the corre-
sponding triangle has at least one small angle (see e.g. Dalton
period in Fig. 1). The smallest angle of the triangle is a good
characteristic of this feature (if the smallest angle is close to
60°, all angles must be nearly equal). As it follows from Fig.
3, the number of loop-arc pairs between neighbouring max-

ima varies between 9 and 8. The average distance between
maxima computed from the interval 7000 BC to 2000 AD is
171.1 years, which is very close to Uranus/Neptune synodic
period 171.4. Many solar-terrestrial phenomena thus fall be-
tween 171.4 and 178.7 years (Scafetta and Wilson, 2013).

Fig. 3 also documents very long cycle of 2402 years found
by Charvátová (2000). It looks like a vault under the cycle
of 178.7 years . In the intervals 159 BC - 208 AD, 2561 –
2193 BC, 4964 – 4598 BC, etc., the same exceptional solar
orbits of trefoil type were repeated in steps of 2402 years.
These exceptional intervals are nearly 370 years long (see
Fig. 4). The period of 2400 years was found in the time se-
ries of cosmogenic nuclide production over last millenia (e.g.
Bard et al., 1997; Vasiliiev and Dergachev, 2002; McCracken
et al., 2013). Fig. 5 shows reconstructions of several phe-
nomena since 9000 BP. Vertical lines define the above men-
tioned intervals. It is possible to see that all phenomena show
very small fluctuations inside these intervals. The greatest
deviations occurred in the second half of the 2402 years cy-
cle. They represent prolonged (Grand) minima of Spörer or
Maunder type.

4 Conclusions

The results obtained indicate a primary, controlling role of
the SIM in solar-terrestrial and climatic variability. The quite
precise base for study of the SIM, ST and climatic relations
occurred after the solar orbit had been divided into two basic
types, the ordered according to trefoil, lasting for about 50
years, and disordered, lasting for about 130 years. The pro-
longed solar and temperature minima have coincided with
the intervals of the chaotic SIM. Responses of two basic
types of the solar inertial motion (SIM) were described. A
response of a stable character of very long (370 years) trefoil
intervals of the SIM was also shown (Fig. 5). The deepest and
longest solar (temperature) minima (of the Spörer or Maun-
der types) occurred in the second half of the 2402 years cycle
in accordance with the most disordered types of the SIM.

The Sun has a layered structure and the greatest jump of
physical parameters was found at the boundary between ra-
diative and convection zones. The satellites (SOHO, etc.)
found a thin shear layer between the radiative and convection
zones, now called the tachocline. This layer is likely to be the
place where the solar dynamo operates (Abreu et al., 2012;
Mörner, 2013). The layered Sun is forced to move along the
given loops and arcs, its velocity ranges between 36-64 km/h,
its mean velocity is about 50 km/h. It would be interesting to
compare a changing velocity of the Sun with a velocity of
shear flows in the tachocline. Scafetta (2012a) showed that
the Sun, by means of its nuclear active core, may be working
as a great amplifier of the small planetary tidal energy dissi-
pated in it. Wolff and Patrone (2010) came to conclusion that
Sun is subject to significant differential forces, not only from
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Figure 2. Triplet of loops (brown) and the characteristic triangle
(green). The trefoils are characterized by nearly equilateral trian-
gles.

4. Nearly identical parts of the SIM were found (e.g.
1840–1905 and 1980–2045 AD), which were employed
for predictive assessments (Charvátová, 2009).

2 The cycle of 178.7 yr in the SIM, ST and climatic
relations

Important insight into the SIM, ST and climatic relations
gradually appeared since the geometry of the SIM was stud-
ied. The geometry of the SIM consists of loops and arcs. It
was found that the geometry of the SIM can be divided into
two basic types, the ordered (in JS trefoils) and disordered
(chaotic) types (Charvátová, 1988, 1989, 1990; Charvátová
and Sťreštík, 1991). The average length of the loop-arc pair
is 19.85 yr (Jupiter/Saturn synodic period). The Sun returns
at the trefoil orbit after 9 cycles, i.e. 178.7 yr, on the average.
The precise basis for the study of the relations between the
SIM and solar–terrestrial and climatic variability thus arose.
The SIM can be computed into the future, providing new pre-
dictive possibilities.

The trefoil is a stable shape. A movement of the Sun along
one loop or arc lasts for 10 yr (JS/2). Here it seems pertinent
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Figure 3. The smallest angle of the characteristic triangle of triplets of loops. The basic cycle of 171.4 years (UN) as well as the long cycle
of 2402 years is well demonstrated. The cycle of 2402 years is 14 multiple of 171.4 years.

tides, but from the varying angular momenta of cells within
it, which do not cancel out.

