
QNial the Language Definition

Michael Jenkins

01 August 2015

The Language Definition

Version 6.3

August 2006

Nial Systems Limited

Preface

The Language Definition manual consists of nine chapters that describe the
Nial language at a technical level and provides summary informa tion on the
capabilities of the Q’Nial interpreter.

Chapter 1 introduces some of the concepts and terminology of Nial. Chapter 2
describes the data objects of the language. Chapters 3 and 4 cover the predefined
operations and transformers in Nial. Chapter 5 gives a formal description of the
syntax and semantics of Nial using BNF style syntax descriptions and natural
language descriptions of the meaning of the constructs. Chapter 6 covers the file
input and output operations. Chapter 7 describes the operations that provide
access to the mechanisms of the Q’Nial interpreter. Chapter 8 introduces the
Q’Nial environment. Chapter 9 describes the debugging and profiling capabilities
of the Q’Nial interpreter.

Chapter 1 Introduction

Nial is an acronym for the Nested Interactive Array Language. Nial is a
language intended for users of computers who wish to describe a computational
procedure (often called an algorithm) to solve a particular problem or process
data in a desired way. The word interactive refers to the idea of having a
conversation of sorts with the computer. In essence, the program mer types a
fragment of a program into the computer and the computer replies immediately
indicating the result of processing that part of the program. The word array

1

refers to a data structure which is manipulated by Nial. An array can be a single
number or character, a list of numbers, a table of numbers or almost any other
structure desired. The word nested refers to the fact that an item of an array
can be another array or an operation can contain another operation. The idea is
akin to Russian dolls that can be taken apart to reveal a smaller doll inside.

The Nial language was designed by Mike Jenkins and Trenchard More during a
collaborating that began in 1979 and continued for many years. The current ver-
sion is a refinement developed by NIAL Systems Limited based on its experience
with the practical use in many application areas.

Q’Nial is a computer program initially developed at Queen’s University,
Kingston that implements the Nial language. It was used to support research
in computer science on programming languages, knowledge-based systems and
other topics at Queen’s and other universities. NIAL Systems Limited has took
over responsibility for the development and marketing of Q’Nial and delivered it
to customers in many countries. Mike Jenkins continues to use Q’Nial and has
made it freely available through the company web site at www.nial.com.

Q’Nial is intended for use as both a rapid prototyping tool for exploring how to
design a program to address a particular problem, and as a rapid development
tool to build a program for a known task quickly. It implements a very high
level language in that many details of programming are done by Q’Nial without
explicit specification. A programmer can think about and work on whole data
structures rather than just the individual items that make up the structure.
By using a prototyping approach, many of the design considerations in a large
program can be resolved before a great investment in programming occurs. As
well, users can work with a prototype version of the ultimate system, using a
working model that has the screens and some of the functionality of the final
system.

The emphasis in Nial on powerful data operations that apply to entire data sets
means that Nial programs tend to be 1/5 of the size or smaller of an equivalent
C or Pascal program. This makes Nial well-suited for rapid development of data
intensive programs.

Language Concepts and Terminology

The programming language Nial and its implementation, Q’Nial, are designed
to make the learning of programming concepts easy. In normal use of Q’Nial, a
programmer enters a small fragment of a program through the keyboard. Q’Nial
interprets the entry and returns the result immediately. This instant response
provides feedback on the correctness of the program text. Programs can be
entered interactively and a workspace of functional and data objects can be built
while exploring how to handle a programming requirement. As well, Q’Nial is

2

designed to support the creation of programs as text stored in one or more text
files.

The Objects of Nial

The major focus of Nial is on the creation and manipulation of data objects
which are organised under a structuring scheme known as nested rectangular
arrays (or arrays for short).

An expression is a construction used to create arrays. Operations and trans-
formers are functional objects used in the construction of expressions.

When the Q’Nial interpreter evaluates a program fragment that is a Nial expres-
sion, it returns an array data structure. Examples of expressions are constants,
list constructions, conditional expressions, loops, assignment expressions and
operation calls. An expres sion may also be made up of a number of steps which
describe an algorithm or procedure for computing an array.

An operation is a functional object that is given an argument array and returns
a result array. An operation is used by applying it to an argument; this process
of executing an operation by giving it an argument value is called an operation
call.

