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Abstract. Data assimilation techniques, developed in the last two decades mainly for weather predic-
tion, produce better forecasts by taking advantage of both theoretical/numerical models and real time
observations. In this paper, we explore the possibility of applying the data assimilation techniques
known as 4D-VAR to the prediction of solar flares. We do so in the context of a continuous version
of the classical cellular automaton-based self-organized critical avalanche models of solar flares
introduced by Lu and Hamilton (1991). Such models, although a priori far removed from the physics
of magnetic reconnection and magnetohydrodynamical evolution of coronal structures, nonetheless
reproduce quite well the observed statistical distribution of flare characteristics. We report here on a
large set of data assimilation runs on synthetic energy release time series.Our results indicate that,
despite the unpredictable (and unobservable) stochastic nature of the driving/triggering mechanism
within the avalanche model, 4D-VAR succeeds in producing optimal initial conditions that reproduce
adequately the time series of energy released by avalanches/flares. This is an essential first step
towards true forecasting.
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1. Introduction: Flares and self-organized criticality

Spatially resolved observations of solar flares at short wavelengths have revealed
a very broad range of scales in the flaring phenomenon. Probability distributions
of global flare characteristics such as peak flux, energy release, duration, are now
known to take the form of power laws spanning many decades in size (eightin the
case of flare energy; see, e.g., Dennis, 1985; Luet al., 1993; Aschwandenet al.,
2000). This is surprising because the vast majority of flares occur in active regions
and activity complexes that have global characteristics (linear size, magnetic flux,
peak field strength) that are much more narrowly distributed. This indicates that
the flaring phenomenon is intrinsically scale-free, even though its energy reservoir
may not be. The relatively slow evolution of active regions is also in stark contrast
to the short energy release timescale associated with the flaring phenomenon.

Avalanches are one class of physical phenomena that are characterized by inter-
mittent, scale-free energy release even under conditions of slow, continuous energy
loading. In the flare context, the physical picture usually invoked is that ofcoronal
magnetic structures being slowly and stochastically forced by photosphericfluid
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2 BÉLANGER ET AL.

motions, leading to the gradual buildup of electrical current sheets in the coronal
plasma (Parker, 1983, 1988). Plasma instabilities eventually trigger magnetic re-
connection at an unstable site, leading to alterations of the physical conditions at
neighbouring current sheets that can then themselves become unstable, and so on
in classical avalanching style. Numerous avalanche models inspired by this general
scenario have been developed to describe solar flares (see Charbonneauet al., 2001,
and references therein). Many of these models manage to produce avalanche size
distributions having the form of power-laws, with logarithmic exponent comparing
fairly well to observationally-determined values (e.g., Luet al., 1993; Georgoulis
and Vlahos, 1998; Aschwanden and Charbonneau, 2002). Most ofthese models
are based on the idea of self-organized criticality (SOC) (Bak, Tang, and Wiesen-
feld, 1987; Jensen, 1998). The “criticality” is akin to phase change in equilibrium
thermodynamics, where the effects of a small, localized perturbation can be felt
on a dynamical timescale throughout the whole system. The system is said to be
“self-organized” when this critical state is a dynamical attractor and is reached in
response to external forcing without requiring fine tuning of a control parameter.
Generally, SOC is found in slowly-driven open dissipative systems subjected to
a self-limiting local threshold instability. The threshold to the instability is cru-
cial, as it allows the system to transit from one metastable state to another while
preventing the dynamics to be governed by external forcing (Jensen, 1998). Poten-
tial examples in the natural world include various forms of sandpiles, avalanches
and landslides, but also earthquakes, forest fires, hydrological networks, traffic
jams, magnetospheric substorms, and solar flares (see Bak, 1996, for aspirited
exposition).

If flares are truly a manifestation of SOC dynamics, then the outlook for ac-
curate flare forecasting would appear, a priori, pretty grim indeed. Nothing fun-
damentally distinguishes a large flare from a small one, flare size simply being a
matter of the number of current sheets involved in the avalanche of reconnection
events. Even worse, the triggers of flares large and small are the same, namely a
small (quite possibly unobservable) perturbation affecting the system somewhere
locally. However, the occurrence of a large avalanche is only possible ifa large,
“connected” portion of the system is close to the avalanching threshold. The state
of the system, in turn, is a function of its prior history, and in particular of the past
occurrence of avalanches, of which the larger ones are (presumably) observable.
In other words, past avalanching behavior holds clues to the current state of the
system, and therefore to itspotentialavalanching behavior.

The question is then: can this information be retrieved and used to produce
reliable avalanche forecasts, despite the stochastic nature of the driving/triggering
mechanism? This is the central question we address in this series of papers,us-
ing data assimilation techniques. This first paper describes the SOC avalanche
model and data assimilation technique we are developing towards forecasting, and
demonstrates that the resulting scheme can adequately reproduce the avalanching
behavior of the system even in the absence of detailed information on the spa-
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tiotemporal behavior of its the stochastic driver. This is a first essential step towards
forecasting, which is the topic of the subsequent papers in the series.

This first paper is organized as follows: section 2 gives an overview ofa sim-
ple, “classical” discrete SOC model based on a cellular automaton, as well as a
continuous analog described by a partial differential equation reversed-engineered
from the discrete cellular automaton rules. This is the model used in Section 3
in conjunction with the 4D-VAR data assimilation techniques. Section 4 presents
results for a wide set of validation experiments demonstrating that 4D-VAR can
successfully reproduce the avalanching behavior present in energyrelease time
series, despite the stochastic nature of the external forcing that loads energy into the
system and triggers avalanches. We conclude in section 5 by summarizing themain
results of this study, and outlining the road lying ahead, towards true forecasting.

2. Avalanche models

2.1. THE LU & H AMILTON MODEL

The sandpile has now become the icon of SOC systems (Bak, Tang, and Wiesen-
feld, 1987). As sand grains are dropped one by one on a flat surface, a sandpile will
build up, with occasional avalanches of various sizes, until the pile has reached a
conical shape with the slope everywhere at or near the angle of repose. Addition of
more sand grains can now trigger large avalanches disrupting the whole slope, or
the toppling of only a few sand grains, or nothing at all. The system has reached a
statistically stationary state where, averaged over a long enough temporal interval,
as many sand grains fall off the pile as are dropped on it. Notice that while the
loading is slow and gradual, the unloading is strongly intermittent and involves
avalanches of all sizes.

