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Abstract. In a recent paper, Durney (2000) has discussed a physically plausible procedure whereby
the dynamo equations describing magnetic field regeneration in Babcock–Leighton models of the
solar cycle can be reduced to a one-dimensional iterative map. This procedure is used here to investi-
gate the behavior of various dynamo-inspired maps. Durney’s explanation of the so-called odd–even
effect in sunspot cycle peak amplitudes, which he ascribed to a period-2 limit cycle, is found to be
robust with respect the choice of nonlinearity defining the map, and to the action of strong stochastic
forcing. In fact, even maps without limit cycles are found to show a strong odd–even signal in the
presence of forcing. Some of the stochastically forced maps are found to exhibit a form of on-off
intermittency, with periods of activity separated by quiescent phases of low cycle amplitudes. In one
such map, a strong odd–even signal is found to be a good precursor to the transition from bursting
to quiescent behavior.

1. Introduction: the Fluctuating Solar Cycle

Already in his 1843 landmark paper announcing the discovery of the sunspot cycle,
S.H. Schwabe provided evidence for a variation in its peak amplitude. Later obser-
vations and historical analysis of earlier observations (see, e.g., Hoyt and Schatten,
1998) have amply demonstrated that both the amplitude and duration of sunspot
cycles can vary significantly from one cycle to the next. In itself this is not terribly
surprising, given that the dynamo process responsible for the underlying regen-
eration of the solar magnetic field most certainly involves interactions between
the magnetic field and the turbulent convective fluid motions pervading the solar
convective envelope.

With sunspot numbers taken as a proxy of the underlying magnetic cycle, the so-
lar cycle nonetheless exhibits significant patterns that betray some order behind the
observed fluctuations. One such regularity is the well-documented anti-correlation
existing between the cycle amplitude and duration (e.g., Hoyng, 1993, Section 7;
Ossendrijver, Hoyng, and Schmitt, 1996; Charbonneau and Dikpati, 2000; Figure
1). Another is the so-called odd–even effect, which refers to statistically signif-
icant systematic correlations between various properties of sunspot cycle triads
(n, n + 1, n + 2), wheren is the cycle number. The odd–even effect has been of
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interest because of its potential for prediction of solar-cycle amplitudes (see, e.g.,
Wilson, 1988).

Figure 1 illustrates the odd–even effect as observed in the sunspot record. The
peak amplitudeAn of sunspot cycles 1–22 (Figure 1(A), solid dots) is calculated
from the smoothed monthly sunspot number time series available from the So-
lar Index Data Center (Brussels), and plotted against cycle number. Odd- (even-)
numbered cycle amplitudes have been joined by dashed (dotted) line segments. The
thick solid line is a running mean〈An〉 computed using a 1–2–1 averaging filter:

〈An〉 = 1
4(An−1 + 2An + An+1) . (1)

The odd–even effect in peak amplitude shows up most clearly by using the running
mean so calculated to detrend the raw amplitude sequence. This is carried out on
Figure 1(B), showing now the sequenceAn − 〈An〉 as a function of cycle number.
This detrended format is used repeatedly in what follows. From cycles 9 to 21, odd-
numbered cycles have systematically higher-than-average amplitudes than even-
numbered cycles.

In a recent paper, Durney (2000) has presented a clever procedure whereby
simplified forms of the partial differential equations governing magnetic field re-
generation in Babcock–Leighton dynamos can be reduced to a one-dimensional
map, i.e., an iteration algorithm having the general form

An+1 = g(An) , n = 0,1,2, . . . , (2)

thus expressing the amplitude of sunspot cyclen as a (nonlinear) function of the
amplitude of the preceding cycle. Durney’s procedure is reviewed in Section 2, to-
gether with a second physically-inspired variation, and the behavior of the resulting
maps is examined in some details. Section 3 focuses on the effect of stochastic
forcing on the two maps introduced in Section 2, with particular focus on the
robustness of the odd–even effect, and the emergence of intermittency for sto-
chastically forced maps in the presence of low-amplitude additive noise. Section
4 is a comparative case study, wherein the amplitude fluctuations characterizing a
recently published simulation of a stochastically forced Babcock–Leighton solar
cycle model (Charbonneau and Dikpati, 2000) is compared and contrasted to the
behavior seen in amplitude iterates computed via an equivalent map. The paper
concludes (Section 5) with a critical discussion of the physical correspondence
between the behavior of the one-dimensional maps studied here, and the real solar
cycle.