An operation can be constructed by defining one or more parameters and giving
an algorithm to compute the result in terms of the parameters. There are also
program fragments (operation expressions) that construct unnamed operations
by composing operations, forming a list of operations, or modifying an operation
by use of a transformer.

A transformer is a functional object that is used to construct a new operation
from a given operation argument, producing a modified version of the given
operation. Most transformers used in Nial are provided in the core language.
However, there is a mechanism to construct a new transformer in terms of one or
more operation parameters. A user-defined transformer describes the modified
operation as a parameterized algorithm (a schema) for manipulating data.

The process of evaluating an operation call of an operation modified by a
transformer requires two steps. The modified operation is formed; and then the
modified operation is given the array argument which it uses to produce the
result.

The object construction mechanisms are extended by two naming conventions:
variable assignment and definition. A variable assignment associates a name
with an array value dynamically during execution of expressions. A definition
associates a name with a program fragment in a static manner.

3

Chapter 2 Data Objects

The data objects of Nial are nested rectangular arrays. Atomic data objects
such as numbers and characters are included within this description by virtue of
an atom being considered as a self-containing array object with no dimensions.

Atomic Arrays

There are six types of atoms in Nial. They are boolean, integer, real, character,
phrase and fault. The first three are numeric types and are used for arithmetic
operations. The last three are literal types and are used for symbol manipulation.
All six types of atoms are used in comparisons.

A boolean atom is the result of a comparison of array values; or the result of a
test relating to a characteris tic of an array or the content of an array. There
are two boolean atoms: true and false, denoted byl ando respectively. When
boolean atoms are treated as numbers, true corresponds to one and false to zero.

An integer atom is a positive or negative whole number representing a quantity
of units. A dash symbol (-) immediately preceding the integer denotes a negative
integer. No space is permitted between the dash and the number, otherwise the
dash is interpre ted as the arithmetical operation of subtraction. Conversely,
a space is required when subtraction is intended and the right argument is a
number. An integer is represented by an internal form that limits its range of
values in the Q’Nial implementation of Nial.

A real atom is a number which can represent any position on the real line. It
may be written with a fractional part and/or with a decimal exponent. It is
represented internally by a floating point number.

A character atom represents a single glyph within the standard character set
in use. The notation for a single character in Nial is the grave symbol (‘),
preceding the character.

A phrase is an atom of literal information in which a sequence of characters
is taken as a unit. Phrases are used in the place of character strings when the
internal structure of the string does not need to be manipulated. Constant
phrases are denoted in Nial text by placing the double quote symbol (") before
the sequence of characters. Phrases may also be constructed by applying the
operation phrase to a character string.

A fault is an atom of literal information similar to a phrase, used to identify
data concerning extraordinary or erroneous conditions. Constant faults are
denoted in Nial by placing the question mark symbol (?) before the sequence
of characters. Faults may also be constructed by applying the operation fault
to a character string. By convention, the text of a fault normally begins with a
question mark. For example, ?A denotes an arithmetic fault and ?L denotes a
fault in a logic operation. To denote?A in Nial text ??A is typed.

4

There are a small number of special fault values ?noexpr, ?eof, ?O and ?I. These
arise in the execution of Nial expressions to indicate that no value is available
for the expression. All other faults can be viewed as error conditions. A fault
triggering mechanism is available in Q’Nial to detect when faults other than the
four special ones are created. The triggering mechanism is on by default but can
be turned on or off under program control or at start up.

Rectangularity Structure

An array is a collection of data objects having its items held at locations in a
rectangular structure. The items are viewed as being objects at locations that
are positioned relative to a set of directions at right angles to each other. In
mathematical terminology, an array is said to have a set of orthogonal axes. The
items may be arranged along zero, one, two or more directions. For example,
the following array is a 4 by 6 table of numbers. It has 24 items arranged along
two directions of length 4 and 6 respectively.