The statistical physics of sandpiles has been extensively studied using cellular
automata models, where the sandpile is replaced by a lattice of locally intercon-
nected nodes on which a nodal variable related to energy is defined (Kadanoff
et al., 1989). In the context of solar flares, the first such model is to be found in
the groundbreaking work of Lu and Hamilton (1991) and Luet al. (1993) (but
do see also Zirker and Cleveland, 1993). Consider the following two-dimensional
scalar version of the Lu and Hamilton (1991) model; a scalar nodal quantityAn

i, j
is defined over aN×N regular cartesian grid with nearest-neighbour connectivity
(top+down+right+left; see, e.g., Figure 1 in Charbonneauet al., 2001). Here the
superscriptn is a discrete time index, and the subscript pair (i, j) identifies a node
on the 2D lattice. The cellular automaton is driven by adding small increments in
A at randomly selected nodes in the lattice (one per time step), analogous here to
dropping sand grains on the pile. A stability criterion is defined in terms of the
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local curvature of the field at node(i, j):

∆An
i, j ≡ An

i, j −
1
4 ∑

neighbours

An
neighbours, (1)

where the sum runs over the four nearest neighbours at nodes(i, j ±1) and(i±1, j).
If this quantity exceeds some pre-set thresholdAc (analogous to the slope exceed-
ing the angle of repose on the sandpile), thenAn

i, j is redistributed to its four nearest
neighbours according to the following rules:

An+1
i, j = An

i, j −
4
5

∆An
i, j , (2)

An+1
i±1, j±1 = An

i±1, j±1 +
1
5

∆An
i, j . (3)

These redistribution rules are conservative inA; however, if one identifiesA2 with
a measure of energy (more on this below), then it is readily verified that theylead
to a decrease of the total lattice energy:

En
l = ∑

i, j

(An
i, j)

2 , (4)

the excess energy being what is liberated in the “flare”. Lu and Hamilton (1991)
and Luet al. (1993) have shown that this driven cellular automaton can produce
avalanches with robust power-law exponents resembling those inferredfrom flare
observations (see also Charbonneauet al., 2001, and references therein).

Giving a physical meaning to the scalarA is not trivial. If A is considered as
being the magnetic field, then∇∇∇ ·A 6= 0. TakingA as the vector potential automati-
cally solves the non-null divergence problem. However,∑i, j(A

n
i, j)

2 is then no longer
an obvious measure of magnetic energy (Charbonneauet al., 2001). Dimensional
analysis does suggest∇∇∇×A = B or |A|2 ∼ L2|B|2 so we can at first assume that
the vector potential scales with the magnetic field, a conjecture supported by the
numerical results of Isliker, Anastasiadis, and Vlahos (2000), using anavalanche
model closely related to that described above. Variations in lattice energyEl from
one time step to the next during an avalanche then yields the energy liberated at
each time step:

En
r =

{

En−1
l −En

l (> 0), lattice avalanching
0, otherwise.

(5)

The resulting time series of energy release is the target for data assimilation. In
the Lu & Hamilton discrete model,Er can be calculated analytically knowing the
redistribution rule and stability measure, but this will no longer be the case with
the continuous analog to be introduced shortly; Equation (5) applies equallywell
to both classes of models.
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At this juncture it must be emphasized that the stochasticity in the Lu & Hamil-
ton model (and other published variations thereof) is not a mere noise-like “incon-
venience” superimposing itself on an underlying deterministic flaring process. In
the Lu & Hamilton SOC avalanche model, stochastic forcing plays the dual role
of energy loadingand avalanche triggering. The model thus has a fundamentally
stochastic component.

2.2. A CONTINUOUSSOCMODEL

2.2.1. Reverse engineering
The structure of Equations (2) and (3) suggest that they can be interpreted as the
result of applying centered second-order finite difference and a one-step explicit
time-stepping algorithm to some partial differential equation (PDE) in two spatial
dimension discretized on a regular cartesian grid. Applying this reverse engineering
approach (see also Liuet al., 2002) leads to the following PDE describing the
evolution ofA during an avalanche:

∂A
∂ t

= −
∂ 2

∂x2

(

ν(∇2A)
∂ 2A
∂x2

)

−
∂ 2

∂y2

(

ν(∇2A)
∂ 2A
∂y2

)

. (6)

Likewise, the RHS of Equation (1) is readily interpreted as a second-order centered
finite difference representation of the Laplacian operator acting onA, so that the
diffusion coefficientν(∇2A) appearing in Equation (6) is given by:

ν(∇2A) =

{

νa if (∇2A)2 > A2
c

0 otherwise
(7)

whereAc is the stability threshold. The numerical value ofνa depends on the re-
distribution rules that were used in the discrete equations (Equations (2) and (3))
and on the grid size. In the case of the Lu & Hamilton model, in two spatial dimen-
sions,νa = ∆2/20 (∆x = ∆y≡ ∆), with units oftime/length2 implicitly included in
the denominator, a value used in all calculations reported upon below. In analogy
with the discrete model, we identify the functionalA(x,y, t) with a measure of the
magnetic vector potential, and assume thatA2 is a measure of energy.

Equation (6) is a fourth-order “hyperdiffusion” equation, albeit a strongly non-
linear one since the hyperdiffusion coefficient is only non-zero when the system is
avalanching, and even then it remains a discontinuous function of position,being
only non-zero at unstable nodes. If all nodes are stable then the quantityA evolves
in response to the external forcing only. In the classical cellular automaton, at each
(non-avalanching) timestep a small increment of random amplitude inA is added to
a single randomly selected node of the lattice. Reverse-engineering of this forcing
rule immediately leads to:

∂A
∂ t

= FR(x0(t),y0(t)) (8)
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where the forcing location(x0,y0) varies randomly in time. The continuous model
then amounts to solving Equation (8) when the system is everywhere stable, and
switching to Equation (6) if one or more nodes become unstable. Note that this
implies that the forcingFR is turned off during avalanches. This is the same pro-
cedure used in the cellular automaton, and amounts to assuming that there exists
a wide separation of timescales between forcing and avalanching, which in fact is
well justified in the solar coronal context (see, e.g., Luet al., 1993).

2.2.2. Sample numerical results
We now proceed to solve numerically the continuous avalanche equation (Equa-
tions (6)–(8)), by discretizing it using a centered finite difference scheme with
forward Euler differencing for the time derivative. The reader may rightfully won-
der why then did we bother reverse-engineering the discrete Lu & Hamilton model
in the first place, but the need to proceed in this way will become clear presently.
Moreover, in solving Equation (6) numerically as one would any partial differential
equations, subtle differences are introduced with respect to the truly discrete model,
and these must be understood.

A square domain of linear sizeL = 2π is partitioned using a regular cartesian
grid (∆x = ∆y ≡ ∆). ImposingA = 0 on domain boundaries, we solve dimen-
sionless forms of the avalanche equations (Equations (6), (7) and (8)), using the
hyperdiffusion time scale

τν =
L4

νa
(9)

as a time unit. This corresponds to the time it would take an avalanche to sweep
across the length of the domain. Following a dimensional analysis of the contin-
uous avalanche equation,x and y will now be in L units andt in τν units. The
diffusion coefficientν , in the non-dimensional equation, is equal to 0 (stable) or
to 1 (avalanching). For the scheme to remain numerically stable, a von Neumann
stability analysis (Presset al., 1992) indicates that the dimensional time step must
be chosen such that

∆t ≤
∆4

4νa
(10)

or, in terms of dimensionless time:

∆t
τν

≤
1
4

(

∆
L

)4

. (11)

For our working 48×48 mesh,14
(∆

L

)4
= 4.7×10−8, so a non-dimensional time

step of size 5.5×10−11 safely satisfies that condition, and is used for all simulations
unless otherwise specified.

