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Abstract. Data assimilation techniques, developed in the last two decades mainlydtiraveredic-
tion, produce better forecasts by taking advantage of both theoreticafimatmodels and real time
observations. In this paper, we explore the possibility of applying the datendation techniques
known as 4D-VAR to the prediction of solar flares. We do so in the confextcontinuous version
of the classical cellular automaton-based self-organized critical ar@amodels of solar flares
introduced by Lu and Hamilton (1991). Such models, although a priorefaoved from the physics
of magnetic reconnection and magnetohydrodynamical evolution ohabstructures, nonetheless
reproduce quite well the observed statistical distribution of flare chaistite. We report here on a
large set of data assimilation runs on synthetic energy release time €xre®sults indicate that,
despite the unpredictable (and unobservable) stochastic nature ofvimg/tiiggering mechanism
within the avalanche model, 4D-VAR succeeds in producing optimal initiadlitimns that reproduce
adequately the time series of energy released by avalanches/flaiess Bm essential first step
towards true forecasting.
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1. Introduction: Flaresand self-organized criticality

Spatially resolved observations of solar flares at short wavelengttesragealed
a very broad range of scales in the flaring phenomenon. Probability disbrils
of global flare characteristics such as peak flux, energy releassjaiy are now
known to take the form of power laws spanning many decades in size (eitje
case of flare energy; see, e.g., Dennis, 1985¢t.al, 1993; Aschwandert al,,
2000). This is surprising because the vast majority of flares occur veaetjions
and activity complexes that have global characteristics (linear size, inafoe,
peak field strength) that are much more narrowly distributed. This indicaaés th
the flaring phenomenon is intrinsically scale-free, even though its enesgywvoir
may not be. The relatively slow evolution of active regions is also in stankrast
to the short energy release timescale associated with the flaring phenomenon
Avalanches are one class of physical phenomena that are chaedtteyinter-
mittent, scale-free energy release even under conditions of slow, consiemergy
loading. In the flare context, the physical picture usually invoked is thedmnal
magnetic structures being slowly and stochastically forced by photoshédc
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2 BELANGER ET AL.

motions, leading to the gradual buildup of electrical current sheets in tloaalo
plasma (Parker, 1983, 1988). Plasma instabilities eventually trigger magaetic r
connection at an unstable site, leading to alterations of the physical cosdition
neighbouring current sheets that can then themselves become unstdide, @n

in classical avalanching style. Numerous avalanche models inspired by tesa)
scenario have been developed to describe solar flares (see Qineatbetral., 2001,

and references therein). Many of these models manage to producechekize
distributions having the form of power-laws, with logarithmic exponent cainga
fairly well to observationally-determined values (e.g.,étal, 1993; Georgoulis
and Vlahos, 1998; Aschwanden and Charbonneau, 2002). Mdkesé models
are based on the idea of self-organized criticality (SOC) (Bak, Tarth\\dasen-
feld, 1987; Jensen, 1998). The “criticality” is akin to phase changeuiliegum
thermodynamics, where the effects of a small, localized perturbation cagltbe f
on a dynamical timescale throughout the whole system. The system is said to be
“self-organized” when this critical state is a dynamical attractor and iheshin
response to external forcing without requiring fine tuning of a contaphmeter.
Generally, SOC is found in slowly-driven open dissipative systems dighfeo

a self-limiting local threshold instability. The threshold to the instability is cru-
cial, as it allows the system to transit from one metastable state to another while
preventing the dynamics to be governed by external forcing (Jensg®). Foten-

tial examples in the natural world include various forms of sandpiles, avadsn
and landslides, but also earthquakes, forest fires, hydrologitafories, traffic
jams, magnetospheric substorms, and solar flares (see Bak, 1996spaited
exposition).

If flares are truly a manifestation of SOC dynamics, then the outlook for ac-
curate flare forecasting would appear, a priori, pretty grim indeed.ihgptiun-
damentally distinguishes a large flare from a small one, flare size simply being a
matter of the number of current sheets involved in the avalanche of rectiom
events. Even worse, the triggers of flares large and small are the samelyra
small (quite possibly unobservable) perturbation affecting the systemvatene
locally. However, the occurrence of a large avalanche is only possiblédaifge,
“connected” portion of the system is close to the avalanching threshoédstele
of the system, in turn, is a function of its prior history, and in particular of et p
occurrence of avalanches, of which the larger ones are (presunudisigrvable.

In other words, past avalanching behavior holds clues to the curtiaet af the
system, and therefore to ®tentialavalanching behavior.

The question is then: can this information be retrieved and used to produce
reliable avalanche forecasts, despite the stochastic nature of the Arigyering
mechanism? This is the central question we address in this series of papers,
ing data assimilation techniques. This first paper describes the SOC dwalanc
model and data assimilation technique we are developing towards fore¢astihg
demonstrates that the resulting scheme can adequately reproduce thetdngla
behavior of the system even in the absence of detailed information on the spa
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Predicting Solar Flares by Data Assimilation in Avalanchedels. I. Model Design and Validation 3

tiotemporal behavior of its the stochastic driver. This is a first essentat@ieards
forecasting, which is the topic of the subsequent papers in the series.

This first paper is organized as follows: section 2 gives an overviesvsim-
ple, “classical’ discrete SOC model based on a cellular automaton, as well as a
continuous analog described by a partial differential equation redrensgineered
from the discrete cellular automaton rules. This is the model used in Section 3
in conjunction with the 4D-VAR data assimilation techniques. Section 4 presents
results for a wide set of validation experiments demonstrating that 4D-VAR ca
successfully reproduce the avalanching behavior present in enelepse time
series, despite the stochastic nature of the external forcing that loadgyémto the
system and triggers avalanches. We conclude in section 5 by summarizingitne
results of this study, and outlining the road lying ahead, towards truedstiag.

2. Avalanche models

2.1. THELU & HAMILTON MODEL

The sandpile has now become the icon of SOC systems (Bak, Tang, anehvies
feld, 1987). As sand grains are dropped one by one on a flat sugaandpile will
build up, with occasional avalanches of various sizes, until the pile kabed a
conical shape with the slope everywhere at or near the angle of refudition of

more sand grains can now trigger large avalanches disrupting the whpée slo

the toppling of only a few sand grains, or nothing at all. The system habeda
statistically stationary state where, averaged over a long enough temperaiin

as many sand grains fall off the pile as are dropped on it. Notice that while the
loading is slow and gradual, the unloading is strongly intermittent and involves
avalanches of all sizes.