+---+---+---+---+---+---+
|499|434|122|770|733|890|
+---+---+---+---+---+---+
|660| 32|808| 24| 5|473|
+---+---+---+---+---+---+
|499|434|122|770|733|890|
+---+---+---+---+---+---+
|660| 32|808| 24| 5|473|
+---+---+---+---+---+---+

The number of axes of an array is referred to as its dimensionality. The number
of axes is the number of dimensions. In mathematical terminology this dimen-
sionality is called the valence of the array. The following terms describe arrays
by their valence:

Table 1: Valence Table

Valence Description
0 single
1 list, vector
2 table, matrix
2 or more multivalent

The concept of a structure with no directions is, at first glance, paradoxical. If
a structure has no directions, how can it have a location? However, allowing
a structure to have no directions permits atomic data such as an integer or a

5

character to be treated as a data structure in a manner consistent with the
treatment of structures having one or more directions.

The rectangular structure of an array can be des cribed by its length in each
direction. The list of these lengths is called the shape of the array. The shape
of an array has one item for each direction and hence is of length equal to the
dimensionality, or valence, of the array. The shape of an array is itself an array.

The array displayed above is a table that has, as its shape, the array:

+-+-+
|4|6|
+-+-+

The shape of an array with no axes, a single, is the predefined empty list Null.
All atoms are defined to be singles and hence have Null as their shape.

The number of items in an array is called the tally of the array. Because an
array is rectangular, the tally is the product of the shape. By convention in
mathematics, the product of the empty list Null is one; thus, a single always
contains exactly one item. An atom is characterized by the fact that it is
self-containing, that is, an atom is its own item.

Lists, arrays with one dimension, are encountered frequently in Nial. The
following terminology is used for the most common ones:

Number of Items In the List Description
0 empty list
1 solitary
2 pair
3 triple
4 quadruple

The shape of a list is a solitary list holding the length of the list. The notation
[A, B,. . .] is used to denote a list whose items are A, B, . . . etc. Thus, the
expression [4, 6] is a pair and its shape is the solitary list [2].

A solitary and a single both have one item. They differ in rectangular structure
in the following way:

single solitary
valence 0 1
shape Null [1]
tally 1 1

6

Two forms of lists are also classified by their content. A string is a list of
characters. A bitstring is a list of booleans.

A location in an array is described by a list of integers. Each item of the list of
integers indicates the position of the location along the corresponding axis. The
list of integers is called the address of the location in the array. The counting
scheme uses zero origin indexing. Thus, in the table above, the address of 496 is
[2,3]. For simplicity, the addresses of a list are integers: 0, 1, etc. For convenience,
in situations where an address or a shape of a list is expected, an integer and
the solitary holding the integer are treated equivalently. The operation gage is
used to convert a solitary list of integers to an integer and returns any other list
of integers directly.

All the addresses of an array can be stored in an array of the same rectangular
structure as the array itself. Such an array is called the grid of an array. The
grid of a list is a list of integers. The grid of table Tabove is the following table
of pairs of integers.

+-----+-----+-----+-----+-----+-----+
+-+-+	+-+-+	+-+-+	+-+-+	+-+-+	+-+-+																		
	0	0			0	1			0	2			0	3			0	4			0	5	
+-+-+	+-+-+	+-+-+	+-+-+	+-+-+	+-+-+																		
+-----+-----+-----+-----+-----+-----+																							
+-+-+	+-+-+	+-+-+	+-+-+	+-+-+	+-+-+																		
	1	0			1	1			1	2			1	3			1	4			1	5	
+-+-+	+-+-+	+-+-+	+-+-+	+-+-+	+-+-+																		
+-----+-----+-----+-----+-----+-----+																							
+-+-+	+-+-+	+-+-+	+-+-+	+-+-+	+-+-+																		
	2	0			2	1			2	2			2	3			2	4			2	5	
+-+-+	+-+-+	+-+-+	+-+-+	+-+-+	+-+-+																		
+-----+-----+-----+-----+-----+-----+																							
+-+-+	+-+-+	+-+-+	+-+-+	+-+-+	+-+-+																		
	3	0			3	1			3	2			3	3			3	4			3	5	
+-+-+	+-+-+	+-+-+	+-+-+	+-+-+	+-+-+																		
+-----+-----+-----+-----+-----+-----+

Nesting Structure

The arrays of Nial are a recursive data type, that is, the items of an array
are also arrays. The above example of the grid of a 4 by 6 table is an example
of a nested array. Each of the items is a pair, a list of length two, of integers.

