QNial Extensions

John Gibbons

01 August 2015

Extension to Core Nial

This section describes a number of extensions to the standard version of Q’Nial.
The extensions consist of C-coded primitives to provide the basic capabilities
together with Q’Nial libraries containing wrapper functions and transformers to
provide patterns of usage of the primitives.

These features can be switched on or off using the package manager if desired.

The features consists of the following

Associative Arrays or Hash Tables

Child Process creation and management

Byte Streams for Inter-Process communication and data encoding/decoding
Support for Shared Memory

Dynamic loading of primitives

Cr o =

Each of these is described in the following sections along with examples of their
use.

Associative Arrays

Associative arrays are an extension to Q’Nial implemented as hash tables. The
keys can be either Q’Nial phrases, character arrays or integers. They are
implemented as pure Q’Nial data structures but the primitives are coded primarily
in C for efficiency.

Because the tables are pure Q’Nial data structures they can be saved in a
workspace or serialised and sent between processes. However, it is not advisable
to write or display them on the console as they are not intended to be human
readable. This will be changed in a later version of Q’Nial.

For historical reasons there are two sets of functions, one that treats them as
hash tables directly and one that views them as associative arrays with functions
similar to the standard array manipulation functions of Q’Nial.

Implementation

As implemented, a hash table is an array of arrays. At the top level there are 5
entries

a standard phrase to identify a hash table

an array of keys

an array of values (of the same size as keys)

some counters (number of entries, probe count, deleted count)
a metadata slot for programmer use

G o=

The code uses linear hashing with rehashing to handle collisions. The size of a
table is always a power of two. Rehashing uses a table of large primes to avoid
collisions as much as possible.

A table is automatically expanded if it becomes more than 70% full or the deleted
count exceeds a nominated percentage.

Two sets of routines are provided, a set of primitives and a set of Nial coded
routines that mimic the routines of normal Q’Nial arrays.

Primitives

The primitives are for the most part implemented in C with some implemented
in Q’Nial where performance is not an issue.

Note that in all of these routines an invalid key (one that is not a phrase,
character array or integer) will cause an invalid key fault to be returned.

Basic Routines

These routines are coded in C and will validate the table and where necessary
the type of the key supplied to the primitive. As stated above a key must be
either a phrase, and integer or a character array.

__tereate count Create a new table with initial size count and return it. If
count is not a power of 2 the table size will be the smallest power of two
greater than count (with a minimum size of 32).

__tset table [key, value] Add a key/value pair to the table or update an
existing key. If the resulting table would be more than 70% full the table
will be rehashed. This routine also sets the number of probes (hashes and
rehashes) used to find a suitable slot to add the entry. This is mainly used
for peformance analysis.

table __tget key, {default} Retrieve a value from the table using the supplied
key. If no entry has this key and a default-value is supplied then it will be
returned. Otherwise a Q’Nial fault will be thrown.

istable table Test for a table, returning either True or False. This test uses
the standard phrase as a way of identifying tables.

__tsetm table meta-data Set the meta-data value for the table. This can be
any Q’Nial value and the meta-data field can be used for any purpose. The
idea is taken from Lua where it is used to implement prototype-instance
inheritance.

__tgetm table Get the metadata value of the table.

__tdel table key Remove the key/value pair corresponding to key from table.
The code remembers the deleted key to allow the empty slot to be re-used
by the same key at a later stage. The function returns 1 if the key was
found or a fault (?tdel args) if not found.

__getkeys table Return the collection of keys as an array.

Nial Coded Routines

The following routines are coded in Nial and extend the functionality of the
primitives.
tCount T Return the number of entries in the table

tsize T Return the current capacity of the hash table. Note that tables will
automatically resize so this does not indicate an upper limit.

tnew KeyValuePairs Create a new hash table from a list of key/value pairs

Associative Arrays

These routines are implemented on top of the basic primitives described above
and are designed to mimic the standard Q’Nial array functions. They will not
return a table to be printed.

aupdate AA [Key, Val] Add the key value pair to the associative array

aupdateall AA KeyValPairs Add a list of key value pairs to the associative
array

apick Key AA Return the value asociated with the supplied key

achoose Keys AA Return the array of values associated with the supplied
array of keys

atell AA Return the array of keys of the associative array
apickall AA Return the array of all key/value pairs of the associative array

aremove IS OP AA Key Remove an entry from the associative array, re-
turning a boolean value to indicate whether or not the key was found in
the array.

atally AA Return the size of the array

acapacity AA Return the current capacity of the associative array. This is not
an upper limit as associative arrays will automatically resize to accomodate
new entries.

acreate Name KeyValpairs Create a new associative array from the list of
key/value pairs and assign it to the named variable

aequal AA BB Determine if two associative array have the same sets of
key/value pairs

Process Creation and Management

These primitives provide the capability for a Nial process to create, manage and
remove child processes.