The statistical physics of sandpiles has been extensively studied udlingrce
automata models, where the sandpile is replaced by a lattice of locally intercon-
nected nodes on which a nodal variable related to energy is definedurfktid
et al,, 1989). In the context of solar flares, the first such model is to bedf@un
the groundbreaking work of Lu and Hamilton (1991) and étual. (1993) (but
do see also Zirker and Cleveland, 1993). Consider the following two-diioeal
scalar version of the Lu and Hamilton (1991) model; a scalar nodal quaxﬂgity
is defined over & x N regular cartesian grid with nearest-neighbour connectivity
(top+down+right+left; see, e.g., Figure 1 in Charbonnetal, 2001). Here the
superscriptn is a discrete time index, and the subscript paif)(identifies a node
on the 2D lattice. The cellular automaton is driven by adding small increments in
A at randomly selected nodes in the lattice (one per time step), analogous here to
dropping sand grains on the pile. A stability criterion is defined in terms of the

articl e_aval anche. tex; 28/03/2007; 20:45; p.3



4 BELANGER ET AL.

local curvature of the field at node j):

1
A ‘invj = Alnj T4 ; Ageighbour& 1)
neig

ours

where the sum runs over the four nearest neighbours at fiodesl) and(i + 1, j).

If this quantity exceeds some pre-set threshldanalogous to the slope exceed-
ing the angle of repose on the sandpile), tApis redistributed to its four nearest
neighbours according to the following rules:

A|n+1 AIJ_*AAIJ’ (2)

1
Al:tlj:l:l Alni17jj:1+§AAirjj . €)

These redistribution rules are conservativéjmowever, if one identified? with
a measure of energy (more on this below), then it is readily verified thatelaely
to a decrease of the total lattice energy:

E'= 5 (A])2. (@)

]

the excess energy being what is liberated in the “flare”. Lu and Hamilto@1(19
and Luet al. (1993) have shown that this driven cellular automaton can produce
avalanches with robust power-law exponents resembling those infeoradlare
observations (see also Charbonneaal., 2001, and references therein).

Giving a physical meaning to the scalars not trivial. If A is considered as
being the magnetic field, thdn- A # 0. TakingA as the vector potential automati-
cally solves the non-null divergence problem. Howezer(A{‘ )2is then no longer
an obvious measure of magnetic energy (Charboneeal, 2001) Dimensional
analysis does suggeBtx A = B or |A|?2 ~ L?|B|? so we can at first assume that
the vector potential scales with the magnetic field, a conjecture supportee by th
numerical results of Isliker, Anastasiadis, and Vlahos (2000), usireyalanche
model closely related to that described above. Variations in lattice elgfgym
one time step to the next during an avalanche then yields the energy libetrated a
each time step:

(®)

En _ EM1—E(>0), lattice avalanching
10, otherwise

The resulting time series of energy release is the target for data assimilation. |
the Lu & Hamilton discrete modeE,; can be calculated analytically knowing the
redistribution rule and stability measure, but this will no longer be the case with
the continuous analog to be introduced shortly; Equation (5) applies equellly

to both classes of models.
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At this juncture it must be emphasized that the stochasticity in the Lu & Hamil-
ton model (and other published variations thereof) is not a mere noiseitikeri-
venience” superimposing itself on an underlying deterministic flaring psodes
the Lu & Hamilton SOC avalanche model, stochastic forcing plays the dual role
of energy loadingand avalanche triggering. The model thus has a fundamentally
stochastic component.

2.2. ACONTINUOUSSOCMODEL

2.2.1. Reverse engineering

The structure of Equations (2) and (3) suggest that they can be ietedpas the
result of applying centered second-order finite difference and sstapeexplicit
time-stepping algorithm to some partial differential equation (PDE) in two spatial
dimension discretized on a regular cartesian grid. Applying this revegieaaTing
approach (see also Liet al., 2002) leads to the following PDE describing the
evolution ofA during an avalanche:

oA 92 2 O2AY 92 2 ny O2A

Likewise, the RHS of Equation (1) is readily interpreted as a second-oetd¢ered
finite difference representation of the Laplacian operator acting,@o that the
diffusion coefficientv(J?A) appearing in Equation (6) is given by:

Vg if (02A)2 > AZ
0 otherwise

vieen) - ™
whereA is the stability threshold. The numerical valuewgfdepends on the re-
distribution rules that were used in the discrete equations (Equationsd2Bpn
and on the grid size. In the case of the Lu & Hamilton model, in two spatial dimen-
sions,v, = A?/20 (Ax = Ay = A), with units oftime/lengtt? implicitly included in

the denominator, a value used in all calculations reported upon belowaloggn
with the discrete model, we identify the functiorglx,y,t) with a measure of the
magnetic vector potential, and assume #ais a measure of energy.

Equation (6) is a fourth-order “hyperdiffusion” equation, albeit arsgtg non-
linear one since the hyperdiffusion coefficient is only non-zero whersyistem is
avalanching, and even then it remains a discontinuous function of positamg
only non-zero at unstable nodes. If all nodes are stable then the quaetitives
in response to the external forcing only. In the classical cellular automateach
(non-avalanching) timestep a small increment of random amplitudésiadded to
a single randomly selected node of the lattice. Reverse-engineering oritiisgf
rule immediately leads to:

oA

= Fr00(0).o(1)) ®)
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6 BELANGER ET AL.

where the forcing locatiofxg, yo) varies randomly in time. The continuous model
then amounts to solving Equation (8) when the system is everywhere staflle, a
switching to Equation (6) if one or more nodes become unstable. Note that this
implies that the forcind is turned off during avalanches. This is the same pro-
cedure used in the cellular automaton, and amounts to assuming that there exists
a wide separation of timescales between forcing and avalanching, whiabtiis f

well justified in the solar coronal context (see, e.g. dtal, 1993).

2.2.2. Sample numerical results

We now proceed to solve numerically the continuous avalanche equatioa-Eq
tions (6)—(8)), by discretizing it using a centered finite difference s&Ehavith
forward Euler differencing for the time derivative. The reader maytfigly won-
der why then did we bother reverse-engineering the discrete Lu & Hamiltaleimo
in the first place, but the need to proceed in this way will become clearmihgse
Moreover, in solving Equation (6) numerically as one would any partiaddifitial
equations, subtle differences are introduced with respect to the truhgtiisnodel,
and these must be understood.

A square domain of linear side= 21t is partitioned using a regular cartesian
grid (Ax = Ay = A). ImposingA = 0 on domain boundaries, we solve dimen-
sionless forms of the avalanche equations (Equations (6), (7) andué®yp the
hyperdiffusion time scale .

L
- (©)
as a time unit. This corresponds to the time it would take an avalanche to sweep
across the length of the domain. Following a dimensional analysis of the contin-
uous avalanche equatiox,andy will now be in L units andt in 1, units. The
diffusion coefficientv, in the non-dimensional equation, is equal to O (stable) or
to 1 (avalanching). For the scheme to remain numerically stable, a von Neumann
stability analysis (Presat al, 1992) indicates that the dimensional time step must
be chosen such that

Ty

4

A
At < — 10
< (10)

or, in terms of dimensionless time;:

A 1/A\?
T§4<L> - (11)
v

For our working 48x 48 mesh,; (%)4 = 4.7 x 1078, so a non-dimensional time
step of size % x 10~ ! safely satisfies that condition, and is used for all simulations
unless otherwise specified.