The stability threshold is set atAc = 7.0. Sequences of uniform random devi-
ates are used to define the stochastic forcing. Both the location and magnitudeof
the perturbation are randomly determined, the former excluding boundary nodes
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Figure 1. Evolution of the lattice energy as a function of time. The lattice energy increase from the
null state (A = 0) to the SOC state as the energy input by the perturbations is greater than theenergy
released in avalanches. Att = 0.23, the SOC state is reached: the energy added to the system is
released by avalanches, hence the plateau. The top left inset is a cross-section of the lattice variableA
along the y-axis, taken at different times. The labels along the lattice energy curve indicates when the
cross-sections were taken. The bottom right inset is a zoom of the lattice energy curve about point
“d” to show the energy variation in the SOC state, with vertical axis covering 5energy units.

and the latter constrained to the pre-set interval[−1×10−5 : 4×10−5]. The per-
turbations have non-zero mean to ensure buildup ofA(x,y) from the initial state
A(x,y) = 0 throughout. This is again in direct analogy to the Lu & Hamilton
model described earlier. Because the continuous model is discretized with centered
second-order finite differences, boundary conditions for the two rows of grid points
along the boundary are needed. The grid points along the boundary areset toA= 0
(like in the discrete model) while the second row is set to∇2A = 0 with the use of
the fictional point method.

The first task is to bring the system to the SOC state. Starting withA= 0 every-
where, the system is driven to the SOC state by the external forcing, interrupted by
avalanching episodes whenever and wherever the stability threshold is exceeded.
Figure 1 illustrates the gradual buildup of lattice energy (∑A2) with time. Initially,
the energy gained by the system from the perturbations exceeds the energy released
in avalanches. Thus, there is a net increase of the system’s energy. However, at
t ≃ 0.23 a plateau begins. The system has now reached a statistically-stationary
state where, in time-averaged sense, the buildup ofA in response to forcing is
balanced byA evacuated via theA= 0 boundary conditions when avalanches reach
the system’s boundaries. Because large avalanches are more likely to reach the
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8 BÉLANGER ET AL.

Figure 2. Evolution of the energy released as a function of time. The large avalanches can only be
created when the system is in the SOC state. The large avalanches betweent = 0.1 andt = 0.14 are
due to a transient SOC state that is created when the stability criterion of the central region take a
value of∼ +Ac while the periphery have∼ −Ac. This is only a transitional step as the center will
fill up to take its final shape of an inverse parabola (“b”→“d” on the inset in Figure 1). The inset is a
zoom to show that we have individual avalanches separated by calm periods.

boundaries, their frequency of occurrence jumps markedly once the stationary state
is reached (cf. Figure 2). This stationary state is the SOC state. The bottom right
inset on Figure 1 shows a zooming on the behaviour of the lattice energy during
the SOC state in the vicinity of point “d”. Every decrease is the signature of an
avalanche and the pronounced drop starting att = 0.2456 corresponds to the large
avalanche in the inset of Figure 2. The top left inset shows cross-sections along
they-axis of the evolution of the scalar variableA at different times up to the SOC
regime where it approximates the shape of an inverse parabola. A cross-section
along thex-axis would yield the same result. All DNS and 4D-VAR runs discussed
further below are carried out with the system in the SOC state.

Figure 2 displays the energy released as a function of time. An short segment
is shown in inset, where individual avalanches can be distinguished. It isonly in
the SOC state that avalanche spanning the whole system can be produced with a
significant frequency. For this reason, it will be particularly important to ensure
that the system is kept in the SOC state throughout the data assimilation process.
The large avalanches betweent = 0.1 andt = 0.14 (Figure 2) are due to a transient
SOC state that is created when the stability criterion of the central region take a
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value of∼ +Ac while the periphery have∼−Ac (such as for the curve “b” on the
top left inset of Figure 1). This is only a transitional step as the center will fillup
to eventually take its final shape of an inverse parabola and the system will then be
in its true SOC state.

Even though the avalanche model is a continuous one, it retains some discrete
features. Usually, in the numerical solution of partial differential equations, reduc-
ing the time steps by a factor of two but using twice as many of these smaller
time steps, should not affect the outcome significantly. However, this is not the
case here, because of the the spatiotemporally discrete nature of the hyperdiffusion
coefficient, as the latter is only turned on when the system is unstable. When this
happens, the run with the smaller time step∆t will redistribute more finely, as seen
in Equation (6). When stability is recovered, the formerly avalanching portion of
the lattice will find itself closer to the stability threshold, thus the lattice energy
will increase significantly. The redistribution is also affected by the value ofthe
diffusion coefficient (with a dependency on the distance between the gridpoints)
which must be lower for higher resolution grids otherwise too much energy is
redistributed and the system restabilizes too far below the stability threshold, thus
leading to loss of SOC at the expense of large, quasiperiodic avalanches.

The last difference between the Lu & Hamilton and continuous models pertains
to the effect of an increase in the number of grid points. In the Lu & Hamilton
model, the distance between each grid point is constant (∆ = 1) which leads to
an increase of the size of the domain when the grid point number is increased.
As for the continuous model, even though the domain size can be increased,we
will keep it constant in this paper so an increase in the number of grid points will
increase the resolution. The system will then be more effective in reproducing fine
structures as seen in Figure 3, which shows the normalized frequency distributions
for the stability criterion (Equation (1)) evaluated at each grid point at ten different
times for grid resolution of 24× 24, 36× 36 and 48× 48. As with the discrete
model, at any given time only a small fraction of nodes are very close to the
instability threshold. The distribution is broader and centered further belowthe
stability threshold for the higher resolution runs. The reason behind this behaviour
is that the larger number of degrees of freedom in the high resolution run allows
for the presence of finer structures, which make it easier for the lattice to exceed
stability, in the sense that fluctuations of∆An

i, j about its lattice mean become larger
as the spatial resolution is increased.

2.2.3. Characteristics of avalanches in the SOC state
In the SOC state, several characteristics of avalanches have probabilitydistribu-
tion functions (hereafter PDF) that behave as power laws. This is the case for
the avalanche energy (E), namely the total energy released by the lattice over the
duration of the avalanche; the peak energy release (P), corresponding to maximum
energy released by the avalanche in a single time step; and the duration (T), which
is simply the time elapsed from the beginning of an avalanche to its end. Figure 4
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Figure 3. Normalized frequency distributions for the stability criterion evaluated at each grid point
for runs of 24× 24, 36× 36 and 48× 48. Data taken at ten different times, when the system was
stable, were combined to generate the PDF. As expected, the peaks of thePDF lies close but below
the stability threshold ofAc = 7.0. As the resolution increases, the width of the distribution widens
and move further from the threshold. This is due to the increase of fine structures which permits
more degrees of freedom to the large resolution systems, thus making it easier to stray away from the
threshold.

(panels A–C) show probability distribution functions forE, P andT, constructed
from runs of different resolutions (24×24, 36×36 and 48×48) of 107 time steps,
spanning 1000 hyperdiffusion times, and each including up to 6×105 avalanches.
Least-squares fit of the form:

f (x) = f0x−α (12)

are overplotted on the distributions. The fits used the data from the large resolution
runs (48×48). Because the mesh spacing affects the statistics for small avalanches,
the first few bins are excluded from these fits. The power law indices obtained were
αE = 1.407± 0.02, αP = 1.800± 0.04 andαT = 2.067± 0.03. These first two
values are in good agreement with those obtained with the discrete formulation of
this avalanches model (see Table II in Charbonneauet al. (2001)). TheαT value
is a bit higher, but is in fact more comparable to the values obtained by Luet al.
(1993) (Table 1). Figure 4 (panel D) show the frequency distribution of the waiting
time (WTD; now on semi-log scale). The waiting time (∆T) is the time interval
during which the system is in a stable state between two consecutive avalanches.
The WTD is well-fitted with exponential of the form:

f (∆t) = f0e−β∆t , (13)

here with an inversee-folding timescaleβ = 2158± 4. The exponential form of
the WTD comes from the statistically uniformity of the external forcing, here a
stationary random process (see Wheatland, 2000). Other types of forcings can be
introduced in SOC avalanche models for solar flares, producing WTD distributions
in better agreement with observations (see, e.g., Normanet al., 2001), but for the
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purposes of the forthcoming validation exercise we retain the uniform driver of the
original Lu & Hamilton model.