NOTE The file sprocess.ndf in niallib contains a number of
supporting definitions and the Ezamples folder of the distribution
contains some examples of usage.

Termination of a child processes is handled by the SIGCHLD handler and a child
can either be managed or unmanaged. By default a process is managed.

A managed child is one where the parent process wishes to be notified upon
termination so that the parent code can perform some post processing. A typical
example would be a child spawned to perform a computation in parallel.

An unmanaged child is one where the parent process has no interest in being
notified of the termination of the child and the childs resources can be automat-
ically reused. In this case the re-use happens when creating new processes or
closing existing processes.

A simple example of an unmanaged process would be to create a plot while the
parent continues its processing.

Child processes can also be clones of the parent inheriting its workspace with all
data and functions, or run a completely separate program.

When combined with sockets and byte streams it is possible to create a cluster
of processes that spread a Q’Nial computation across either a single multi-core
system, multiple machines or a combination of both using Nial arrays as messages.

Two basic approaches are supported:

1. Loose coupling of processes with communication via pipes or sockets in
which the processes can be on the same machine or spread across a cloud
2. Tight coupling of processes with communication via shared memory

The approaches can also be mixed in a system implementation.

Internally within the library a table of child processes is maintained. Each table
entry maintains information about the child.

spawn,__child flags Fork a child process with communication over pipes as
the standard input and output of the child process. The child is a non-
interactive clone of the parent. The return value on success in an internal
index of the child process, otherwise a fault is returned. The flags value is
1 for an unmanaged child and 0 otherwise.

spawn,__shell flags This primitive creates a child process running a bash shell
and a pseudo-terminal as its input and output. Any external process can be
run in this environment. The parent can initiate execution of a command
by writing to the input stream associated with the process. Similarly it
can directly read the output of the process. The returned value and flags
are identical to spawn__child.

spawn__cmd progname args flags This function creates a child process run-
ning the nominated command. The input and output streams of the child
are pipes so some commands that need an interactive terminal will not run
in this environment. On the other hand, pseudo terminals are a limited
resource.

child _writer child This returns a stream for writing to the standard input of
the child

child__reader child This returns a stream for reading form the standard output
of the child

interrupt__child child signal Send a signal to the child process. The signal
value can either be 0 for a kill signal or non-zero for an interrupt.

child__status child The child index here can either be -1, to match any man-
aged terminated child or the index of an existing child. The function
returns a triple of the child id, its current status and its termination code.
The current status of the child is 1 for an active child and 2 for a terminated
child.

sys__exit code Terminate this process and return the code value as the exit
code.

nano__time This function provides a high precision timer for determining the
performance of code. It returns a real value with nanosecond precision. It
cannot be used as a wall clock.

nano__sleep seconds nano-seconds High precision sleep function for the pro-
cess.

Byte Streams

Nial streams are an extensible byte buffering mechanism that can be used for
reading and writing of data to files, sockets, pipes etc as well as internal encoding
and decoding of Q’Nial data structures.

NOTE The file nstreams.ndf in niallib contains supporting
definitions and the Fzamples directory of the distribution
has some example code.

A stream is referenced in the application by a integer index into a table of stream
data structures. This index is supplied when opening a stream.

The module provides a number of primitives for opening and closing streams,
connecting them to file descriptors, writing and reading and for encoding and
decoding Q’Nial arrays.

Streams provide a boundary between application logic and the needs of network-
ing and file systems. On input the data from a file or network connection is
transferred to the streams buffers and then read by the application into Nial
arrays. On output data is transferred from Nial data structures into the buffers
and then subsequently written.

This approach allows streams to be used in either a blocking or non-blocking
style depending on the applications requirements. This is accomplished by using
a polling approach in a number of routines with a supplied timeout. This timeout
value can either be a positive integer (>= 0) indicating microseconds or a value
of -1 indicating an indefinite timeout.

Streams can also be used as a purely internal, byte based, data structure
disconected from file descriptors.

The primitives can be divided into 5 categories

Creating/Deleting Streams

Basic I/0

Serialising /Deserialising Arrays

Polling I/0

Opening and closing, pipes, socket pairs etc.

CU o=

Creating Streams

The following routines are used to allocate and free internal data structures and
buffers. They do not involve any data transfer.

nio__open fd mode Create a stream and assign it to a file descriptor fd (-1 if
no descriptor) with the nominated mode. At the moment the mode value
is unused in the runtime

nio__close stream Close any associated file descriptor and release all memory
buffers associated with the stream

Basic Operations

The basic operations are concerned with moving data backwards and forwards
under programmer control or controlling the relationship between streams and
file descriptors.