The stability threshold is set &, = 7.0. Sequences of uniform random devi-
ates are used to define the stochastic forcing. Both the location and magifitude
the perturbation are randomly determined, the former excluding boundalssn
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Figure 1. Evolution of the lattice energy as a function of time. The lattice energy ineream the

null state A = 0) to the SOC state as the energy input by the perturbations is greater trearetgg
released in avalanches. A= 0.23, the SOC state is reached: the energy added to the system is
released by avalanches, hence the plateau. The top left inset is-&eotiss of the lattice variablg

along the y-axis, taken at different times. The labels along the latticeyeoerge indicates when the
cross-sections were taken. The bottom right inset is a zoom of the latécgyecurve about point

“d” to show the energy variation in the SOC state, with vertical axis coveriegesgy units.

and the latter constrained to the pre-set intefval x 107°: 4 x 10~°]. The per-
turbations have non-zero mean to ensure buildup(@fy) from the initial state
A(x,y) = 0 throughout. This is again in direct analogy to the Lu & Hamilton
model described earlier. Because the continuous model is discretizedewitred
second-order finite differences, boundary conditions for the twas hgrid points
along the boundary are needed. The grid points along the boundagtdod = 0
(like in the discrete model) while the second row is sefifé\ = 0 with the use of
the fictional point method.

The first task is to bring the system to the SOC state. StartingAwittD every-
where, the system is driven to the SOC state by the external forcing upted by
avalanching episodes whenever and wherever the stability thresholdeisded.
Figure 1 illustrates the gradual buildup of lattice energyf) with time. Initially,
the energy gained by the system from the perturbations exceeds thg sxleased
in avalanches. Thus, there is a net increase of the system’s enenggvéto at
t ~ 0.23 a plateau begins. The system has now reached a statistically-stationary
state where, in time-averaged sense, the buildup of response to forcing is
balanced byA evacuated via thA = 0 boundary conditions when avalanches reach
the system’s boundaries. Because large avalanches are more likelychothea
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Figure 2. Evolution of the energy released as a function of time. The large avadargan only be
created when the system is in the SOC state. The large avalanches betw@dnandt = 0.14 are
due to a transient SOC state that is created when the stability criterion of ttialgegion take a
value of~ +A; while the periphery have- —Ac. This is only a transitional step as the center will
fill up to take its final shape of an inverse parabola (6d” on the inset in Figure 1). The insetis a
zoom to show that we have individual avalanches separated by calodger

boundaries, their frequency of occurrence jumps markedly once tiestey state
is reached (cf. Figure 2). This stationary state is the SOC state. The bagfioim r
inset on Figure 1 shows a zooming on the behaviour of the lattice energgdur
the SOC state in the vicinity of point “d”. Every decrease is the signature of a
avalanche and the pronounced drop starting-a0.2456 corresponds to the large
avalanche in the inset of Figure 2. The top left inset shows cross-secilong
they-axis of the evolution of the scalar varial#deat different times up to the SOC
regime where it approximates the shape of an inverse parabola. Aszosn
along thex-axis would yield the same result. All DNS and 4D-VAR runs discussed
further below are carried out with the system in the SOC state.

Figure 2 displays the energy released as a function of time. An short segme
is shown in inset, where individual avalanches can be distinguishedomlysin
the SOC state that avalanche spanning the whole system can be prodticad w
significant frequency. For this reason, it will be particularly importantrisuee
that the system is kept in the SOC state throughout the data assimilation process
The large avalanches betweter 0.1 andt = 0.14 (Figure 2) are due to a transient
SOC state that is created when the stability criterion of the central region take a
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Predicting Solar Flares by Data Assimilation in Avalanchedels. I. Model Design and Validation 9

value of~ +A while the periphery haver —A. (such as for the curve “b” on the
top left inset of Figure 1). This is only a transitional step as the center willffill
to eventually take its final shape of an inverse parabola and the systemenilbéh
in its true SOC state.

Even though the avalanche model is a continuous one, it retains somealiscre
features. Usually, in the numerical solution of partial differential equaticeduc-
ing the time steps by a factor of two but using twice as many of these smaller
time steps, should not affect the outcome significantly. However, this is rot th
case here, because of the the spatiotemporally discrete nature of tndifiypien
coefficient, as the latter is only turned on when the system is unstable. Wken th
happens, the run with the smaller time stgpvill redistribute more finely, as seen
in Equation (6). When stability is recovered, the formerly avalanching podfo
the lattice will find itself closer to the stability threshold, thus the lattice energy
will increase significantly. The redistribution is also affected by the valuief
diffusion coefficient (with a dependency on the distance between thepgids)
which must be lower for higher resolution grids otherwise too much energy is
redistributed and the system restabilizes too far below the stability threshadd, th
leading to loss of SOC at the expense of large, quasiperiodic avalanches

The last difference between the Lu & Hamilton and continuous models pertains
to the effect of an increase in the number of grid points. In the Lu & Hamilton
model, the distance between each grid point is constart L) which leads to
an increase of the size of the domain when the grid point number is increased
As for the continuous model, even though the domain size can be increased,
will keep it constant in this paper so an increase in the number of grid poitts w
increase the resolution. The system will then be more effective in repirgltine
structures as seen in Figure 3, which shows the normalized frequendlyudistrs
for the stability criterion (Equation (1)) evaluated at each grid point atiféegreint
times for grid resolution of 24 24, 36x 36 and 48x 48. As with the discrete
model, at any given time only a small fraction of nodes are very close to the
instability threshold. The distribution is broader and centered further b#iew
stability threshold for the higher resolution runs. The reason behind this/bmur
is that the larger number of degrees of freedom in the high resolutionllawmsa
for the presence of finer structures, which make it easier for the latticeceed
stability, in the sense that fluctuations/oA'; about its lattice mean become larger
as the spatial resolution is increased.

2.2.3. Characteristics of avalanches in the SOC state

In the SOC state, several characteristics of avalanches have probdisirifpu-

tion functions (hereafter PDF) that behave as power laws. This is theefoas

the avalanche energ¥]), namely the total energy released by the lattice over the
duration of the avalanche; the peak energy releBsec6rresponding to maximum
energy released by the avalanche in a single time step; and the duii@tievhich

is simply the time elapsed from the beginning of an avalanche to its end. Figure 4
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Figure 3. Normalized frequency distributions for the stability criterion evaluated et gaid point

for runs of 24x 24, 36x 36 and 48x 48. Data taken at ten different times, when the system was
stable, were combined to generate the PDF. As expected, the peaksP@ifhes close but below
the stability threshold of; = 7.0. As the resolution increases, the width of the distribution widens
and move further from the threshold. This is due to the increase of finetstes which permits
more degrees of freedom to the large resolution systems, thus makasigt ® stray away from the
threshold.