Since an array has arrays as items, it may contain data at lower levels than the
top one. A path is a list of addresses that describes the site of a data object at
some depth within the array. For example, the path [[2, 5], 1] is the path to the
second item in the pair at address [2, 5] in the grid of T shown above.

7

An array is said to be simple if all its items are atomic. The table of numbers,
T above is simple but the table of its grid is not.

A partof an array is a data object that is contained at some level within the
array. The atomic parts of an array are called the leaves of the array. The
simple parts are called twigs.

The term level is used informally to describe the relative position of a part
within the nesting structure of an array. An item is at the first or top level, an
item of an item is at the second level, etc.

An atom is viewed in two ways. As an indivisible data object it is viewed as
having no levels and cannot be broken into subarrays. As an array data structure
it is viewed as a single holding itself and therefore has an infinity of levels. This
view is necessary for atomic arrays to fit the theory of nested array mathematics.

The number of levels to reach an atom along each path need not be the same.
For example, in the following array, the phrase “hello is at the first level, the
integer 23 is at the second level and the character ‘b is at the third level.

[23 'abc', "hello , tell 2 2]

+------------+-----+-------------+
+--+-------+	hello	+-----+-----+																
	23	+-+-+-+				+-+-+	+-+-+											
			a	b	c						0	0			0	1		
		+-+-+-+				+-+-+	+-+-+											
+--+-------+		+-----+-----+																
			+-+-+	+-+-+														
				1	0			1	1									
			+-+-+	+-+-+														
		+-----+-----+																
+------------+-----+-------------+

Empty Arrays

An empty array is one that has no items. The most commonly encountered
empty array is the empty list; it is the shape of a single. The empty list can
be denoted in three ways in Nial: by the predefined symbol Null; by the list
constructor notation with no items; and by the string notation with no characters.
This is summarized by:

Construction Denotation
Predefined name Null
List Constructor []
String Notation ”

8

Figure 2-6 Ways of Denoting the Empty List

An empty array may have length in some directions. For example, an empty
table of shape [2,0] is one with two rows but no columns. Two empty arrays are
equal only if their shapes are equal. By definition, an empty array is simple.

Array Diagrams

The result of a Nial expression is indicated by displaying a picture of the result.
An array picture is a table of characters that shows the content and structure
of an array. The structure of the array is displayed by laying out pictures of
the items in a two-dimensional format with or without a frame. The size of the
layout is adjusted to leave room for the size of the pictures of the items, which
may themselves be pictures of arbitrary complexity.

The form of the picture display is controlled by two independent mode switches.
The first switch has two settings, diagram and sketch. The picture of an atom
shows the atom itself in either sketch or diagram mode. Diagrammode shows
the complete nesting structure of an array. It provides a frame around each item.
Sketchmode eliminates the frame around the items of a simple array.

The other switch has two settings, decor and nodecor. When decor is set,
characters, phrases and faults are decorated so that the type of data is obvious.
Once a mode is set, it remains in use until it is reset.

The picture of an array of three or more dimensions is displayed by a tabular
layout of the pictures of the two-dimensional subarrays along the last two
dimensions. An array with three axes is displayed as three tables across the page
with space between each table. An array with four axes is displayed as a table
of pictures of the two-dimensional subarrays with space between each table. As
the dimensionality increases, the process of alternating the direction of display
continues with increasing space between the pictures of lower dimensional arrays.

The sketch displays of an array of integers of shape 2 3 2 3 and of a 2 3 table of
2 3 tables are:

a := 2 3 2 3 reshape count 36

1 2 3 7 8 9 13 14 15
4 5 6 10 11 12 16 17 18
19 20 21 25 26 27 31 32 33
22 23 24 28 29 30 34 35 36

2 raise A

+--------+--------+--------+

9

| 1 2 3 | 7 8 9|13 14 15|
| 4 5 6 |10 11 12|16 17 18|
+--------+--------+--------+
|19 20 21|25 26 27|31 32 33|
|22 23 24|28 29 30|34 35 36|
+--------+--------+--------+

A single has no axes and hence cannot be diagrammed in a conventional way. If
a non-atomic array is a single, its picture has the character o in the upper left
corner.