The SIM is computable in advance (celestial mechan-
ics). This opens predictive possibilities. The intervals of the
nearly identical SIMs will serve as the supporting bases in
searching for mutual relations between the SIM and differ-
ent types of solar-terrestrial phenomena including the cli-
matic. Charvátová (2009) showed that the SIMs in the years
1840-1905 and 1980-2045 are nearly identical and of mod-
erately chaotic type. The future (forthcoming) behaviours of
ST-phenomena are likely to be analogous to those after 1873.
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Figure 3. The smallest angle of the characteristic triangle of triplets of loops. The basic cycle of 171.4 yr (UN) as well as the long cycle of
2402 yr is well demonstrated. The cycle of 2402 yr is 14 cycles of 171.4 yr.

for a short review of our previous results dealing with be-
haviour of solar–terrestrial (ST) phenomena during the tre-
foils: the last trefoil occurred in 1906–1956. The lengths of
the respective sunspot cycles (15–19) varied between 10.0
and 10.6 yr, being 10.3 yr on average, a mean value of the
lengths of cycles from−1 to +3 (in the previous trefoil) is
also about 10 yr. This supports a bimodality of sunspot cy-
cle lengths with modi of 10 and 12 yr found byRabin et al.
(1986). The dominant period in geomagnetic index aa is also
10 yr (Charvátová and Střeštík, 2007). The series of sunspot
cycles in the trefoil interval of the 18th century nearly co-
incide with that in the trefoil in the 20th century. This was
also confirmed by methods of nonlinear dynamics, i.e. quan-
titatively (Paluš et al., 2000). Instrumental temperature series
measured since 1750 in central Europe, in Jesuit monaster-
ies, show temperature maxima in centres of the trefoils (in
about 1760 and in about 1940) (Charvátová, 1995). During
the trefoil intervals volcanic activity is attenuated, there is a
general absence of large volcanic events (Charvátová, 1997).

Further back in time we can use reconstructed data. Fig-
ure 1 shows the reconstruction of solar activity by means
of the amount of14C (radiocarbon) in tree rings and surface
temperature by means of10Be since 1000 AD. It is seen that
long-term maxima of both solar activity and of surface tem-
perature tend to coincide with the mid-points of the trefoil
intervals. The great prolonged minima such as the Spörer
or Maunder minima, on the other hand, coincide with the
chaotic motion of the Sun. The last prolonged solar minima
were recently studied byCionco and Compagnucci(2012),
Mörner(2013), Salvador(2013), andSolheim(2013).

We may conclude that the SIM is the central factor which
causes ST and climatic variability. It can be held as a driving
force of climatic changes

3 The cycle of 2402 yr in the SIM and its response in
ST phenomena

The ordered (trefoil) intervals of the SIM are characterized
by a triplet of loops whose vertices form a nearly equilat-
eral triangle (see Fig. 2). On the other hand, loops in dis-
ordered parts are often distributed along a straight-line and
the corresponding triangle has at least one small angle (see
e.g. Dalton period in Fig. 1). The smallest angle of the tri-
angle is a good characteristic of this feature (if the small-
est angle is close to 60◦, all angles must be nearly equal).
As it follows from Fig. 3, the number of loop-arc pairs be-
tween neighbouring maxima varies between 9 and 8. The
average distance between maxima computed from the in-
terval 7000 BC–2000 AD is 171.1 yr, which is very close
to the Uranus/Neptune (UN) synodic period of 171.4 yr.
Many solar–terrestrial phenomena thus fall between 171.4
and 178.7 yr (Scafetta and Wilson, 2013).