(panels A—C) show probability distribution functions fiér P and T, constructed
from runs of different resolutions (2424, 36x 36 and 48« 48) of 10’ time steps,
spanning 1000 hyperdiffusion times, and each including upxd & avalanches.
Least-squares fit of the form:

f(x) = fox @ (12)

are overplotted on the distributions. The fits used the data from the lagaties

runs (48x 48). Because the mesh spacing affects the statistics for small avalanches,
the first few bins are excluded from these fits. The power law indiceénalatavere

ag = 1.407+0.02, ap = 1.800+ 0.04 andat = 2.0674 0.03. These first two
values are in good agreement with those obtained with the discrete formul&tion o
this avalanches model (see Table Il in Charbonnstaal. (2001)). Theat value

is a bit higher, but is in fact more comparable to the values obtained kst bl
(1993) (Table 1). Figure 4 (panel D) show the frequency distributfdheowaiting

time (WTD; now on semi-log scale). The waiting tim&T() is the time interval
during which the system is in a stable state between two consecutive aveganch
The WTD is well-fitted with exponential of the form:

f(At) = foe PAL (13)

here with an inverse-folding timescale = 2158+ 4. The exponential form of
the WTD comes from the statistically uniformity of the external forcing, here a
stationary random process (see Wheatland, 2000). Other typesofgercan be
introduced in SOC avalanche models for solar flares, producing WT Dhdistms

in better agreement with observations (see, e.g., Nomhah, 2001), but for the
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purposes of the forthcoming validation exercise we retain the unifornemdoithe
original Lu & Hamilton model.

To sum up, and notwithstanding some subtleties related to mesh refinement, nu-
merical solutions of the reverse-engineered avalanche equation leatsdach-
ing behavior essentially identical to that of the original, discrete model ofricu a
Hamilton (1991). This “validation” of the continuous model may well appear tau
tological, but it represents an essential starting point to our forecastimgree
because recasting the model in continuous form is required by the 4De\#dr
assimilation formalism, the topic to which we now turn.

3. Dataassimilation (4D-VAR)

The underlying idea of data assimilation is to use observed data to introduee-co
tions to a model —often a numerical simulation— of a physical phenomenon, typi-
cally with the aim of correcting for missing data or to produce forecastsef@én
speaking, data assimilation methods can be subdivided into three categodes:
cessive correction, sequential (Kalman filter) and variational method®ifnet

and Talagrand, 1986; Daley, 1991; Kalnay, 2003). The sucaessivection method,
also known as Cressman method, consist in the correction of a backigiield)
previously obtained trough a previous forecast or a trivial state dudnysiqal
constraints, until it includes the given observations (Cressman, 18&8t se-
guential methods are based on the Kalman filter, which uses the model edror a
the observational error statistics to find the optimal combination of the model and
observational data (Kantha and Clayson, 2000). The variational netwtsist

in finding the space-time trajectory of the state variables that will minimize a cost
function measuring the discrepancy between the forecast and theatises (Ta-
lagrand and Courtier, 1987; Courtier and Talagrand, 1990). Th¥AR®-method
belongs to this third class.

3.1. 4D-VAR:AN OVERVIEW

Four-dimensional variational data assimilation (hereafter 4D-VAR) is Briegit
technique for incorporating observations in numerical forecasting mdtela-
grand and Courtier, 1987; Courtier and Talagrand, 1990). The AR-Wethod
consists in minimizing a scalar cost function measuring the deviation between the
forecast and the observations. The physical fields produced byadaiailation
must correspond to the observations, while abiding to the known physigal la
and/or statistical relations characterizing the system being treated (Le Dighet a
Talagrand, 1986).

Figure 5 shows an overview of the 4D-VAR method as applied to a classical
forecasting problem, namely using the known state of a varigpket some initial
instant of time, to forecast its valugr at a later timeT. This forecast is to be
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Figure 4. Normalized frequency distributions for the total energy (E), the peakgsn(P), the
duration (T) and the waiting timeAT) for runs of different spatial resolutions (2424, 36x 36
and 48x 48) of t = 10° containing up to 6< 10° avalanches. Bins of a constant logarithmic
width Alogx = 0.2 were used to construct the PDFs. Power law indicesgpf= 1.407+ 0.02,
op = 1.800+ 0.04 andat = 2.067+ 0.03 were obtained by fitting data for the 4848 run.
An exponential was fitted to the waiting time distribution, yielding an inverseldirig time
B =2158+4.
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Figure 5. Overview of variational data assimilation. Poifig is an estimate of the initial condition
at time 0. Using this initial condition, a forecagt is obtained at tim& . The 4D-VAR method uses
the difference between the forecgst and the observatiogyyps to generate a new initial condition
Y which will produce a better forecagpf) at timeT (Errico, 1997).

compared to an actual observatigg,s Here this first forecast falls outside of
the observation’s error bar. The 4D-VAR method uses the differeateden the
forecastyr and the observatiofiy,s to generate a new initial conditiogy, that
now produces an improved forecapt at timeT which is closer to the observa-
tion (Errico, 1997). The procedure can be repeated until some pgosdness of

fit criterion betweeny; andyipsis reached. In classical data assimilation applica-
tions (for example numerical weather forecasting), the pggnvould corresponds

to a field variable discretized on a single nodgj) of a N x N spatial mesh;
4D-VAR must then solve concurrently as many variational problems as énere
variables, times the number of spatial mesh points on which the numerical sim-
ulation used to advance the field from O0Tois performed. Data assimilation in
numerical simulations is a computationally intensive undertaking!

3.2. THE COST FUNCTION

Generally, in variational problems, we want to minimize the cost function

/:/()T/Qf(wjx,t) dx dt | (14)

where f (¢, x,t) is a scalar function, defined over a dom&nand a time inter-
val [0, T], of the state variablgy (Sanders and Katopodes, 2000). More precisely,
in data assimilation, we want to minimize the error between the forecast and the
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14 BELANGER ET AL.

observationg; — ¢ (cf. Figure 5):

)
=5 [ = and W~ g axa, (15)

whereW is a matrix of statistical weights given by the instrumental errors in the
observations and represent the transpose. The squared residpal— @ 0>
is used instead of absolute values, to avoid introducing discontinuities wken th
cost function will be differentiated (next section). The physical equati@e. the
continuous avalanche equation (Equations (6)-(8))), which can hlensatically
written as:

E(YP,x,t)=0, (16)

are acting as constraints during the minimization (Talagrand and Courtief).198

In this paper, the cost function will use the time series of released ensrgy a
defined via Equation (5) as the state varialpleVia the use of Equation (4), we
get:

dE,
=S a
d ¢ p2
= g > A
dA?,
= ; T a7
If we bin the time series of the released enelgy§ 4.1.2), we have:
= YbinEr
E =< (18)
whereAb is the number of elements per bin. The cost function is then:
1 /T —  _
s =5 | E-EPa (29)
0

The identity matrix is used for the observation errors matvioecause syntheti-
cally generated observations will be used (8§ 4) in what follows. Coveianror
matrices are certainly an important and delicate point when dealing with real da

3.3. THE LAGRANGIAN FORMULATION

We want to minimize the cost functiory given the constraing (¢, x,t) = 0.
Since this is a problem of minimization with constraints, a Lagrangian formulation
is used:

)
2WA) = s W+ [ [ A0 sy o, (20)
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whereA (x,t) are the Lagrange undetermined multipliers, also called adjoint vari-
ables (Sanders and Katopodes, 1999). The variational opératdinen applied on
the Lagrangian to find its stationary points:

0.7 = OpZ-op+0,2-5A
0% 0%
= — ——0A . 21

I oY+ o 0A (21)
One can use integration by parts to transfer the differential operatorstfre state
variabley to the adjoint variablé . For an arbitrary displacemefd ¢, dA ), the
minimum is reached only whed.# = 0 (Daley, 1991). This indicates that the
derivative of the Lagrangian with respect to each direction must be zero

0¥
ﬁ:@@(l[!,x,t)zo, (22)
and 0 57
W:Adj(AH—W:O, (23)

where AdjA ) represents the adjoint equations (Schréter, Seiler, and Wenzel, 1993)
As noted by Le Dimet and Talagrand (1986), this set of equations (Eqgai22)
and (23)) are the Euler-Lagrange equations.

For the 2D avalanche model the direct and adjoint equations are:

oA 92 2 02A 92 2 02A :
5= _(3x2< (O°A) 0x2) _(3y2< (O°A) dy2> avalanching
oA
5 = FrOo(t).olt) stable  (24)
and 7] 0? 9°A 92 9°A 27
AT 0° 2 9 2 3
oT %@ (V(D A dx2> dy? <V(D A dy2> oA B

respectively, where the generic varialgehave been replaced by the variale
defined over the lattice, the adjoint variallehas been renamedf* as it is the
adjoint variable associated with andt is a reverse timer(=T —t).

Evaluating the ternﬁ’% is particularly delicate because the cost functighis
not directly given in terms of a spatial quantity related\{dout as a time series of
a nonlinear, non-local function of that quantity:

M B T}a(E_r—E_rObS)zdt
oA  Jo 2 oA
_ /( Ec’bs)dEr
EOS)ameEr
_/ b g (26)
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Using the theorem of implicit functions to rewrite the derivative gives:

O%binEr _ 93pinEr
JA ot

oA

ot

(27)

provided‘;—’t* # 0 so the% term is only to be evaluated when the system is
avalanching. Substituting Equation (27) in Equation (26):

o7 _ _/T (B —EP™) 3binEr /OA] 4
oA o Ab ot at
 [T(E—E™) [ 0E\ /oA
=L 2o /5t a. (28)
If we use the definition oE; (Equation (17)), we get:
07 _ [T[(E—E™ AT\ /oA
0A  Jo [ Ab % ; ot2 alt (29)

The initial and boundary conditions for the adjoint equation arise from the in
tegration by parts, namely the terms evaluated at the limits of the integrals. The
initial conditions areA*|;_o = 0 and the boundary conditions are:

A*(an7r) =0 A*(LXayar) =0
A" (x,0,1) =0 A'(x,Ly,T)=0
oA" OA*
= = O
ox x=0 0y y=0
2 px 2 px
S
9% |xo 9y* ly—o
oA _0 oA _0
X Lo 9y L0
92A" 92A"
. — —— =0 (30)
0% || o 9y* |i,—0

Unfortunately, there is no efficient method to directly solve the Euler-Lragga
equations (Equations (22) and (23)); therefore, we must formulatertiixtepn as
an unconstrained problem (Talagrand and Courtier, 1987). Althoughave a
random parameter in our model, the model can still be regarded as beingidete
istic because the initial conditions, more precisely the “connected” portidineof

system close to the avalanching threshold, will dictate the evolution of thensyste
with time. This highlight the fact that the cost function is an implicit function of the
initial conditions: it is by varying the initial conditions that we will find the solution
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of the physical equations which minimize the cost function (Ehrendorfé2)19n
the language of optimal control theory, the initial conditions are the cordrable
in this problem (Lions, 1968).

As most minimization algorithm requires the gradient of the function to be
minimized, we need the gradient of the cost function with respect to the initial
conditions. However, it is not possible to calculate this gradient analyticslifea
cost function is an explicit function of the final conditions (i.e. forecastjirns out
that the more efficient way to calculate the gradient of the cost function esgect
to the initial conditions is to use the adjoint equations evaluated-al (Courtier
and Talagrand, 1990):

O Zp=A(XYy,T=T) (31)

which then requires numerical integration of the adjoint equations frea to
T =T, i.e., backwards in time froh=T tot = 0. This is the reason behind the
interest and use of the adjoint equations.

3.4. MINIMIZATION ALGORITHM

The minimization of the cost function is usually carried out via a minimization
algorithm such as steepest descent, conjugate gradient or quasiFNeetioods.
The steepest descent is a simple method but it converges linearly. In thysthiel
conjugate gradient is used because of its quadratic convergencguasieNewton
method also converges quadratically and is popular among meteorologists. Ho
ever, it requires the computation of the Hessian matrix. Even if an approximattio
the Hessian is normally used, convergence problems may arise if it beceargs n
singular (Presst al,, 1992). One can solve these kind of problems but this leads to
algorithm of a greater complexity, and usually more computationally intensive.
The algorithm implementation of 4D-VAR data assimilation runs as shown on
Figure 6. Starting from initial conditions obtained by current experimeiiséva-
tions or a previous numerical simulation, a direct simulation generates a tradlition
(DNS) forecast. After reading the observations taken at the end ofotleedst
period, the cost function is evaluated, followed by the evaluation of itsigmad
If the gradient is smaller than a chosen tolerance which accounts forderecto
numerical precision, then the minimum of the cost function has been reacied
the optimal 4D-VAR forecast is obtained. In the case that the cost funistinot
minimized, we must iterate. A new set of initial conditions are generated and will
be used as the starting point of a new forecast. The cost function amddisigt are
reevaluated and checked again against the termination criterion. Thedorecs
repeated until the latter is met. The iteration loop in Figure 6 takes place within the
conjugate gradient minimization algorithm. It is also the conjugate gradient which
modifies the initial conditiomé\icfj at each iteration:

A2 = (A2 T+ akpl (32)
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Read initial conditions

l

DNS simulation

l

[ Output: DNS forecastj

l

Read observations

l

Evaluate cost function

Cost
function
minimized?