To sum up, and notwithstanding some subtleties related to mesh refinement, nu-
merical solutions of the reverse-engineered avalanche equation leads toavalanch-
ing behavior essentially identical to that of the original, discrete model of Lu and
Hamilton (1991). This “validation” of the continuous model may well appear tau-
tological, but it represents an essential starting point to our forecasting scheme
because recasting the model in continuous form is required by the 4D-VARdata
assimilation formalism, the topic to which we now turn.

3. Data assimilation (4D-VAR)

The underlying idea of data assimilation is to use observed data to introduce correc-
tions to a model —often a numerical simulation— of a physical phenomenon, typi-
cally with the aim of correcting for missing data or to produce forecasts. Generally
speaking, data assimilation methods can be subdivided into three categories:suc-
cessive correction, sequential (Kalman filter) and variational methods (LeDimet
and Talagrand, 1986; Daley, 1991; Kalnay, 2003). The successive correction method,
also known as Cressman method, consist in the correction of a background field,
previously obtained trough a previous forecast or a trivial state due to physical
constraints, until it includes the given observations (Cressman, 1959).Most se-
quential methods are based on the Kalman filter, which uses the model error and
the observational error statistics to find the optimal combination of the model and
observational data (Kantha and Clayson, 2000). The variational methods consist
in finding the space-time trajectory of the state variables that will minimize a cost
function measuring the discrepancy between the forecast and the observations (Ta-
lagrand and Courtier, 1987; Courtier and Talagrand, 1990). The 4D-VAR method
belongs to this third class.

3.1. 4D-VAR: AN OVERVIEW

Four-dimensional variational data assimilation (hereafter 4D-VAR) is an efficient
technique for incorporating observations in numerical forecasting models(Tala-
grand and Courtier, 1987; Courtier and Talagrand, 1990). The 4D-VAR method
consists in minimizing a scalar cost function measuring the deviation between the
forecast and the observations. The physical fields produced by dataassimilation
must correspond to the observations, while abiding to the known physical laws
and/or statistical relations characterizing the system being treated (Le Dimet and
Talagrand, 1986).

Figure 5 shows an overview of the 4D-VAR method as applied to a classical
forecasting problem, namely using the known state of a variableψ0 at some initial
instant of time, to forecast its valueψT at a later timeT. This forecast is to be
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Figure 4. Normalized frequency distributions for the total energy (E), the peak energy (P), the
duration (T) and the waiting time (∆T) for runs of different spatial resolutions (24× 24, 36× 36
and 48× 48) of t = 103 containing up to 6× 105 avalanches. Bins of a constant logarithmic
width ∆ logx = 0.2 were used to construct the PDFs. Power law indices ofαE = 1.407± 0.02,
αP = 1.800± 0.04 andαT = 2.067± 0.03 were obtained by fitting data for the 48× 48 run.
An exponential was fitted to the waiting time distribution, yielding an inverse e-folding time
β = 2158±4.
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Figure 5. Overview of variational data assimilation. Pointψ0 is an estimate of the initial condition
at time 0. Using this initial condition, a forecastψT is obtained at timeT. The 4D-VAR method uses
the difference between the forecastψT and the observationψobs to generate a new initial condition
ψ ′

0 which will produce a better forecast (ψ ′
T ) at timeT (Errico, 1997).

compared to an actual observationψobs. Here this first forecast falls outside of
the observation’s error bar. The 4D-VAR method uses the difference between the
forecastψT and the observationψobs to generate a new initial conditionψ ′

0 that
now produces an improved forecastψ ′

T at timeT which is closer to the observa-
tion (Errico, 1997). The procedure can be repeated until some pre-set goodness of
fit criterion betweenψ ′

T andψobs is reached. In classical data assimilation applica-
tions (for example numerical weather forecasting), the pointψ0 would corresponds
to a field variable discretized on a single node(i, j) of a N × N spatial mesh;
4D-VAR must then solve concurrently as many variational problems as thereare
variables, times the number of spatial mesh points on which the numerical sim-
ulation used to advance the field from 0 toT is performed. Data assimilation in
numerical simulations is a computationally intensive undertaking!

3.2. THE COST FUNCTION

Generally, in variational problems, we want to minimize the cost functionJ :

J =
∫ T

0

∫

Ω
f (ψψψ,x, t) dx dt , (14)

where f (ψψψ,x, t) is a scalar function, defined over a domainΩ and a time inter-
val [0,T], of the state variableψψψ (Sanders and Katopodes, 2000). More precisely,
in data assimilation, we want to minimize the error between the forecast and the
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observations(ψψψT −ψψψobs) (cf. Figure 5):

J =
1
2

∫ T

0

∫

Ω
(ψψψT −ψψψobs)

TW(ψψψT −ψψψobs) dx dt, (15)

whereW is a matrix of statistical weights given by the instrumental errors in the
observations andT represent the transpose. The squared residual(ψψψT −ψψψobs)

2

is used instead of absolute values, to avoid introducing discontinuities when the
cost function will be differentiated (next section). The physical equations (i.e. the
continuous avalanche equation (Equations (6)-(8))), which can be schematically
written as:

E (ψψψ,x, t) = 0 , (16)

are acting as constraints during the minimization (Talagrand and Courtier, 1987).
In this paper, the cost function will use the time series of released energy as

defined via Equation (5) as the state variableψψψ. Via the use of Equation (4), we
get:

Er =
dEl

dt

=
d
dt ∑

i, j

A2
i, j

= ∑
i, j

dA2
i, j

dt
. (17)

If we bin the time series of the released energyEr (§ 4.1.2), we have:

Ēr =
∑binEr

∆b
, (18)

where∆b is the number of elements per bin. The cost function is then:

J =
1
2

∫ T

0
(Ēr − Ēobs

r )2 dt . (19)

The identity matrix is used for the observation errors matrixW because syntheti-
cally generated observations will be used (§ 4) in what follows. Covariance error
matrices are certainly an important and delicate point when dealing with real data.

3.3. THE LAGRANGIAN FORMULATION

We want to minimize the cost functionJ given the constraintE (ψψψ,x, t) = 0.
Since this is a problem of minimization with constraints, a Lagrangian formulation
is used:

L (ψψψ,λλλ ) = J (ψψψ)+
∫ T

0

∫

Ω
λλλ (x, t) ·E (ψψψ,x, t) dx dt , (20)
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whereλλλ (x, t) are the Lagrange undetermined multipliers, also called adjoint vari-
ables (Sanders and Katopodes, 1999). The variational operatorδ is then applied on
the Lagrangian to find its stationary points:

δL = ∇∇∇ψψψL ·δψψψ +∇∇∇λλλ L ·δλλλ

=
∂L

∂ψψψ
δψψψ +

∂L

∂λλλ
δλλλ . (21)

One can use integration by parts to transfer the differential operators from the state
variableψψψ to the adjoint variableλλλ . For an arbitrary displacement(δψψψ,δλλλ ), the
minimum is reached only whenδL = 0 (Daley, 1991). This indicates that the
derivative of the Lagrangian with respect to each direction must be zero:

∂L

∂λλλ
= E (ψψψ,x, t) = 0 , (22)

and
∂L

∂ψψψ
= Adj(λλλ )+

∂J

∂ψψψ
= 0 , (23)

where Adj(λλλ ) represents the adjoint equations (Schröter, Seiler, and Wenzel, 1993).
As noted by Le Dimet and Talagrand (1986), this set of equations (Equations (22)
and (23)) are the Euler-Lagrange equations.