2. Reduction of the Dynamo Equations to a Map

Only a brief outline of Durney’s procedure is given here, with the interested reader
being referred to Durney (2000) for full details. Like dynamo models based on
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Figure 1. The odd–even effect in sunspot data. (A) shows the peak amplitudeAn of succes-
sive sunspot cycles (solid dots), inferred from the smoothed monthly sunspot numbers (13-month
running mean) from the SIDC. Thedashed(dotted) line segments connect the odd-numbered
(even-numbered) cycles, and thethick solid lineis a running mean〈An〉 based on 1–2–1 averaging
filter (see Equation (1)). (B) shows the detrended time series obtained by subtracting the running
mean〈An〉 from theAn time series. The odd–even effect shows up quite clearly and remains
uninterrupted from cycle 9 to 21.

mean-field electrodynamics, Babcock–Leighton dynamos rely on the shear of a
large-scale poloidal field by differential rotation to produce a toroidal magnetic
component. They differ from mean-field models in invoking the decay of bipolar
active regions showing a net tilt with respect to the east-west direction to regenerate
the poloidal magnetic field (see, e.g., Durney, 1997; Dikpati and Charbonneau,
1999; Nandy and Choudhuri, 2000, and references therein).

2.1. DURNEY’ S REDUCTION PROCEDURE

The starting point of the Durney (2000) reduction procedure is the realization that
in Babcock–Leighton models, the production of the toroidal magnetic fieldTn+1
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at cyclen + 1 in the shear layer at the core–envelope interface is proportional to
the surface poloidal magnetic fieldPn of theprecedingcycle:

Tn+1 = (1�)(1t)Pn . (3)

Equation (3) is pre-empted on the assumption that the poloidal field experiences
neither growth nor decay during the time interval1t (= (L − L2)u

−1 in the
notation of Durney (2000)) required to be advected by meridional circulation from
the surface down to the equatorial part of the shear layer, and that during this time
the poloidal field is being acted upon by a constant rotational shear1�. In keeping
with the Babcock–Leighton picture, the production of the poloidal field is assumed
to be a function of the toroidal field of the current cycle, in some proportion to the
amplitude of the toroidal field:

Pn+1 = f (Tn+1)Tn+1 , (4)

wheref (Tn+1) is an as-yet unspecified function measuring the efficiency of the
Babcock–Leighton mechanism as a function of the toroidal field strength in the
shear layer (more on this below). Let now̄P , T̄ be representative values for the
poloidal and toroidal field amplitudes, and convert Equations (3) and (4) to non-
dimensional form:

tn+1 = apn , (5)

pn+1 = (T̄ /P̄ )f (tn+1)tn+1 , (6)

wherepn = Pn/P̄ , tn = Tn/T̄ , anda = (P̄ /T̄ )1�1t . This latter dimensionless
parameter can be set toa = 1 without loss of generality, since it can be readily
absorbed in the upcoming definition off (tn+1). Substituting Equation (5) into
Equation (6) then yields

pn+1 = (T̄ /P̄ )f (pn)pn . (7)

Durney (2000) chooses

f (tn+1;β) = (P̄ /T̄ )(1+ β(1− tn+1)) , β > 0 , (8)

where the parameterβ effectively measures the efficiency of the Babcock–Leighton
mechanism of poloidal field regeneration∗ . Inserting Equation (8) into (7) immedi-
ately leads to

pn+1 = pn(1+ β(1− pn)) , [ ≡ g(pn;β) ] , β > 0 , (9)

∗ It will become clearer in in Section 4 below that the map’s parameter, hereβ, plays the role of
a dynamo number.
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i.e., a one-dimensional parametric iterative map (hereafter ‘map’, for brevity). Dur-
ney (2000) then goes on to show that for 2. β . 2.45, Equation (9) yields a
sequence of amplitude iteratespn’s alternating between higher- and lower-than-
average, in a manner reminiscent of the odd–even effect observed in sunspot data.

2.2. MULTIPERIODICITY AND CHAOS IN ONE-DIMENSIONAL MAPS

Equation (9) is one of many variations on the so-called logistic mappn+1 =
αpn(1− pn), which has been studied in great detail in the context of ecological
population dynamics (see, e.g., Holton and May, 1993), and since the work of
Feigenbaum (1978) has become an icon of deterministic chaos in low-dimensional
dynamical systems. Figure 2 shows four sequences ofpn iterates generated from
Equation (9), with increasing values ofβ from top to bottom. The first sequence
(β = 1.9) is characterized by a fixed amplitudepn = 1 as the map is iterated, a
behavior that characterizes the parameter range 0≤ β ≤ 2.0. The second sequence
(β = 2.3) shows the behavior emphasized by Durney (2000), and holds in the
range 2.0 ≤ β ≤ 2.4494. Further increase ofβ leads to more complex cyclic
behavior (third sequence,β = 2.5), until all appearance of regularity is lost (fourth
sequence,β = 2.7).