New initial conditions

l

DNS simulation
New forecast

Figure 6. Algorithm of 4D-VAR data assimilation. From initial conditions, a traditional (®Nore-
cast is made. Then the observations are read. The value of the ooibfts gradient indicates
if minimization was achieved. If not, a new set of initial conditions are peeduby backwards
integration of the adjoint equations, a new forecast is produced, amvetifieation is repeated. This
procedure is iterated until minimization of the cost function is achieved.olitgut is the optimal
4D-VAR forecast and associated initial condition.

where, for thekth iteration of the conjugate gradiemﬁj is the conjugate direc-

tion vector multiplied by an amplitude®. These conjugate direction vectors are
obtained with the use of the gradient:

Pt =075+ Ve (33)

where

o (OAS 078078

: (34)
Oz7%-0.75
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and the gradients are evaluated using Equation (31). The amptitislealculated
with:

gk —p_ L= 7(b)— 7()]-(b—c)’[7(b)— /()] (35)
2 (b—a)[7(b)—_7(¢)] - (b—c)[ 7 (b) - 7 (a)]

wherea, b andc are modified initial conditions that where obtained through a line
minimization method known as inverse parabolic interpolation, which iteratively
finds a triplet of points such that the minimum of a parabola passing througé the
three points will be as close as possible to the minimum of the function in that
given interval (Presst al., 1992).

3.5. BEYOND CLASSICAL4D-VAR

There are many ways in which our use of 4D-VAR goes beyond the fctd’sor-
mulation of 4D-VAR, as given on Figure 5. We are using 4D-VAR to assimilata d

into a finite grid sized cellular automaton made continuous only for the purpose
of writing adjoint equations. Grid and time steps are fractions of the chaistte
scales of the hyperdiffusive processes involved and are not infindés However,

as pointed by Isliker, Anastasiadis, and Vlahos (2000), it is still possildertgoute
derivatives and thus operators. To the best of our knowledge, girésent time

the only other area in which data assimilation techniques are being developed in
conjunction with a cellular automaton is in seismic data assimilation of a stochastic
random fault model (Rundlet al, 2003; Gonzaleet al, 2006).

We are also using a time series of a global, model-produced variable to define
the error, as opposed to the spatial state of the system measured at some time
intervals beyond the initial condition in which data is being assimilated. Assim-
ilating time series of a global variable instead of (or together with) spatial states
of a system at non-zero timeds truly compatible with the 4D-VAR approach,
as opposed to 3D-VAR for instance. Models in environmental scienae&sheen
and will increasingly be assimilating time-series of data (see for instancerCarto
Chepurin, and Cao (2000) in Oceanology or Bertino, Evensen, amn#aizagel
(2002) in Estuary modeling or Eymin and Fournier (2005) in Geomagnetism).

Finally, our model system includes an essential stochastic component, namely
the driving. Ocean and atmosphere general circulation or solid Earthndga
are all random driven (noisy) systems. Data assimilation, including 4D;VAR
principle can be applied to any such system (e.g., Nichols, 2003; Mstoag,
2004). Random driving, inaccessible to observations, cannot brikeded, but is
not seen as a systematic bias in the model (see, e.g., Anderson, 2003).
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4. Validation Experiments

4.1. EXPERIMENTAL DESIGN

4.1.1. Synthetic data
The validation experiments use synthetic observations generated frorarttee s
SOC avalanche model used to carry out data assimilation (certainly an optimal
situation from the data assimilation point of view). Of course, entirely indeg@ein
realizations of the stochastic driving are used to generate the synthetiovabs
tions, and these realizations aret made available to 4D-VAR, as our challenge is
precisely to see whether 4D-VAR can still adequately assimilate the obsesatio
without “knowing” about the stochastic driving.

The synthetic energy release time series cover one hyperdiffusion timde, an
were produced on a 4848 grid, with time stegt /1, = 5.5 x 10~*%, and forcing
parameters as given in §2.2.2.

4.1.2. Thresholding and binning

Figure 7 illustrates a segment of representative simulation run. The grainline
the bottom panel of Figure 7 is a typical time series for the energy relegsibe b
avalanches. Time is measured in units of the magnetic hyperdiffusion time scale,
and energy in some arbitrary units. This arbitrary energy scale can hzech&pthe
standard flare classification by dividing the peak energy that covexs ttecades
(panel B of Figure 4), in four ranges equal in logarithmic size. Thusfalh@ving
association can be made:< 8 are B-class flares, 8 P < 40 are C-class flares,
40 < P < 200 are M-class flares aftl> 200 are X-class flares.

Data assimilation is carried out on a binned version of the energy time series,
shown as a thick solid line in Figure 7. Bin width ab = 100 (i.e. 100 time
steps) were chosen, as they large enough to remove the small structusasati
enough to keep the general features of the avalanche This binning fasilitee
minimization of the cost function by eliminating the fine structure details, which
are unnecessary as we are mostly interested in forecasting the flaring éake, p
flux, and total released energy.

Two parameters are used to build statistics. First, there is an energy thresh-
old (horizontal dashed lines on Figure 7). Only avalanches with an gadayve
the threshold are considered in the statistics. The signals below the threséold
treated as being noise or low energy avalanches that are unimportaathidewo
thresholds that will be used in this paper are shown: a threshold at 99 langer
one at at a value of 200 energy units. The lower threshold retains thel'snode
equivalents of upper half of the medium size (M-class) and large sizela@6)
flares while the larger one will only take the high energy X-flares into aticou
These classes of flares are the ones having the most important effeesrtbn
The second parameter is the forecast window. A forecast window ahger of
ot = 0.55x 1077 is depicted in the upper left corner of Figure 7. The forecast
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window is the maximal time interval between an observed peak and a forgécaste
peak to have a match. In the case of a forecast windodt ef 0.55 x 10~/, the
predicted peak can either I3 = 0.275x 10~/ before or after the observed peak.
Hence, a smaller forecast window implies a more precise forecast.

The top four panels of Figure 7 show the evolution of the avalanchingnegio
at different stages throughout the spatiotemporal evolution of a la@jarahe.
Starting from an initial perturbation at a given random point, the “préefistage
begins with an avalanching region occupying a small region (panel Aréiguof
the domain that will gradually increase (panel B, Figure 7) to reach a tirge
occupying an important portion of the domain, at the “impulsive stage” atrtbe e
of which the peak is reached (panel C, Figure 7). At this point, the fratgde
hyperdiffusion front has reached the sides of the domain. In the ydatage, the
avalanching regions start to decrease in size (panel D, Figure Miualy, the
system will return to a stable state, and driving resumes until the triggeritige of
next flare/avalanche.

4.1.3. Maintaining the SOC state

To prevent the system from leaving the SOC state due to the 4D-VAR tiomec
made to the initial conditions, the lattice energy of the corrected initial conditions
is compared to the average lattice enekjyof the SOC state. If the lattice energy
of the corrected initial conditions is not found within the variaiceghe 4D-VAR
correction is adjusted by a facterdefined as:

|E-E|

BB e >E+o
£=<1 fE—o<EBE<E+0o (36)
BE& ifE<E-0o

which brings the initial conditions’ lattice energy within the variance.

4.1.4. Random number sequences

For the minimization procedure within the 4D-VAR algorithm, the same seed is
used to initialize the random number generator, so that during each iteration w
4D-VAR (cf. Figure 6), the same sequence of perturbations are addkd same
order to the same mesh points.