They are as follows:

nio__count stream Returns the number of characters buffered on the stream
at this moment. On an input stream this will not attempt to transfer any
data from the network or file system.

nto__read__stream stream climit timeout This routine will attempt to en-
sure that the internal buffers contain at least climit bytes. The call will
repeatedly poll for input from the associated descriptor if needed with a
timeout value of timeout until either there are climit bytes buffered or an
end of file condition is reached. The function returns the number of bytes
buffered.

nto__read stream num-bytes This function will attempt to read num-bytes
from the stream. If the stream already has num-bytes buffered it will
return those without reference to any associated file descriptor. If there
are less than num-bytes buffered and the stream has an open file descriptor
it will attempt a single read from the descriptor without waiting for the
descriptor to become ready. It will then return up to num-bytes or Null if
the stream is empty.

nio__readln stream Read a properly terminated line of characters from the
stream. including the line terminators. If no line can be found then it
returns null. The call polls for additional input before searching for a line.

nio__write__stream stream timeout While the associated file descriptor is
writeable, write as many bytes as possible. This will return the count
written or a fault if an error occured (e.g closed descriptor).

nio__write stream char-array Add the bytes in the supplied character array
to the stream and return the count written. This involves no transfer to
an external file descriptor.

nio__writeln stream char-array Add the character array to the stream and
then add a line terminator sequence. Returns the number of characters
written.

nio__flush stream Using a blocking model, write the contents of the stream’s
buffers to the associated file descriptor and return the number written.
This will only fail to write all bytes if the descriptor is closed or the process
is interrupted.

Serialising Arrays

A Q’Nial array that is not self-referential can be serialised to a stream

nio__block __array stream array Encode an array on the nominated stream
and return the number of characters used in the encoding. No transfer of
data to an associated file descriptor is performed.

nio__unblock__array stream Decode and return an array from the nominated
stream. At the moment this is a blocking operation. If an error occurs,
Null is returned.

Polling Streams

These primitives provide a link to the underlying OS polling mechanisms using
the select system call (the lowest common denominator on Linux and OSX).
This approach has a couple of disadvantages based on limitations of the select
system call.

Firstly the call is limited to around 1024 file descriptors although for most Nial
programs this would not be a problem. Secondly if any descriptor in a call has a
problem the entire call fails without identifying the source of the problem.

Two approaches are provided, check if a single stream is readable/writeable or
check for I/O on an array of streams. The single stream approach can emulate

the multiple stream approach using a Nial transformer (EACH etc) although
the approach will be slower as the timeout becomes cumulative.

The calls use a timeout value to determine how long the call should wait for
availability of the descriptor. This can be zero for no wait, a positive integer
value in microseconds or -1 for an indefinite blocking wait.

The single stream primitives are:

nio__is_readable stream timeout Check to see if the stream is readable
waiting for the timeout value. If an invalid stream is supplied the call will
return a fault (?nvalid_stream) otherwise it will return 1 if the stream
has data, 0 if the stream has no data or -1 if the stream is at end of file or
closed or has an error.

nio__ts__writeable stream timeout Check to see if the stream is writeable,
waiting for the timeout value. If an invalid stream is supplied the call will
return a fault (?invalid__stream) otherwise it will return 1 if the stream
can accept data, 0 if the stream will not accept data or -1 if the stream is
at end of file, or closed or has an error.

And the multiple stream primitive is :

nio__poll timeout read-list write-list exception-list This directly maps to
the select system call. Each of the lists is a list of streams and the
function checks to see if any of their descriptors are readable, writeable or
has an exception.This returns three boolean arrays corresponding to the
streams which indicates if the associated stream is readable, writable or
has an exception. The timeout is -1 for indefinite blocking or a number of
microseconds. If an error occurs the call returns Null.

Socket Pairs and Pipes

nio__socketpair flags Create a pair of UNIX Stream sockets sockets that are
endpoints of a single internal connection. The flag is an integer value
that controls whether or not the sockets will be blocking (non-zero) or
non-blocking (zero). The call returns a pair of file descriptors or the fault
?syserr. The file descriptors can then be associated with a stream.

nio__newpipe flags Create a pipe and return a pair of the file descriptors. The
flag controls blocking or non-blocking behaviour.

Shared Memory

In its current form Q’Nial is not multi-threaded and the shared memory primitives
are an addition to provide similar capabilities along with the child process
approach described earlier.

NOTE The file memspaces.ndf in niallib contains supporting
definitions and the Fzamples directory of the distribution
has some example code.

The primitives are divided into

. Creating and mapping shared memory and files

. Coordinating processes interacting through shared memory
. Copying data in/out of shared memory

. Support routines

W N

The primitives are intended to provide the base layer for higher layer experimen-
tation (e.g. Software Transactional Memory).

A Nial process can access multiple shared memory segments with each segment
identified by an integer index into an internal table. The segments can correspond

to named shared memory, locally allocated shared memory or to memory mapped
files.