A solution of the formpn+1 = pn is a fixed point(denotedµ) of the map.
Examination of Equation (9) immediately shows that the trivial solutionpn = 0
as well aspn = 1 are both fixed points, independently of the assumed value ofβ.
However, for this map the trivial solutionpn = 0 has a basin of attraction of zero
measure, i.e., it is accessible only withp0 = 0 and under exact arithmetics. The
other fixed pointµ = 1 is anattractor of the system up toβ = 2, where it loses
stability to a period-2 limit cycle, i.e., a solution of the formpn+2 = pn. This loss
of stability is a well-understood process in the context of iterative maps (see, e.g.,
Holton and May, 1993, Section 5.3.2), and occurs at the value ofβ such that

dg(pn;β)
dpn

∣∣∣
pn=µ
≤ −1 . (10)

Similarly, the period-2 limit cycle eventually loses stability to a period-4 limit cycle
(third sequence on Figure 2), which later becomes unstable to a period-8 limit
cycle, and so on.

The varying behavior of the iterates is best viewed by plotting successive values
of pn againstβ, after disappearance of any transient associated with the choice
of p0. Figure 3(A) shows one such bifurcation diagram, for the map defined by
Equation (9) above. The various branches represent stable solutions, in that thepn
iterates always return to those stable values following external perturbation (cf.,
Figure 2, dotted and solid lines for the upper three sequences). Examination of the
bifurcation diagram also reveals that something peculiar seems to be happening
beyondβ & 2.57. Successive iterates fill an ever-wideningpn range, and this time
small external perturbations are amplified exponentially as the iteration proceeds
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Figure 2.Four sequences of iteratespn obtained with Equation (9) for four different values of the
control parameterβ, as indicated. Thedotted linesindicate the fate of perturbed solutions. For the
first three sequences, a strongly perturbedp125 returns to its stable limit cycle within a few tens of
iterations. In contrast, forβ = 2.7 (bottom sequence) a 1% perturbation imposed at iteration 125 is
exponentially amplified, a classical indicator of chaotic behavior.

(cf., solid and dotted lines on fourth sequence on Figure 2). Forβ & 2.57, Equation
(9) exhibitschaotic behavior. Finally, for β ≥ 3.0 the map is unstable, i.e., the
iterate sequence diverges to±∞.

Feigenbaum (1978) has demonstrated a truly unique aspect of the bifurcation
diagram shown on Figure (3): it isuniversalto one-dimensional maps character-
ized by a single critical point, i.e., mapsg(pn) for which dg/dpn = 0 for one
and only onepn in the map’s range (also called ‘single-hump’ maps). Whatever
the functional form ofg(pn), the transition to chaos always proceeds through
the same geometric sequence of bifurcations through period-2m limit cycles, with
m = 0,1,2, . . .

Let theβ values at which the map undergoes successive bifurcations be denoted
λ1, λ2, λ3 . . ., etc. Feigenbaum (1978) showed that, for all sufficiently steep one-
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Figure 3. (A) is a bifurcation diagram for the one-dimensional map defined by Equation (9). The
vertical line segments indicate the values ofβ = λm at which the first few bifurcations occur, as well
as the valueβ → λ∞ = 2.5699 at which transition to chaos takes place. Forβ > 3 the sequence
of iterates diverges to±∞. (B) is a similar bifurcation diagram for the alternate map defined by
Equation (13). Note that non-trivial behavior is now restricted to the range 4.0000≤ γ ≤ 6.5433,
outside of which the only stable state ispn = 0. Moreover, even within this range the trivial solution
pn = 0 still retains a basin of attraction of finite measure, corresponding to the area located outside
the closed dashed contour in (B). The transition to chaos now takes place atγ = 5.8878. The two
bifurcation diagrams are otherwise topologically identical, as expected from the universal character
of single-hump one-dimensional maps (see text).

dimensional single-hump maps (i.e., maps that satisfy Equation (10) at some value
of the map’s parameter)

lim
m→∞

λm−1− λm
λm − λm+1

= δ = 4.669201. . . , (11)

where the universal constantδ is since known as Feigenbaum’s number. One great
practical advantage of Equation (11) is that it provides a recurrence relation allow-
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ing one to calculate the valueλ∞ at which transition to chaos takes place, from
measurement of the first few bifurcation points. This yieldsλ∞ = 2.5699. . . for
the bifurcation diagram plotted in Figure 3(A). The reader further interested in the
behavior of one-dimensional maps should consult the very lucid and accessible
introduction provided by Holton and May (1993).