4.1.5. Running 4D-VAR

With a realization of stochastic driving different from that having beesduse pro-
duce the synthetic observations (top panel Figure 8), a DNS “foreisgstdduced
(middle panel Figure 8). The same initial conditions were used in both dases,
the different realizations of the driving have led, perhaps not simgtis to very
different time series of energy release. Although the DNS run hasdeped the
small avalanche dt= 1.1 x 10/, it missed the large one ai= 3.5x 10~’. The
4D-VAR run (bottom panel Figure 8), using the same driving realizatiothas
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Figure 7. Several aspects of the experimental design are displayed in the bottwh Pphe gray
line is an original time series of released energy generated by the avalaradel (Equation (6)).
The thick solid line is the same series which has been binned by using bingtbfae? Ab = 100.
Only the avalanches above the energy threshold (horizontal dashejl Wilebe considered. In
the top left corner, a typical forecast window is shown. It determinesntaximum time interval
between an observed and forecasted avalanche in order to haveta Wredop four panels show
the avalanching regions evolving in space and time. From the initial petimmket a random point,
the avalanching region increases from a small region (A) to a largerregicupying an important
portion of the domain where the hyperdiffusion has reached the sidbg afomain (B & C). The
avalanche is typically fragmented in its decay phase (D).

DNS forecast but with corrected initial conditions, has correctly repeed the
large avalanche. Figure 8 is a typical case when the 4D-VAR methodperfeell.
There are cases where the DNS is already quite good, and 4D-VARganmaiuce
significant improvement; this is in fact expected, and moreover is the reaspn
true forecasting may be possible despite the stochastic nature of the foroing

on this in the concluding section). In this representative sample run, minimization
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Figure 8. This figure displays a sample run of 4D-VAR data assimilation. The syntblesiervations
being assimilated are in the top panel. Even using the same initial conditiopt = 0), a single
DNS “forecast” (middle panel) often produces poor results, a direesequence of the stochastic
nature of the driving process. Retaining the same driving but allowingyAR to alter the initial
condition (bottom panel) results in a much better representation of thevatises.

of the cost function by 4D-VAR was achieved in a mere 5 iterations of theigate
gradient.

4.2. FERFORMANCE

4.2.1. Performance measurements

In anticipation of true forecasts, it is instructive to analyze the performahthe
4D-VAR runs in terms of matches, misses and false alarms. Only the avatanche
with a peak above the energy threshold are considered. With the foraca®w
centered at the peak of each observed avalanche, the forecaairismer to see if
one of its avalanche take place inside the window. If it is the case, we haséch.

If we use an energy threshold of 200 and a forecast windodt ef 0.55x 1077,
Figure 8 has 2 matches: the large avalanchie=aB.4 x 10~' and a smaller one
att = 1.1 x 10~'. The avalanche dt= 1.1 x 10~ is a possible match for either
one of the avalanches fit= 1.1 x 10~/ andt = 1.38 x 10~’. Such situations are
treated as a single match. Hence, a match can be considered as an ppentritga
in a time interval, determined by the forecast window, regardless if therarigla s
avalanche or multiple consecutive avalanches. A miss happens whersttgerb
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avalanche does not have a counterpart in the 4D-VAR run. Figure8@ misses:
att =29 x 107 andt = 4.3 x 10~’. False alarms are avalanches appearing in
the 4D-VAR run which do not have counterparts in the observationsré&gD has
one false alarm d@t= 1.7 x 10~’. The avalanche at= 0.1 x 10~/ is not considered
as a false alarms as it is an artifact of the 4D-VAR method. The correctioreto th
initial conditions has left the system in an unstable state so the forecast tie® ser
began with an avalanche. Finally, the two small avalanches-2.6 x 10~ and
t =2 x 1077 in the observations are not included in the analysis as they fall below
the energy threshold.

The final value of the cost function is not necessarily an optimal meagure o
a successful run, as it simply measures the mean quadratic differetveeche
the observation and model time series over the whole duration of the assimilation
interval. In the flare forecasting context, one is primarily interested in pindithe
timing of discrete events, namely the largest flares/avalanches, and idsallg a
measure of their peak flux and/or total released energy. Consequentgfine the
following quality factorQ to assess numerically whether a given run was successful
or not in “catching” avalanches in the observations:

Eo Es Es
_ o ) =) 7
g rTZSS< Etot ) yfalsezalarm< EtOt) (37)

Eo — Es
In Equation (37), the first term is the sum, for all pair of matching flares, @f th
inverse of the error difference between the total energy of the obddey) and
modeled E;) avalanches multiplied by a factor. The two next terms are penal-
ties due to the misses and false alarms. The penalty are defined as the@hergy
the missed ,) and false alarmEs) avalanches normalized by the total energy
released by all the observed avalanchgg). These three individual contributions
to Q are then each assigned a distinct weighting factor, chosen here ds3 = 2,
andy = 1 where the largest weight is for the matches. Note also that under these
definitions, missing a large avalanche incurs a larger penalty than missindla sma
one. The misses have a larger weight than the false alarms because a veiss lea
us unprepared to handle the consequence of the flare. On the otheirharialse
alarm we may incur additional costs even though no flare is triggered.

Q=a )

match

4.2.2. Performance statistics
Statistics of hits, misses and false alarms has been gathered for 100 4DuNAR
These runs have been realized with combinations of ten sets of obsesvatidn
ten sets of distinct random number sequences each setting a distinctti@alifa
stochastic driving within the SOC model. For all runs included in the statistical
analysis to follow, an energy threshold of 90 and a forecast windat ef0.55 x
10~7 were used.

The idea here is to investigate the performance of the syst@mnthe assimi-
lation interval (we are still not forecasting at this stage!), in terms of the number
of consecutive matches that could be obtained before the first misse3tiésrare
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Table I. Performance of the system in matchingpnsecutive avalanches before the first miss.
The results from the regular DNS runs (numbers in square brackets)atided for comparison
purpose. The second and third columns lists the number of runs thatmattch or a miss for

the n avalanche, respectively. Fourth and fifth columns displays the nuaftfatse alarms
between the" and (n— 1)1 avalanches and the corresponding numbers of runs which had
these false alarms. The sixth column keeps track of the runs that hikerree match nor a
miss because there are no longer any avalanches above the threshold.

Number of | Number | Number Number of false alarms Number of
consecutive of of since last match avalanches
avalanches| matches | misses | Fglse alarms‘ Number of runs| below threshold
0 44 [26]
1 12 [9]
1 65[41] | 35[59] 2 8[3] 0[0]
3 0[2]
4 1[1]
0 22[15]
2 27[22] | 28[14] 1 4[3] 10 [5]
2 1[4]
0 10 [8]
3 11[13] 7 [6] 1 1[4] 93]
2 0[1]
| 4 |8 | 18] | 0 | 8[1] | 2[7 |
| 5 | 2[00 | o[o | 0 | 2[0] | 6 [1] |
| 6 | 2[00 | o[o | 0 | 2[0] | 0[0] |
| 7 | o[ | o[o] | 0 | 01[0] | 21[0] |

tabulated in Table | for eachi avalanche (first column). The second and third
columns lists the number of runs that had a match or a miss for'trealanche,
respectively. The fourth and fifth columns displays the number of falsenala
between the™ and (n— 1) avalanches and the number of runs which had these
false alarms. The last column accounts for the fact that the runs do vettihe
same number of avalanches above the threshold. The results of applyisgntie
analysis to regular DNS runs are added for comparison purpose (nsimisguare
brackets).