Figure 3 also documents a very long cycle of 2402 yr
found byCharvátová(2000). It looks like a vault under the
cycle of 178.7 yr. In the intervals 159 BC–208 AD, 2561–
2193 BC, 4964–4598 BC, etc., the same exceptional solar or-
bits of trefoil type were repeated in steps of 2402 yr. These
exceptional intervals are nearly 370 yr long (see Fig.4). The
period of 2400 yr was found in the time series of cosmo-
genic nuclide production over the last millennia (e.g.Bard et
al., 1997; Vasiliiev and Dergachev, 2002; McCracken et al.,
2013). Figure5 shows reconstructions of several phenom-
ena since 9000 BP (before present). Vertical lines define the
above mentioned intervals. It is possible to see that all phe-
nomena show very small fluctuations inside these intervals.
The greatest deviations occurred in the second half of the
2402 yr cycle. They represent prolonged (grand) minima of
the Spörer or Maunder types.
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Figure 4. Alternation (in steps of 179 years) of trefoil intervals of about 50 years and chaotic intervals of about 130 years of the SIM have
been regularly overcame by the cycle of 2402 years (Charvátová, 2000). The nearly 370-yr segments of the exceptional trefoil (stable) pattern
of the SIM occurred in the years 159 BC - 208 AD, 2561 – 2193 BC, 4964 – 4598 BC, etc. Notice the twice shortened distance of 159 years
between the three trefoils in each segment.
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Figure 4. Alternation (in steps of 179 yr) of trefoil intervals of about 50 yr and chaotic intervals of about 130 yr of the SIM have been
regularly overcome by the cycle of 2402 yr (Charvátová, 2000). The nearly 370 yr segments of the exceptional trefoil (stable) pattern of the
SIM occurred in the years 159 BC–208 AD, 2561–2193 BC, 4964–4598 BC, etc. Notice the twice shortened distance of 159 yr between the
three trefoils in each segment.

4 Conclusions

The results obtained indicate a primary, controlling role of
the SIM in solar–terrestrial and climatic variability. The quite
precise base for study of the SIM, ST and climatic relations
occurred after the solar orbit had been divided into two basic
types: the ordered according to trefoil, lasting for about 50 yr,
and disordered, lasting for about 130 yr. The prolonged solar
and temperature minima have coincided with the intervals of
the chaotic SIM. Responses of two basic types of the SIM
were described. A response of a stable character of very long
(370 yr) trefoil intervals of the SIM was also shown (Fig.5).
The deepest and longest solar (temperature) minima (of the
Spörer or Maunder types) occurred in the second half of the
2402 yr cycle in accordance with the most disordered types
of the SIM.

The Sun has a layered structure and the greatest jump of
physical parameters was found at the boundary between ra-
diative and convection zones. The satellites (SOHO, etc.)
found a thin shear layer between the radiative and convec-
tion zones, now called the tachocline. This layer is likely

to be the place where the solar dynamo operates (Abreu et
al., 2012; Mörner, 2013). The layered Sun is forced to move
along the given loops and arcs, its velocity ranges between
36 and 64 km h−1, its mean velocity is about 50 km h−1. It
would be interesting to compare a changing velocity of the
Sun with a velocity of shear flows in the tachocline.Scafetta
(2012a) showed that the Sun, by means of its nuclear active
core, may be working as a great amplifier of the small, plan-
etary tidal energy dissipated in it.Wolff and Patrone(2010)
came to the conclusion that the Sun is subject to significant
differential forces, not only from tides, but from the varying
angular momenta of cells within it, which do not cancel out.

The SIM is computable in advance (celestial mechanics).
This opens predictive possibilities. The intervals of the nearly
identical SIMs will serve as the supporting bases in searching
for mutual relations between the SIM and different types of
solar–terrestrial phenomena, including climatic.Charvátová
(2009) showed that the SIMs in the years 1840–1905 and
1980–2045 are nearly identical and of a moderately chaotic
type. The future (forthcoming) behaviours of ST phenomena
are likely to be analogous to those after 1873.
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Figure 5. Normalized Cosmogenic Radionuclide Productions since
9000 BP (taken from McCracken et al., 2013) and the cycle of 2402
years in SIM (”present” means 1950). Blue vertical lines denote the
exceptional trefoil intervals in steps of 2402 years and the SIM is
therefore of stable type within those lines. The smallest deviations
occurred during these intervals, while the greatest deviations oc-
curred in the second half of 2402 cycle representing Spörer (S) or
Maunder (M) type of prolonged (Grand) minima in correspondence
with chaotic intervals of the SIM.
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Figure 5. Normalized cosmogenic radionuclide productions since
9000 BP (taken from McCracken et al., 2013) and the cycle of
2402 yr in SIM (“present” means 1950). Blue vertical lines denote
the exceptional trefoil intervals in steps of 2402 yr and the SIM is
therefore of stable type within those lines. The smallest deviations
occurred during these intervals, while the greatest deviations oc-
curred in the second half of the 2402 yr cycle representing Spörer
(S) or Maunder (M) type of prolonged (grand) minima in correspon-
dence with chaotic intervals of the SIM.
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