2.3. AN ALTERNATE MAP

Given the universal character of single-hump maps, one might ask whether there
exist other choices forf (tn+1) in Equation (6) that would represent a better ap-
proximation to the physics of the Babcock–Leighton mechanism. Equation (8),
adopted by Durney (2000), expresses the fact that the efficiency of poloidal field
production decreases as the toroidal field increases in strength. This is indeed borne
out by the simulations of rising thin flux tubes, which have shown that for toroidal
field strengths in excess of about 100 kG, flux ropes emerge parallel to the E–W
direction (see, e.g., D’Silva and Choudhuri, 1993; Caligari, Moreno-Insertis, and
Schüssler, 1995), i.e., without the tilt that is essential to the Babcock–Leighton
mechanism. However, such simulations have also shown that for toroidal field
strengths below about 10 kG the flux ropes emerge at high latitudes and with tilt
patterns incompatible with Joy’s Law. Moreover, such weak flux ropes are easily
randomized by stochastic buffeting associated with the turbulent fluid motions in
the convective envelope (Longcope and Fisher, 1996). Perhaps even more impor-
tant, simulations indicate that these weak flux ropes do not even survive their
rise through the convective envelope, ‘exploding’ on their way up due to excess
buoyancy (Moreno-Insertis, Caligari and Schüssler, 1995). This implies that the
Babcock–Leighton mechanism is characterized by both lower and upper operating
thresholds. It also suggests that poloidal field production decreases faster thantn as
the toroidal field falls below 10 kG or so. A simple alternate form of Equation (8)
capturing this latter behavior is

f (tn+1; γ ) = (P̄ /T̄ )γ tn+1(1− tn+1) , γ > 0 , (12)

so that Equation (7) now becomes

pn+1 = γ p2
n(1− pn) , [ ≡ g(pn; γ ) ] , γ > 0 . (13)

The corresponding bifurcation diagram is shown in Figure 3(B). It is topologi-
cally equivalent to that plotted in Figure 3(A), as expected from Feigenbaum’s
universality result, with two important differences. First, non-trivial behavior (i.e.,
limn→∞ pn 6= 0) is restricted to the parameter range 4.0< β < 6.5433. Outside of
this range any initialp0 rapidly decays to zero. In addition, even within this range
the attractor has a bounded basin of attraction, indicated by the dashed closed con-
tour in Figure 3(B). Any iterate sequence starting with a valuep0 located outside
this closed region converges topn = 0. This has some interesting consequences, to
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be explored further below. In contrast, there is no such finite size basin of attraction
to the trivial solution for the map defined by Equation (9).

For the map defined by Equation (13), the 2-cycle odd–even effect materializes
in the interval 16/3 ≤ γ ≤ 5.7635, and transition to chaos takes place asγ →
λ∞ = 5.8878. Figure 3 thus demonstrates that the explanation of the odd–even
effect for sunspot number data, as put forth by Durney (2000), does not depend
sensitively on the choice of the amplitude-limiting functionf (tn+1).

3. Stochastically Forced Maps

Whatever one might think of the reduction of the dynamo process to a one-
dimensional map, it is clear that the resulting explanation for the odd–even effect
is predicated on a (relatively) fine tuning of some control parameter (2.0 ≤ β ≤
2.4494 in Equation (9), 16/3≤ γ ≤ 5.7635 in Equation (13)). This would suggest
that this explanation for the sunspot cycle’s odd–even effect is not particularly
robust; given that the dynamo operates at least in part in the turbulent convective
envelope, the parameterβ (or γ ) might be expected to vary stochastically over
a significant range of numerical values, possibly taking the dynamo outside the
range inγ where the 2-cycle behavior holds. To test this possibility, consider now
a stochastically forced version of Equation (13), defined as follows:

pn+1 = γnp2
n(1− pn)+ εn , (14)

where the map’s parameterγn is now drawn anew at each iteration from a se-
quence of random deviate uniformly distributed in some preset interval[γ1, γ2].
Similarly, εn is drawn from a separate sequence of random deviate distributed in
[0, ε], with ε � 1. This formulation thus implies that the map is subjected to both
multiplicative and additive noise, the latter of low amplitude.

3.1. PERSISTENCE OF THE ODD–EVEN EFFECT

Figure 4 shows a short portion of the amplitude iterate sequence generated from
Equation (14), withγn ∈ [4.5,6.5] and εn ∈ [0,0.09]. The overall format is
similar to Figure 1 above: (A) is the amplitude sequencepn, with the thick solid
line corresponding to a1–2–1 running mean〈pn〉 (see Equation (1)). (B) is the
detrended sequencepn − 〈pn〉. Note the clear odd–even pattern persisting from
iteration 551 to 566, with the pattern also present for other shorter iteration intervals
(emphasized by thicker line segments).

It might appear surprising that the odd–even effect still shows up so clearly,
given that the imposed rangeγn ∈ [4.5,6.5] implies thatγn lies outside the interval
[λ1, λ2] for about 88% of iterations. The reason lies with the fact that, at fixedγ ,
the convergence to the corresponding fixed point or limit cycle is often oscillatory,
so that the fluctuating map responds in an ‘overstable’ manner to the stochastically
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Figure 4. Portion of an amplitude iterate sequence for a stochastically forced version of Equation
(13), withγ ∈ [4.5,6.5]. (A) is the raw iterate sequence, with thethick linecorresponding to a1–2–
1 running mean, while (B) is the detrended sequence. Notice the persistence of the odd–even effect
from iteration 540 to 547 and 551 to 566.

varyingγn (see, e.g., dotted lines in Figure 2). The same behavior is obtained with a
stochastically forced version of Equation (9), the original map proposed by Durney
(2000).