Data is copied to/from shared memory into Nial data types and only a limited
number of types are supported, boolean, integer, character and real lists. Each
type is identified by an integer code. More complex types can be shared by first
serialising them and then sharing the serialised form.

When copying in from shared memory the primitive generates the Nial array to
avoid memory corruption.

The supported types are identified by an integer code as show in the following
table and also defined in the niallib file memspaces.ndf.

Type Code Name

Integers 1 MSP_INTTYPE
Booleans 2 MSP_BOOLTYPE
Characters 3 MSP_ CHARTYPE
Reals 4 MSP_REALTYPE

10

Creating and Mapping Shared Memory

These primitives provide for creatng and mapping shared memory segments as
well as memory mapping files.

msp__shm__open name open-code permissions Create a POSIX named
shared memory space and return a file descriptor which can then be
used to memory map the space. The open-code is a bit mask value which
maps to the shm_open values O_RDONLY (1), O_CREAT (2) and
O_EXCL (4). If O_RDONLY is not specified then the default O_RDWR
will be used. The permissions value is the standard open mode.

msp__shm__unlink name Unlink a shared memory space.

msp__map__local size flags Create a local memory space. If the flags value
is non zero the created space is private, otherwise shared amongst the
children of this process. Returns the index of the space.

msp__map__fd size flags fd Memory map a file based on the descriptor. The
map can be a part of the file (size > 0) or the whole file (size = 0). The
flags are a bit mask defining the access mode, private (1), read only (2).
The default is shared with read/write.

Process Coordination

These primitives provide low level synchronisation using atomic operations.

msp__cas mem-space offset compare-value replacement-value This
provides an atomic compare and swap of integer values. The offset must be
aligned on a word boundary (32 bit or 64 bit depending on the configured
version). The primitive returns true if the operation succeeded, otherwise
false.

Copy In/Copy Out

A small number of routines are provided to move data between shared memory
and the Nial process.

Note these are not atomic operations.

msg__get__raw mem-space nial-type memory-offset count Copy data
from a shared memory segment (mem-space) into a newly created Nial
array of dimension 1 (this can be reshaped within Nial). The memory
offset is from the start of the memory segment and the count is the
number of entries of the nominated type to copy.

11

msp__put__raw mem-space nial-data memory-offset count Copy data
from a Nial array into a shared memory segment. The count is the number
of entries from the Nial array.

Support Routines

These are simple utility routines.

Q’Nial organises memory on word boundaries (32 bits or 64 bits depending on
the configured choice) and provides alignment. The support routines provide a
way to determine the amount of shared memory needed to support one of the
supported Nial types.

msp__msize nial-type count Returns the number of bytes associated with
a given type and count. Both arguments are integers with the type
being one of MSP_BOOLTYPE, MSP_INTTYPE, MSP_RFEALTYPE or
MSP_CHARTYPE.

msp__sysconf code Return some information about the processor on which
Nial is running. If code is 0 then return the number of configured cores, if
code if 1 then return the number of available cores.

Dynamic Loading

Dynamic loading provides an alternative to reconfiguring Q’Nial when one wishes
to add additional primitives.

NOTE A number of examples are provided in the Modules

directory of the distribution which demonstrate how to code the primitives
as well as how to build the shared object. A CMake example configuration is
provided as well as example NDF files to load the primitives and simplify the
calls using currying.

Dynamically loaded routines can not be saved in a workspace and loaded at a
later time. The shared libraries will not be restored as part of a workspace load.

The routines described here are intended to form the base layer. As such they
are direct wrappers of system library functions.

The dynamically loaded functions are standard Nial coded functions conforming
to Nial coding conventions.

The external routines in each dynamic library are not merged when the library
is loaded. It is possible for two different libraries to have primitives with the
same name.

12

ndl_load file-name Load the shared object library contained in the nominated
file. The externals of the library are not added to the set of Nial globals. At
the moment the file-name parameter must be either an absolute file name
of a relative path to the library. This returns an internal data structure
which should not be changed.

ndl__close lib Close a shared library. After this call no function from the
library will be usable.

ndl_getsym lib fun-name Return a function pointer data structure that can
be used to call the function identified by fun-name from the shared object
lib.

ndl__call fun-ptr args Call the function identified by fun-ptr with the argu-
ments args. This returns the results of the function call.

13

	Extension to Core Nial
	Associative Arrays
	Implementation
	Primitives
	Basic Routines

	Nial Coded Routines

	Associative Arrays
	Process Creation and Management
	Byte Streams
	Creating Streams
	Basic Operations
	Serialising Arrays
	Polling Streams
	Socket Pairs and Pipes

	Shared Memory
	Creating and Mapping Shared Memory
	Process Coordination
	Copy In/Copy Out
	Support Routines

	Dynamic Loading