For the 2D avalanche model the direct and adjoint equations are:

∂A
∂ t

= −
∂ 2

∂x2

(

ν(∇2A)
∂ 2A
∂x2

)

−
∂ 2

∂y2

(

ν(∇2A)
∂ 2A
∂y2

)

avalanching

∂A
∂ t

= FR(x0(t),y0(t)) stable (24)

and
∂A∗

∂τ
= −

∂ 2

∂x2

(

ν(∇2A)
∂ 2A∗

∂x2

)

−
∂ 2

∂y2

(

ν(∇2A)
∂ 2A∗

∂y2

)

−
∂J

∂A
(25)

respectively, where the generic variableψψψ have been replaced by the variableA
defined over the lattice, the adjoint variableλλλ has been renamedA∗ as it is the
adjoint variable associated withA, andτ is a reverse time (τ = T − t).

Evaluating the term∂J
∂A is particularly delicate because the cost functionJ is

not directly given in terms of a spatial quantity related toA, but as a time series of
a nonlinear, non-local function of that quantity:

∂J

∂A
=
∫ T

0

1
2

∂ (Ēr − Ēobs
r )2

∂A
dt

=
∫ T

0
(Ēr − Ēobs

r )
∂ Ēr

∂A
dt

=
∫ T

0

(Ēr − Ēobs
r )

∆b
∂ ∑binEr

∂A
dt . (26)
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Using the theorem of implicit functions to rewrite the derivative gives:

∂ ∑binEr

∂A
= −

∂ ∑binEr

∂ t

/

∂A
∂ t

(27)

provided ∂A
∂ t 6= 0 so the ∂J

∂A term is only to be evaluated when the system is
avalanching. Substituting Equation (27) in Equation (26):

∂J

∂A
= −

∫ T

0

[

(Ēr − Ēobs
r )

∆b
∂ ∑binEr

∂ t

/

∂A
∂ t

]

dt

= −
∫ T

0

[

(Ēr − Ēobs
r )

∆b

(

∑
bin

∂Er

∂ t

)

/

∂A
∂ t

]

dt . (28)

If we use the definition ofEr (Equation (17)), we get:

∂J

∂A
= −

∫ T

0

[

(Ēr − Ēobs
r )

∆b

(

∑
bin

(

∑
i, j

∂ 2A2
i, j

∂ t2

))

/

∂A
∂ t

]

dt . (29)

The initial and boundary conditions for the adjoint equation arise from the in-
tegration by parts, namely the terms evaluated at the limits of the integrals. The
initial conditions areA∗|τ=0 = 0 and the boundary conditions are:

A∗(0,y,τ) = 0 A∗(Lx,y,τ) = 0

A∗(x,0,τ) = 0 A∗(x,Ly,τ) = 0

∂A∗

∂x

∣

∣

∣

∣

x=0
= 0

∂A∗

∂y

∣

∣

∣

∣

y=0
= 0

∂ 2A∗

∂x2

∣

∣

∣

∣

x=0
= 0

∂ 2A∗

∂y2

∣

∣

∣

∣

y=0
= 0

∂A∗

∂x

∣

∣

∣

∣

Lx=0
= 0

∂A∗

∂y

∣

∣

∣

∣

Ly=0
= 0

∂ 2A∗

∂x2

∣

∣

∣

∣

Lx=0
= 0

∂ 2A∗

∂y2

∣

∣

∣

∣

Ly=0
= 0 (30)

Unfortunately, there is no efficient method to directly solve the Euler-Lagrange
equations (Equations (22) and (23)); therefore, we must formulate the problem as
an unconstrained problem (Talagrand and Courtier, 1987). Although wehave a
random parameter in our model, the model can still be regarded as being determin-
istic because the initial conditions, more precisely the “connected” portion ofthe
system close to the avalanching threshold, will dictate the evolution of the system
with time. This highlight the fact that the cost function is an implicit function of the
initial conditions: it is by varying the initial conditions that we will find the solution
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of the physical equations which minimize the cost function (Ehrendorfer, 1992). In
the language of optimal control theory, the initial conditions are the control variable
in this problem (Lions, 1968).

As most minimization algorithm requires the gradient of the function to be
minimized, we need the gradient of the cost function with respect to the initial
conditions. However, it is not possible to calculate this gradient analytically as the
cost function is an explicit function of the final conditions (i.e. forecast).It turns out
that the more efficient way to calculate the gradient of the cost function with respect
to the initial conditions is to use the adjoint equations evaluated atτ = T (Courtier
and Talagrand, 1990):

∇∇∇JA0 = A∗(x,y,τ = T) (31)

which then requires numerical integration of the adjoint equations fromτ = 0 to
τ = T, i.e., backwards in time fromt = T to t = 0. This is the reason behind the
interest and use of the adjoint equations.

3.4. MINIMIZATION ALGORITHM

The minimization of the cost function is usually carried out via a minimization
algorithm such as steepest descent, conjugate gradient or quasi-Newton methods.
The steepest descent is a simple method but it converges linearly. In this study, the
conjugate gradient is used because of its quadratic convergence. Thequasi-Newton
method also converges quadratically and is popular among meteorologists. How-
ever, it requires the computation of the Hessian matrix. Even if an approximation of
the Hessian is normally used, convergence problems may arise if it becomes nearly
singular (Presset al., 1992). One can solve these kind of problems but this leads to
algorithm of a greater complexity, and usually more computationally intensive.

The algorithm implementation of 4D-VAR data assimilation runs as shown on
Figure 6. Starting from initial conditions obtained by current experimental observa-
tions or a previous numerical simulation, a direct simulation generates a traditional
(DNS) forecast. After reading the observations taken at the end of the forecast
period, the cost function is evaluated, followed by the evaluation of its gradient.
If the gradient is smaller than a chosen tolerance which accounts for error due to
numerical precision, then the minimum of the cost function has been reachedand
the optimal 4D-VAR forecast is obtained. In the case that the cost functionis not
minimized, we must iterate. A new set of initial conditions are generated and will
be used as the starting point of a new forecast. The cost function and its gradient are
reevaluated and checked again against the termination criterion. This procedure is
repeated until the latter is met. The iteration loop in Figure 6 takes place within the
conjugate gradient minimization algorithm. It is also the conjugate gradient which
modifies the initial conditionsA0

i, j at each iteration:

[A0
i, j ]

k+1 = [A0
i, j ]

k +αkpk
i, j , (32)
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Read observations

DNS simulation

DNS simulation

Evaluate cost function

New forecast

New initial conditions

Read initial conditions

Output: DNS forecast

Output:
optimal (4D−VAR) forecast

Cost

No

Yes
function

minimized?