3.2. INTERMITTENCY

There are additional effects of stochastic forcing that require a look at a longer
sequence of amplitude iterates. Figure 5 shows a 2000 iteration sequence, for the
same parameter settings as the sequence plotted in Figure 4(A), with the latter
corresponding to the dotted box. The sequence is exhibitingintermittency, i.e.,
it alternates between quiescent phases withpn ∼ ε, and bursting phases with
pn ∼ 1. A similar behavior has been observed before with a stochastically-driven
one-dimensional logistic maps by Heagy, Platt, and Hammel (1994), who identify
it with the so-called on-off intermittency studied by Platt, Spiegel, and Tresser
(1993). On-off intermittency occurs when one dynamical variable – here the sto-
chastically fluctuatingγn – pushes the system across a transcritical bifurcation
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Figure 5.A much longer sequence of amplitude iteratespn for the stochastically forced Equation
(14) with γ ∈ [4.5, 6.5] andεn ∈ [0,0.09]. Thedotted boxindicates the portion of the sequence
plotted in Figure 4. The vertical tick marks along the upper horizontal axis flag the termination of the
bursting phases, and are labeled according to the number of preceding iterations during which a clear
odd–even signal is present. A ‘×’ indicates that no such effect was seen for more than 3 preceding
iterations, which is taken to be the minimum required to define an odd–even signal.

point, i.e., a bifurcation to or from the trivial solutionpn = 0. For the map defined
by Equation (13), there are two such bifurcation points, atγ = 4 andγ = 6.5433
(see Figure 3(B)).

The intermittency characterizing the sequence plotted in Figure 5 isnot on-off
intermittency, at least not in the strict sense implied by Platt, Spiegel, and Tresser
(1993) and Heagy, Platt, and Hammel (1994). The adopted range of
γn (∈ [4.5,6.5]), while covering most of theγ range characterized by non-trivial
behavior, is too small to push the system past the critical bifurcations atγ = 4
andγ = 6.5433. What is happening instead is that the fluctuations are at times
pushing the solution outside the basin of attraction of the attractor, i.e., outside
the dashed closed contour in Figure 3(B). A typical ‘onset’ to a quiescent phase
is shown in Figure 6(A), in the form of the path in the{γn, pn} plane followed by
the amplitude iterates. Onset begins when aγ fluctuation pushes the iterate far into
the chaotic regime (iteration 1354). The map produces apn+1 value near the top
of the range, while the nextγn happens to pull the iterate back into the fixed point
regime (iteration 1355), but outside of the attraction basin of the attractor. The next
pn generated by the map is close to the trivial solution (iteration 1356), and, more
importantly, at an amplitude value below the lowest extent of the attractor’s basin
of attraction. From this point on, subsequent fluctuations inγn cannot carry the
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Figure 6. Typical (A) onset, and (B) termination of quiescent phases for the stochastically forced
sequence of Figure 5. Thedashed contourencloses the attraction basin of the attractor.

iterate back towards the attractor. Evidently, this turning-off process can take place
in the absence of low-amplitude additive noise.

Once in the attraction basin of the trivial solution, the action of the map is such
thatpn+1/pn < 1 for any values ofγn , with the additive noiseεn in Equation (14)
the only mechanism available to keep the iteratespn ∼ εn, away frompn = 0.

The end of a quiescent phase (Figure 6(B)) comes about when the distorted
random walk – loosely speaking – associated with the cumulative effect of the low-
amplitude additive noise takes the iterate near the low point of the basin boundary
(iterations 1307 to 1314 on Figure 6(B)). Once the boundary is crossed, the iterate
is then pulled back up towards the attractor, corresponding to the onset of a new
bursting phase (iterations 1314→ 1319). Unlike with the onset of the quiescent
phase, the presence of low-amplitude additive noise is now crucial. There exists a
threshold value forε above which this happens in a finite time. For theγ range
considered here, this threshold value isε∗ ' 0.065, based on a (small) set of 108

iteration Monte Carlo runs.
The average waiting time〈1τ 〉 between successive bursts increases rapidly as