Examining the first row, we see that, of the 100 runs, 65 4D-VAR runs suc
ceeded in reproducing the first avalanche (above threshold) while35missed it.
Of the 65 runs with the match, 44 had no false alarms between the beginnirgg of th
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run to the first avalanche while 21 of them had between 1 and 4 false alathis in
time interval. The DNS runs were less successful in reproducing thavaktnche
as 41 of them were able to do so. The proportion of false alarms befofeghe
avalanche is similar for both the 4D-VAR and the DNS runs. Every runVAB-
and DNS, had at least one avalanche above the threshold. This dinfitisequite
interesting: 44% of the 4D-VAR runs successfully reproduced thedliserved
avalanche without making a false alarm; this is a 60% increase in performance
compared to the DNS runs. If we move on to the second row, of the 65 4B-VA
runs which reproduced the first avalanche, 27 of them were also at#@priaduce
the second avalanche. The remaining 38 runs either missed the sectanthea
(28 runs) or did not had a second avalanche higher than the threditoldr(s).
The number of false alarms between the first and second avalanchesgsfitie
same trends as the ones before the first avalanche. The differetvoechethe
4D-VAR and DNS runs is less pronounced as 22 DNS runs matched thaedsec
avalanche. This implies that the 4D-VAR method is very good at reprodtieang
first avalanches but afterward the performance degrades to beaprivalent to
the DNS method. However, the 4D-VAR method did reproduce runs of b and-
secutive avalanche when the DNS runs no longer produced avataabbee the
energy threshold. Finally, the number of consecutive matches contineerease
until either an avalanche is missed or all observed avalanches arduepth

The reason behind this somewhat sudden decrease in performancércome
the fact that avalanches, especially large ones, have a deep impa&t enetiyy
distribution on the lattice. Thus, even with synthetic data produced by the same
model used for data assimilation, it become more difficult to reproduce the nex
avalanche, which explains the constant decrease in the number of matitseis
a direct consequence of the stochastic nature of the driving pranedslready
heralds the finite forecasting window that can be expected when opeirating
forecasting mode. Nevertheless, one tenth of the total 100 runs couldtdduce
the first three avalanches. Only 2 runs reproduced the first six avedarabove
threshold (although 61 runs did not have a sixth avalanche to reprpdimeever,
at this point, the size of the time interval for the rtin<(5.5 x 10~ ") is felt as 9 runs
that matches the first two runs did not have a third avalanche above tkadlte
The runs have an average of 4 avalanches above the energy tresho

4.2.3. Performance of the code

At a spatial resolution of 4& 48, it takes about 5 minutes of wallclock time to
complete a data assimilation run over 10000 time steps on an Intel Itanium 2
processor. Note that no particular efforts were made towards code ogtiioniz
Although the writing of the adjoint equations in the 4D-VAR implementation can
be difficult, the resulting data assimilation scheme is quite fast. The hope is that
this performance will not degrade too much once real data, including\aismal
errors, will be used for true flare forecasting.
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5. Conclusion: towardsforecasting

What have we actually achieved with this whole data assimilation procedutre? Le
go back to the idea of predicting flare occurrence and energy releaaelivect nu-
merical simulation based on a SOC avalanche model. To run such a modatdorw
in time, two things must be specified: (1) the current state of the lattice atgime
to be used as initial condition for the forecast, and (2) the spatiotempaoyatisee

of perturbations throughout the forecasting interval. If the latter are stolghas-
tic in nature, they remain completely unknownt@tIn the context of Parker’s
nanoflare hypothesis, which provides the physical underpinningaddiaghe mod-
els in the present situation, these perturbations amount to small kinks betdreen
jacent magnetic fieldlines, building up in response to slow forcing of theteteis
photospheric magnetic footpoints. Not only do these kinks develop inmesgo
stochastic forcing, but they also occurs on spatial scales inaccessiitec¢bob-
servation. This means that flare forecasting using an avalanche modewayisa
retain a stochastic component.

What we have shown in this paper is that past avalanching behaviorecan b
produced reasonably well using data assimilatawen without detailed knowledge
of the stochastic forcingAt the end of the assimilation interval, the lattice is in a
state that is compatible with (and determined by) past flaring behavior. This the
represents the optimal initial condition from which to carry out a DNS faseca
This, of course, does not guarantee that any given DNS foredth$tenaccurate,
but that an ensemble of DNS forecasts will show avalanching patternseflet,
at least in part, the state of the latticetatin particular, if this initial condition
is characterized by a large, connected portion of the lattice close to theilitygtab
threshold, then one would expect that a large avalanche is likely in théuiaee,
irrespective of the spatiotemporal details of the forcing. It should thgwobsible
to forecast with some accuracy the largest upcoming avalanches udistjcsti
ensembles of DNS runs. Small avalanches, on the other hand, will depermd
sensitively on details of the (stochastic) forcing. In such cases, evaan#ble of
DNS runs are less likely to produce useful forecasts. In the spadbeveantext,
this not too problematic, since it is precisely the largest flares/avalanchefiich
one is seeking accurate forecasts. These expectation are examinggilimdbe
following paper in this series (Bélanger, Vincent, and Charbonnedx,)20

SOC avalanche models are certainly not the only modeling framework far sola
flares within which data assimilation can be carried out. A good case in poi is th
CISM project (see Solomon, 2005; Siscoe and Solomon, 2006), an anststiod
to-ionosphere data assimilation framework based on a suite of coupled 3D MH
models. The attractive feature of SOC models —arguably their single most-attra
tive feature— is that, by all appearance, they correctly capture thelgitatistical
behavior of energy release by solar flares, including in particular itseptaw
form and associated exponent. This makes such models ideal candmfatesaf
assimilation-based forecasting, despite their extreme physical simplicity and the
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inevitable stochastic effects associated with the driving mechanism réisiecios
energy injection into the overlying coronal magnetic structures.

We note, in closing, that within Parker’s physical picture of coronalcstines
being forced by photospheric fluid motions, such stochastic effects walsé
need to be incorporated into any full-scale MHD models of coronal strestur
to be used for flare forecasting. Data assimilation could help here as well (s
e.g., Schrijver and DeRosa, 2003), but spatially and/or temporally Uxeesituid
motions would again introduce a form of stochastic “noise” in the MHD simula-
tions, with inevitable degradation of forecasting performance even if swalels
would be based on true physical equations rather than some largely adlhoar
automaton. The latter, however, is such a simpler model to simulate that it becomes
possible in practice to carry out ensemble DNS forecasting in reasonalbttoek
time even on mid-range computational platforms. This is an essential requiremen
of operational forecasting.
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