Figure 6. Algorithm of 4D-VAR data assimilation. From initial conditions, a traditional (DNS) fore-
cast is made. Then the observations are read. The value of the cost function’s gradient indicates
if minimization was achieved. If not, a new set of initial conditions are produced by backwards
integration of the adjoint equations, a new forecast is produced, and theverification is repeated. This
procedure is iterated until minimization of the cost function is achieved. Theoutput is the optimal
4D-VAR forecast and associated initial condition.

where, for thekth iteration of the conjugate gradient,pk
i, j is the conjugate direc-

tion vector multiplied by an amplitudeαk. These conjugate direction vectors are
obtained with the use of the gradient:

pk+1
i, j = ∇∇∇J k+1

i, j + γkpk
i, j (33)

where

γk =
(∇∇∇J k+1

i, j −∇∇∇J k
i, j) ·∇∇∇J k+1

i, j

∇∇∇J k
i, j ·∇∇∇J k

i, j

, (34)
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and the gradients are evaluated using Equation (31). The amplitudeαkis calculated
with:

αk = b−
1
2

(b−a)2[J (b)−J (c)]− (b−c)2[J (b)−J (a)]

(b−a)[J (b)−J (c)]− (b−c)[J (b)−J (a)]
(35)

wherea, b andc are modified initial conditions that where obtained through a line
minimization method known as inverse parabolic interpolation, which iteratively
finds a triplet of points such that the minimum of a parabola passing through these
three points will be as close as possible to the minimum of the function in that
given interval (Presset al., 1992).

3.5. BEYOND CLASSICAL 4D-VAR

There are many ways in which our use of 4D-VAR goes beyond the "classical" for-
mulation of 4D-VAR, as given on Figure 5. We are using 4D-VAR to assimilate data
into a finite grid sized cellular automaton made continuous only for the purpose
of writing adjoint equations. Grid and time steps are fractions of the characteristic
scales of the hyperdiffusive processes involved and are not infinitesimals. However,
as pointed by Isliker, Anastasiadis, and Vlahos (2000), it is still possible tocompute
derivatives and thus operators. To the best of our knowledge, at thepresent time
the only other area in which data assimilation techniques are being developed in
conjunction with a cellular automaton is in seismic data assimilation of a stochastic
random fault model (Rundleet al., 2003; Gonzálezet al., 2006).

We are also using a time series of a global, model-produced variable to define
the error, as opposed to the spatial state of the system measured at some time
intervals beyond the initial condition in which data is being assimilated. Assim-
ilating time series of a global variable instead of (or together with) spatial states
of a system at non-zero timest is truly compatible with the 4D-VAR approach,
as opposed to 3D-VAR for instance. Models in environmental sciences have been
and will increasingly be assimilating time-series of data (see for instance Carton,
Chepurin, and Cao (2000) in Oceanology or Bertino, Evensen, and Wackernagel
(2002) in Estuary modeling or Eymin and Fournier (2005) in Geomagnetism).

Finally, our model system includes an essential stochastic component, namely
the driving. Ocean and atmosphere general circulation or solid Earth dynamics
are all random driven (noisy) systems. Data assimilation, including 4D-VAR, in
principle can be applied to any such system (e.g., Nichols, 2003; Mooreet al.,
2004). Random driving, inaccessible to observations, cannot be assimilated, but is
not seen as a systematic bias in the model (see, e.g., Anderson, 2003).
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4. Validation Experiments

4.1. EXPERIMENTAL DESIGN

4.1.1. Synthetic data
The validation experiments use synthetic observations generated from the same
SOC avalanche model used to carry out data assimilation (certainly an optimal
situation from the data assimilation point of view). Of course, entirely independent
realizations of the stochastic driving are used to generate the synthetic observa-
tions, and these realizations arenotmade available to 4D-VAR, as our challenge is
precisely to see whether 4D-VAR can still adequately assimilate the observations
without “knowing” about the stochastic driving.

The synthetic energy release time series cover one hyperdiffusion time, and
were produced on a 48×48 grid, with time step∆t/τν = 5.5×10−11, and forcing
parameters as given in §2.2.2.

4.1.2. Thresholding and binning
Figure 7 illustrates a segment of representative simulation run. The gray linein
the bottom panel of Figure 7 is a typical time series for the energy released by the
avalanches. Time is measured in units of the magnetic hyperdiffusion time scale,
and energy in some arbitrary units. This arbitrary energy scale can be mapped to the
standard flare classification by dividing the peak energy that covers three decades
(panel B of Figure 4), in four ranges equal in logarithmic size. Thus, thefollowing
association can be made:P < 8 are B-class flares, 8< P < 40 are C-class flares,
40< P < 200 are M-class flares andP > 200 are X-class flares.

Data assimilation is carried out on a binned version of the energy time series,
shown as a thick solid line in Figure 7. Bin width of∆b = 100 (i.e. 100 time
steps) were chosen, as they large enough to remove the small structures but small
enough to keep the general features of the avalanche This binning facilitates the
minimization of the cost function by eliminating the fine structure details, which
are unnecessary as we are mostly interested in forecasting the flaring time, peak
flux, and total released energy.

Two parameters are used to build statistics. First, there is an energy thresh-
old (horizontal dashed lines on Figure 7). Only avalanches with an energy above
the threshold are considered in the statistics. The signals below the thresholdare
treated as being noise or low energy avalanches that are unimportant. Here the two
thresholds that will be used in this paper are shown: a threshold at 90 anda larger
one at at a value of 200 energy units. The lower threshold retains the model’s
equivalents of upper half of the medium size (M-class) and large size (X-class)
flares while the larger one will only take the high energy X-flares into account.
These classes of flares are the ones having the most important effects onEarth.
The second parameter is the forecast window. A forecast window of a range of
δ t = 0.55× 10−7 is depicted in the upper left corner of Figure 7. The forecast
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window is the maximal time interval between an observed peak and a forecasted
peak to have a match. In the case of a forecast window ofδ t = 0.55×10−7, the
predicted peak can either beδ t = 0.275×10−7 before or after the observed peak.
Hence, a smaller forecast window implies a more precise forecast.

The top four panels of Figure 7 show the evolution of the avalanching regions
at different stages throughout the spatiotemporal evolution of a large avalanche.
Starting from an initial perturbation at a given random point, the “preflare” stage
begins with an avalanching region occupying a small region (panel A, Figure 7) of
the domain that will gradually increase (panel B, Figure 7) to reach a largesize,
occupying an important portion of the domain, at the “impulsive stage” at the end
of which the peak is reached (panel C, Figure 7). At this point, the fragmented
hyperdiffusion front has reached the sides of the domain. In the “decay” stage, the
avalanching regions start to decrease in size (panel D, Figure 7). Eventually, the
system will return to a stable state, and driving resumes until the triggering ofthe
next flare/avalanche.

4.1.3. Maintaining the SOC state
To prevent the system from leaving the SOC state due to the 4D-VAR correction
made to the initial conditions, the lattice energy of the corrected initial conditions
is compared to the average lattice energy,Ēl , of the SOC state. If the lattice energy
of the corrected initial conditions is not found within the varianceσ , the 4D-VAR
correction is adjusted by a factorε defined as:

ε =











− |El−Ēl |
σ if El > Ēl +σ

1 if Ēl −σ < El < Ēl +σ
|El−Ēl |

σ if El < Ēl −σ
(36)

which brings the initial conditions’ lattice energy within the variance.