one approachesε∗ from above:〈1τ 〉 = 48 iterations atε = 0.09, up to 180, 8850,
and 89400 forε = 0.08, 0.07, and 0.067, respectively. Something like this was
to be expected, since〈1τ 〉 → ∞ asε → ε∗, by definition of the intermittency
threshold.
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In term of Babcock–Leighton models of the solar cycle, one might conjecture
that bursting phases correspond to epochs where the toroidal fields strength in the
shear layer is high enough for toroidal flux ropes to form and rise coherently to
the surface. Quiescent phases could either be due to the toroidal magnetic fields
being so strong that active regions emerge without the E–W tilt necessary to the
Babcock–Leighton mechanism, or too weak for flux ropes to lose stability and/or
rise coherently to the surface. In the former case the onset of the subsequent ‘nor-
mal’ bursting phase occurs once resistive dissipation has sufficiently decreased the
toroidal field strength in the shear layer. In the latter case magnetic field injected
from the convection zone is required to restart the dynamo. This is the kind of
process embodied by the additive noiseεn in Equation (14), and seems to be a ro-
bust mechanism to restart a dynamo with a lower operating threshold (see Schmitt,
Schüssler, and Ferriz-Mas, 1996, for another example in the context of a different
dynamo model).

3.3. PREDICTABILITY

If one takes at face value the intermittent behavior characterizing the solution
plotted in Figure 5, then the quiescent phases are to be identified with prolonged
periods of strongly reduced cyclic activity, i.e., Maunder minimum-like epochs.
This immediately leads to the following questions: (1) Is there a ‘typical’ dura-
tion to quiescent or bursting phases? (2) Is it possible to predict the onset and/or
duration of quiescent phase, or of bursting phases? We consider each question in
turn.

The above discussion – and Figure 6 – have already made it clear that the ter-
mination of quiescent phases is driven by the imposed additive white noise, while
their onset is triggered by the stochastic fluctuations of the map’s control parameter
γn. A priori, this does not augur well for predictability! Indeed, scatter plots of
burst duration versus duration of the preceding quiescent phase, or of quiescent
phase duration versus duration of the preceding bursting phase, show no sign of a
correlation, let alone statistically significant ones.

From an iterate sequence similar to Figure 5 but of much longer duration, it
is possible to construct frequency distributionsh(τ) for the durationτ of bursting
phases, and distributionh(1τ) of waiting time1τ from the end of a bursting
phase to the onset of the next. An iteratepn is deemed to belong to a quiescent
phase providedpn ≤ 0.2+ ε/2, corresponding to the highest extent of the lower
portion of the trivial solution’s attraction basin, plus the mean amplitude of the
additive noise. Two successive such iterates are needed to define a quiescent phase.
Figure 7 shows these two distributions, constructed from a 109 iterations run with
γn ∈ [4.5,6.5] andεn = [0,0.0667]. This puts the simulation close to the intermit-
tency thresholdε∗ = 0.065, while yielding good statistics for a simulation of this
length. Both distributions have an exponential form, in contrast to the power law
characterizing the frequency distribution of quiescent phase in the forced logistics
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Figure 7.Frequency distributions of quiescent-phase durationh(1τ) (A) and bursting durationh(τ)
(B), for three stochastically forced sequences withγn ∈ [4.5, 6.5] andε = 0.0667, 0.075 and 0.09
(see Equation (14)), as indicated. The lower threshold demarcating bursting behavior from quies-
cence is set atp = 0.2+ε/2, corresponding to the upper extent of the trivial solution’s attraction basin
boundary (see Figure 3(B)), plus the mean value of the additive noise. A minimum of two successive
such iterates is needed to define a quiescent phase. The marked excess of very short inter-burst
intervals (lowest bin on Figure 7(A)) is associated with the sporadic appearance, within a bursting
phase, of ‘near misses’ quiescent onsets, as atn = 548 on Figure 4(A). Theh(τ) distributions (B) for
ε = 0.075 and 0.09 (thin solidanddottedhistograms, respectively) are statistically indistinguishable
from theε = 0.067 distribution plotted in (B) as thesolid-linehistogram, and have effectively the
same mean, indicated by thedashed-linesegment along the abscissa.

map near threshold studied by Heagy, Platt, and Hammel (1994). This is yet another
indication that the intermittency behavior of Equation (14) is distinct from classical
on-off intermittency.

The frequency distribution of quiescent phase duration (Figure 7(A)) steepens
as the additive noise amplitudeε is increased beyond the intermittency threshold.
On the other hand, the frequency distribution of burst durations (Figure 7(B)) is
largely insensitive to the adopted value ofε, providedε � 1. This again confirms
that the onset of quiescent phases is triggered by the dynamical properties of the
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map, rather than by the additive noise. Even though the burst duration distributions
all have the same well-defined mean forε not too far above threshold, the substan-
tial width of h(τ) makes this mean of little practical use in predicting the time of
return to a quiescent state, once a bursting phase has begun. Moreover, an expo-
nential distribution of event rates is indicative of an underlying Poisson process,
implying that each bursting ‘event’ is indeed fully independent of its predecessors,
and so fundamentally unpredictable on the basis of the statistics of former events.