4.1.4. Random number sequences
For the minimization procedure within the 4D-VAR algorithm, the same seed is
used to initialize the random number generator, so that during each iteration within
4D-VAR (cf. Figure 6), the same sequence of perturbations are addedin the same
order to the same mesh points.

4.1.5. Running 4D-VAR
With a realization of stochastic driving different from that having been used to pro-
duce the synthetic observations (top panel Figure 8), a DNS “forecast”is produced
(middle panel Figure 8). The same initial conditions were used in both cases,but
the different realizations of the driving have led, perhaps not surprisingly, to very
different time series of energy release. Although the DNS run has reproduced the
small avalanche att = 1.1×10−7, it missed the large one att = 3.5×10−7. The
4D-VAR run (bottom panel Figure 8), using the same driving realization asthe
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Figure 7. Several aspects of the experimental design are displayed in the bottom panel. The gray
line is an original time series of released energy generated by the avalanche model (Equation (6)).
The thick solid line is the same series which has been binned by using bins of width of ∆b = 100.
Only the avalanches above the energy threshold (horizontal dashed lines) will be considered. In
the top left corner, a typical forecast window is shown. It determines the maximum time interval
between an observed and forecasted avalanche in order to have a match. The top four panels show
the avalanching regions evolving in space and time. From the initial perturbation at a random point,
the avalanching region increases from a small region (A) to a large region occupying an important
portion of the domain where the hyperdiffusion has reached the sides ofthe domain (B & C). The
avalanche is typically fragmented in its decay phase (D).

DNS forecast but with corrected initial conditions, has correctly reproduced the
large avalanche. Figure 8 is a typical case when the 4D-VAR method performs well.
There are cases where the DNS is already quite good, and 4D-VAR cannot produce
significant improvement; this is in fact expected, and moreover is the reasonwhy
true forecasting may be possible despite the stochastic nature of the forcing(more
on this in the concluding section). In this representative sample run, minimization
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Figure 8. This figure displays a sample run of 4D-VAR data assimilation. The syntheticobservations
being assimilated are in the top panel. Even using the same initial conditionA(x,y, t = 0), a single
DNS “forecast” (middle panel) often produces poor results, a direct consequence of the stochastic
nature of the driving process. Retaining the same driving but allowing 4D-VAR to alter the initial
condition (bottom panel) results in a much better representation of the observations.

of the cost function by 4D-VAR was achieved in a mere 5 iterations of the conjugate
gradient.

4.2. PERFORMANCE

4.2.1. Performance measurements
In anticipation of true forecasts, it is instructive to analyze the performance of the
4D-VAR runs in terms of matches, misses and false alarms. Only the avalanches
with a peak above the energy threshold are considered. With the forecast window
centered at the peak of each observed avalanche, the forecast is examined to see if
one of its avalanche take place inside the window. If it is the case, we have amatch.
If we use an energy threshold of 200 and a forecast window ofδ t = 0.55×10−7,
Figure 8 has 2 matches: the large avalanche att = 3.4×10−7 and a smaller one
at t = 1.1×10−7. The avalanche att = 1.1×10−7 is a possible match for either
one of the avalanches att = 1.1×10−7 andt = 1.38×10−7. Such situations are
treated as a single match. Hence, a match can be considered as an event happening
in a time interval, determined by the forecast window, regardless if there is a single
avalanche or multiple consecutive avalanches. A miss happens when the observed
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avalanche does not have a counterpart in the 4D-VAR run. Figure 8C has 2 misses:
at t = 2.9× 10−7 and t = 4.3× 10−7. False alarms are avalanches appearing in
the 4D-VAR run which do not have counterparts in the observations. Figure 8C has
one false alarm att = 1.7×10−7. The avalanche att = 0.1×10−7 is not considered
as a false alarms as it is an artifact of the 4D-VAR method. The correction to the
initial conditions has left the system in an unstable state so the forecast time series
began with an avalanche. Finally, the two small avalanches att = 0.6×10−7 and
t = 2×10−7 in the observations are not included in the analysis as they fall below
the energy threshold.

The final value of the cost function is not necessarily an optimal measure of
a successful run, as it simply measures the mean quadratic difference between
the observation and model time series over the whole duration of the assimilation
interval. In the flare forecasting context, one is primarily interested in predicting the
timing of discrete events, namely the largest flares/avalanches, and ideally also a
measure of their peak flux and/or total released energy. Consequently,we define the
following quality factorQ to assess numerically whether a given run was successful
or not in “catching” avalanches in the observations:

Q = α ∑
match

∣

∣

∣

∣

Eo

Eo−Ef

∣

∣

∣

∣

−β ∑
miss

(

Eo

Etot

)

− γ ∑
false alarm

(

Ef

Etot

)

. (37)

In Equation (37), the first term is the sum, for all pair of matching flares, of the
inverse of the error difference between the total energy of the observed (Eo) and
modeled (Ef ) avalanches multiplied by a factorα . The two next terms are penal-
ties due to the misses and false alarms. The penalty are defined as the energyof
the missed (Eo) and false alarm (Ef ) avalanches normalized by the total energy
released by all the observed avalanches (Etot). These three individual contributions
to Q are then each assigned a distinct weighting factor, chosen here asα = 4,β = 2,
andγ = 1 where the largest weight is for the matches. Note also that under these
definitions, missing a large avalanche incurs a larger penalty than missing a small
one. The misses have a larger weight than the false alarms because a miss leaves
us unprepared to handle the consequence of the flare. On the other hand, in a false
alarm we may incur additional costs even though no flare is triggered.

4.2.2. Performance statistics
Statistics of hits, misses and false alarms has been gathered for 100 4D-VARruns.
These runs have been realized with combinations of ten sets of observations and
ten sets of distinct random number sequences each setting a distinct realization of
stochastic driving within the SOC model. For all runs included in the statistical
analysis to follow, an energy threshold of 90 and a forecast window ofδ t = 0.55×
10−7 were used.

The idea here is to investigate the performance of the systemover the assimi-
lation interval (we are still not forecasting at this stage!), in terms of the number
of consecutive matches that could be obtained before the first miss. The results are

article_avalanche.tex; 28/03/2007; 20:45; p.24



Predicting Solar Flares by Data Assimilation in Avalanche Models. I. Model Design and Validation 25

Table I. Performance of the system in matchingn consecutive avalanches before the first miss.
The results from the regular DNS runs (numbers in square brackets) were added for comparison
purpose. The second and third columns lists the number of runs that hada match or a miss for
the nth avalanche, respectively. Fourth and fifth columns displays the numberof false alarms
between thenth and (n− 1)th avalanches and the corresponding numbers of runs which had
these false alarms. The sixth column keeps track of the runs that have neither a match nor a
miss because there are no longer any avalanches above the threshold.