There is one pattern that often announces the onset of a quiescent phase: a
pronounced odd–even effect in the amplitude sequence. This is already visible in
Figure 4(B) fromn = 540 to 546, which is immediately followed by a near-miss
quiescent phase, as can be seen from the corresponding amplitude drop atn = 548
in Figure 4(A). Such a pattern, of varying duration, is actually present prior to 10
out of 12 quiescent phase onsets in Figure 5, as indicated along the upper horizontal
axis. The existence of this pattern is readily understood upon recalling that the onset
of quiescent phases involves excursions in the chaotic regime of the map, with the
entry in the attraction basin of the trivial solution following from an appropriate
fluctuation inγn (see Figure 6(A)).

4. Comparison with a Numerical Simulation

The results discussed in the preceding section indicate that the odd–even effect
is a robust feature of stochastically-forced iterative maps inspired by a dynamo
mechanism including a time delay comparable to the cycle period. This being the
case, odd–even behavior should then be observed in models of Babcock–Leighton
dynamos including stochastic forcing. Charbonneau and Dikpati (2000) have re-
cently presented a series of such simulations. One of these, discussed in Section
3.3 of their paper, shows a spread in cycle periods and anti-correlation between
cycle duration and amplitude that both compare favorably to sunspot data. This is
a strongly fluctuating model, with 100% fluctuation amplitude in the meridional
circulation and 200% fluctuation in the Babcock–Leighton source term. Figure
8(A) shows the corresponding raw and detrended amplitude sequences for the
50 cycles simulated by Charbonneau and Dikpati (2000). The odd–even effect is
indeed clearly present for long simulation intervals.

The basic Babcock–Leighton model underlying the Charbonneau and Dikpati
(2000) simulations is described in detail in Dikpati and Charbonneau (1999). This
axisymmetric, kinematic nonlinear model involves the solution of two coupled
partial differential equations governing the evolution of the toroidal fieldB and
poloidal fieldBp, which is written in terms of a toroidal vector potentialA, so that
Bp = ∇ × (Aêφ). Schematically, the governing equations have the form

∂A

∂t
= (Diffusion)+ (Advection)+ s0S(r, θ) B(rc, θ)

1+ (B(rc, θ)/(B0)
2

, (15)
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Figure 8.(A) shows the odd–even effect in the raw (top trace) and detrended (lower trace) amplitude
sequences extracted from the stochastically forced Babcock–Leighton dynamo solution discussed
in Section 3.3 of Charbonneau and Dikpati (2000). (B) shows the bifurcation diagram for a map
derived from the nonlinearity used in that simulation. (C) shows a sequence of amplitude iterates for
a stochastically forced version of that map, withσn ∈ [0,2.75]. The odd–even effect shows up quite
clearly, despite the absence of limit cycles for this map. (D) is a longer iterate sequence, showing that
this map exhibits classical on-off intermittency at this level of stochastic forcing.

∂B

∂t
= (Diffusion)+ (Advection)+ r sinθBp · ∇� , (16)

where the last term on the right-hand side of Equation (15) is a surface source term
for the Babcock–Leighton mechanism, which is expressed in terms of the toroidal
field B at the core – envelope interfacerc (for further discussion see Section 2.3
of Dikpati and Charbonneau 1999, and Section 2.1 of Charbonneau and Dikpati
2000). With diffusion neglected in the Durney reduction procedure, and with ad-
vection subsumed in the time delay, the correspondence between Equations (15)
and (9) requires that one sets
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f (tn+1;σ ) = (P̄ /T̄ )σ (1+ t2n+1)
−1 , σ > 0 (17)

in Equation (6), yielding the map:

pn+1 = σpn(1+ p2
n)
−1 , [ ≡ g(pn;σ ) ] , σ > 0 . (18)

Figure 8(B) shows the bifurcation diagram for this map (small dots). It is strikingly
different from those plotted in Figure 3. The fixed pointµ = (σ − 1)1/2 emerging
from the transcritical bifurcation atσ = 1 never loses stability to a period-2 limit
cycle, as one can easily verify upon evaluating

dg(pn;σ )
dpn

∣∣∣
pn=µ
= 1− σ

σ
> −1 , ∀σ > 0 . (19)

The cascade to chaos through ever higher-order limit cycles that characterized
the other maps considered above thus never takes place here. In fact, the non-
fluctuating reference simulation of Dikpati and Charbonneau (1999, Section 5)
shows a steady cycle amplitude as the source term parameters0 is varied over
almost two orders of magnitude, suggesting that Figure 8 is indeed a proper –
though highly simplified – representation of the solution’s dynamical behavior.

Despite the stability of the fixed point solution, a stochastically-forced version
of this map exhibits a robust odd–even effect, persisting over many successive iter-
ations, as shown in Figure 8(C). This is a striking result: the odd–even effect does
not require a limit cycle, but materializes instead only due to the oscillatory nature
of the convergence to the fixed point. The prevalence of an odd–even signal prior
to the onset of a quiescent phase is less pronounced than on Figure 5, occurring
now seven out of 12 onsets in Figure 8(D).