Number of
consecutive
avalanches

Number
of

matches

Number
of

misses

Number of false alarms Number of
avalanches

below threshold
since last match

False alarms Number of runs

1

0 44 [26]

1 12 [9]

65 [41] 35 [59] 2 8 [3] 0 [0]

3 0 [2]

4 1 [1]

2 27 [22] 28 [14]

0 22 [15]

10 [5]1 4 [3]

2 1 [4]

3 11 [13] 7 [6]

0 10 [8]

9 [3]1 1 [4]

2 0 [1]

4 8 [1] 1 [5] 0 8 [1] 2 [7]

5 2 [0] 0 [0] 0 2 [0] 6 [1]

6 2 [0] 0 [0] 0 2 [0] 0 [0]

7 0 [0] 0 [0] 0 0 [0] 2 [0]

tabulated in Table I for eachnth avalanche (first column). The second and third
columns lists the number of runs that had a match or a miss for thenth avalanche,
respectively. The fourth and fifth columns displays the number of false alarms
between thenth and(n−1)th avalanches and the number of runs which had these
false alarms. The last column accounts for the fact that the runs do not have the
same number of avalanches above the threshold. The results of applying the same
analysis to regular DNS runs are added for comparison purpose (numbers in square
brackets).

Examining the first row, we see that, of the 100 runs, 65 4D-VAR runs suc-
ceeded in reproducing the first avalanche (above threshold) while 35 runs missed it.
Of the 65 runs with the match, 44 had no false alarms between the beginning of the
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run to the first avalanche while 21 of them had between 1 and 4 false alarms inthis
time interval. The DNS runs were less successful in reproducing the firstavalanche
as 41 of them were able to do so. The proportion of false alarms before thefirst
avalanche is similar for both the 4D-VAR and the DNS runs. Every run, 4D-VAR
and DNS, had at least one avalanche above the threshold. This first result is quite
interesting: 44% of the 4D-VAR runs successfully reproduced the firstobserved
avalanche without making a false alarm; this is a 60% increase in performance
compared to the DNS runs. If we move on to the second row, of the 65 4D-VAR
runs which reproduced the first avalanche, 27 of them were also able toreproduce
the second avalanche. The remaining 38 runs either missed the second avalanche
(28 runs) or did not had a second avalanche higher than the threshold (10 runs).
The number of false alarms between the first and second avalanches follows the
same trends as the ones before the first avalanche. The difference between the
4D-VAR and DNS runs is less pronounced as 22 DNS runs matched the second
avalanche. This implies that the 4D-VAR method is very good at reproducingthe
first avalanches but afterward the performance degrades to become equivalent to
the DNS method. However, the 4D-VAR method did reproduce runs of 5 and6 con-
secutive avalanche when the DNS runs no longer produced avalanches above the
energy threshold. Finally, the number of consecutive matches continue to decrease
until either an avalanche is missed or all observed avalanches are reproduced.

The reason behind this somewhat sudden decrease in performance comefrom
the fact that avalanches, especially large ones, have a deep impact on the energy
distribution on the lattice. Thus, even with synthetic data produced by the same
model used for data assimilation, it become more difficult to reproduce the next
avalanche, which explains the constant decrease in the number of matches. This is
a direct consequence of the stochastic nature of the driving process,and already
heralds the finite forecasting window that can be expected when operatingin true
forecasting mode. Nevertheless, one tenth of the total 100 runs could still reproduce
the first three avalanches. Only 2 runs reproduced the first six avalanches above
threshold (although 61 runs did not have a sixth avalanche to reproduce). However,
at this point, the size of the time interval for the run (t = 5.5×10−7) is felt as 9 runs
that matches the first two runs did not have a third avalanche above the threshold.
The runs have an average of 4 avalanches above the energy threshold.

4.2.3. Performance of the code
At a spatial resolution of 48× 48, it takes about 5 minutes of wallclock time to
complete a data assimilation run over 10000 time steps on an Intel Itanium 2
processor. Note that no particular efforts were made towards code optimization.
Although the writing of the adjoint equations in the 4D-VAR implementation can
be difficult, the resulting data assimilation scheme is quite fast. The hope is that
this performance will not degrade too much once real data, including observational
errors, will be used for true flare forecasting.
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5. Conclusion: towards forecasting

What have we actually achieved with this whole data assimilation procedure? Let’s
go back to the idea of predicting flare occurrence and energy release via a direct nu-
merical simulation based on a SOC avalanche model. To run such a model forward
in time, two things must be specified: (1) the current state of the lattice at timet0,
to be used as initial condition for the forecast, and (2) the spatiotemporal sequence
of perturbations throughout the forecasting interval. If the latter are trulystochas-
tic in nature, they remain completely unknown att0. In the context of Parker’s
nanoflare hypothesis, which provides the physical underpinning of avalanche mod-
els in the present situation, these perturbations amount to small kinks betweenad-
jacent magnetic fieldlines, building up in response to slow forcing of the structure’s
photospheric magnetic footpoints. Not only do these kinks develop in response to
stochastic forcing, but they also occurs on spatial scales inaccessible todirect ob-
servation. This means that flare forecasting using an avalanche model will always
retain a stochastic component.

What we have shown in this paper is that past avalanching behavior can be re-
produced reasonably well using data assimilation,even without detailed knowledge
of the stochastic forcing. At the end of the assimilation interval, the lattice is in a
state that is compatible with (and determined by) past flaring behavior. This then
represents the optimal initial condition from which to carry out a DNS forecast.
This, of course, does not guarantee that any given DNS forecast will be accurate,
but that an ensemble of DNS forecasts will show avalanching patterns thatreflect,
at least in part, the state of the lattice att0. In particular, if this initial condition
is characterized by a large, connected portion of the lattice close to the instability
threshold, then one would expect that a large avalanche is likely in the nearfuture,
irrespective of the spatiotemporal details of the forcing. It should then bepossible
to forecast with some accuracy the largest upcoming avalanches using statistical
ensembles of DNS runs. Small avalanches, on the other hand, will dependmore
sensitively on details of the (stochastic) forcing. In such cases, even ensemble of
DNS runs are less likely to produce useful forecasts. In the space weather context,
this not too problematic, since it is precisely the largest flares/avalanches for which
one is seeking accurate forecasts. These expectation are examined in detail in the
following paper in this series (Bélanger, Vincent, and Charbonneau, 2007).

SOC avalanche models are certainly not the only modeling framework for solar
flares within which data assimilation can be carried out. A good case in point is the
CISM project (see Solomon, 2005; Siscoe and Solomon, 2006), an ambitious sun-
to-ionosphere data assimilation framework based on a suite of coupled 3D MHD
models. The attractive feature of SOC models —arguably their single most attrac-
tive feature— is that, by all appearance, they correctly capture the global statistical
behavior of energy release by solar flares, including in particular its power-law
form and associated exponent. This makes such models ideal candidates for data
assimilation-based forecasting, despite their extreme physical simplicity and the
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inevitable stochastic effects associated with the driving mechanism responsible for
energy injection into the overlying coronal magnetic structures.

We note, in closing, that within Parker’s physical picture of coronal structures
being forced by photospheric fluid motions, such stochastic effects wouldalso
need to be incorporated into any full-scale MHD models of coronal structures
to be used for flare forecasting. Data assimilation could help here as well (see,
e.g., Schrijver and DeRosa, 2003), but spatially and/or temporally unresolved fluid
motions would again introduce a form of stochastic “noise” in the MHD simula-
tions, with inevitable degradation of forecasting performance even if suchmodels
would be based on true physical equations rather than some largely ad hoccellular
automaton. The latter, however, is such a simpler model to simulate that it becomes
possible in practice to carry out ensemble DNS forecasting in reasonable wallclock
time even on mid-range computational platforms. This is an essential requirement
of operational forecasting.
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