As with the logistic map studied by Heagy, Platt, and Hammel (1994), the
map defined by Equation (18) also exhibits classical on-off intermittency when
the control parameter is drawn from a distribution of uniform random deviates
σ ∈ [0, 6] straddling the transcritical bifurcation atσ = 1. Figure 8(D) shows one
such intermittent time series, for6 = 2.75. The intermittency threshold is found
to be6∗ ' 2.69. The succession of large solid dots in Figure 8(B) shows a typical
onset path to a quiescent phase.

5. Discussion and Conclusion

Following a reduction procedure recently proposed by Durney (2000), the behavior
of various one-dimensional iterative maps describing the cycle amplitude varia-
tions of Babcock–Leighton models of the solar cycle has been studied in some
detail. The explanation put forth by Durney (2000) for the observed odd–even
effect in sunspot cycle amplitude was found to be robust with respect to the choice
of amplitude-limiting nonlinearity, as well as to the presence of stochastic forcing.
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Interestingly, numerical experiments carried out with a map inspired from a nu-
merical simulation of a stochastically forced Babcock–Leighton solar cycle model
indicate that a robust odd–even effect can still materialize in the absence of limit
cycles, due to the generic oscillatory convergence to the fixed points or limit cycles
in this class of iterative maps. Strong stochastic forcing was also found to lead
to intermittency in two alternate dynamo-inspired maps, and a strong odd–even
signal was found to be a good precursor of quiescent phase onset, at least in one
of them. It would be interesting to extract reliable cycle amplitude estimates from
the Be10 record (Beer, Raisbeck, and Yiou, 1991; Beer, Tobias, and Weiss, 1998)
immediately prior to the Maunder minimum, to search for an odd–even signal.

Efforts to search for signatures of aperiodicity, chaos and/or intermittency in
various types of nonlinear dynamo models have generated a voluminous literature
in the past two decades, of which a critical review is well beyond the scope of
this paper. Suffices to say that such behaviors do materialize in many classes of
solar cycle models of varying degrees of mathematical and/or physical complexity
(see, e.g., Weiss, Cattaneo, and Jones, 1984; Schmalz and Stix, 1991; Roald and
Thomas, 1997; Tworkowskiet al., 1998, and references therein). All but the last
of these models essentially rely on the nonlinear dynamical interaction between a
small number of degrees of freedom representing field variables, much in the man-
ner originally expounded by Lorenz (1963). The behavior of these models tends to
depend rather sensitively on the choice of nonlinearities, and the manner in which
the dynamo equations are truncated to a low order dynamical system. In addition,
mean-field or mean-field-like dynamo models subjected to stochastic forcing have
been found to exhibit significant amplitude modulation (e.g., Ossendrijver and
Hoyng, 1996, and references therein) and even something akin to intermittency
(Schmitt, Schüssler, and Ferriz-Mas, 1996), but not the odd–even effect, at least
as far as one can judge from the published results. The approach followed in this
paper uses a model that is in fact simpler that even the more severely truncated of
the models cited above, but relies instead on a long time delay (‘long’ in the sense
of being of the order of the cycle period) to generate complex behavior. Moreover,
the complexity is crucially linked to this time delay, while being rather insensitive
to the choice of amplitude-limiting nonlinearity.

An essential condition for the reduction of the dynamo equations to a one-
dimensional map is thus the existence of a time delay in the dynamo process. Such
a time delay arises naturally in models of the Babcock–Leighton type, because of
the finite time required for meridional circulation to advect the poloidal field from
the surface layers down to the shear layer at the core – envelope interface. In fact,
the assumed circulation flow speed turns out to be the primary determinant of the
cycle period in such models (see, e.g., Dikpati and Charbonneau, 1999, Section 4).
This is after all why, in Equation (3), the production of the toroidal fieldTn+1 is
made proportional to the poloidal fieldPn from the preceding cycle.

In contrast, in models based on mean-field electrodynamics (e.g., Moffatt, 1978)
and where the shear andα-effect coexist spatially, one would have to write some-
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thing like Tn ∼ Pn andPn ∼ Tn, so that reduction to a one-dimensional iterative
map is evidently not possible, unless long time delays are artificially introduced
in the model, as in the simulations discussed by Yoshimura (1979), for example.
One true exception might be the so-called interface dynamos, in cases where the
regions of shear andα-effect are spatially segregated, as considered for example
by MacGregor and Charbonneau (1997). In such models the two source regions
must communicate on a time scale of the order of the diffusion time based on their
spatial separation, which then sets the cycle period. At this writing the effects of
stochastic forcing on such models remain undocumented.
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