single 1 2 3

o-----+
|1 2 3|
+-----+

The diagram of a solitary has the usual corner box character in the upper left
corner.

solitary 1 2 3

+-----+
|1 2 3|
+-----+

In sketch mode, the display of an empty array is suppressed. In diagram mode,
the display of an empty array shows the frame border. For example, the display
of an empty list is the left border of the frame diagram for a list.

set "diagram; Null

+
|
+

The display of an empty table is the upper left corner of the frame and if the
table has a non zero length, the display includes the frame along one side. The
array A, defined below, is displayed in the four mode combinations as follows:

A := 2 3 reshape [5 'PC', "hello, single 2 4, tell 1 2, solitary 'Hi', tell 0 2];

set "diagram; set "decor; A

10

+--------------+---------+-------+
+-+---------+	"hello	o-----+											
	5	+---+---+				+-+-+							
			`P	`C						2	4		
		+---+---+				+-+-+							
+-+---------+		+-----+											
+-------------+---------+-------+													
+-----+-----+	+-------+	+-+-+											
	+-+-+	+-+-+			+--+--+								
		0	0			0	1					`H	`i
	+-+-+	+-+-+			+--+--+								
+-----+-----+	+-------+												
+-------------+---------+-------+

set"diagram; set "nodecor; A

+-------------+-------+-------+
+-+-----+	hello	o-----+											
	5	+-+-+				+-+-+							
			P	C						2	4		
		+-+-+				+-+-+							
+-+-----+		+-----+											
+-------------+-------+-------+													
+-----+-----+	+-----+	+-+-+											
	+-+-+	+-+-+			+-+-+								
		0	0			0	1					H	i
	+-+-+	+-+-+			+-+-+								
+-----+-----+	+-----+												
+-------------+-------+-------+

set "sketch; set "decor; A

+---------+------+-----+
+-+----+	"hello	o---+					
	5	'PC'				2 4	
+-+----+		+---+					
+---------+------+-----+							
+---+---+	+----+						
	0 0	0 1			'Hi'		
+---+---+	+----+						
+---------+------+-----+

11

set "sketch; set "nodecor; A

+---------+-----+-----+
+-+--+	"hello	o---+					
	5	PC				2 4	
+-+--+		+---+					
+---------+-----+-----+							
+---+---+	+--+						
	0 0	0 1			Hi		
+---+---+	+--+						
+---------+-----+-----+

Chapter 3 Predefined Data Operations

Programming in Nial is mainly done by creating operations that carry out
data transformations from some input data to desired output data and then
combining these using the expression mechanisms to find the solution to a given
problem. The programming task is accomplished by making use of the predefined
operations of Nial.

This chapter gives a brief description of the data operations provided with
Q’Nial, grouped by topic area. Detailed descriptions of the operations, organized
alphabetically, are given in the Nial Dictionary.

Most of the predefined operations are directly implemented in the Q’Nial inter-
preter. However, a few of them are written in Nial itself and are defined in a file
that can be modified by a Q’Nial user. The file defs.ndf in the initial directory
holds these definitions.

Properties of Data

A binary operation is one that must have a pair of arrays as its argument. If
the argument is not a pair, a fault is returned.

Some of the operations of Nial that operate on simple arrays are extended to
arbitrarily nested arrays by being applied to the atoms at the deepest level.
These are called pervasive operations. There are three classes of pervasive
operations: unary pervasive, binary pervasive and multi pervasive.

An example of a unary pervasive operation is abs which returns the absolute
value of a numeric atom. When a unary pervasive operation is applied to a non-
atomic argument, it returns an array of the same structure as the argument. The
atoms of the result are the result of applying the operation to the corresponding
atoms of the argument. A unary pervasive operation f applied to a non-atomic
array A gives the same result as applying f to each item of A. That is,

12

f A = EACH f A

abs -3.5 27 -8
3.5 27 8

An example of a binary pervasive operation is minus, also denoted by -, which
returns the difference of two numbers.

Consider two nonatomic arrays, A and B, of identical structure. When a binary
pervasive operation such as minus is applied to them as in A minus B, the
resulting array C has the same structure as A or B. C has atoms that are the
result of applying minus to the pairs of atoms in corresponding positions of A
and B.

3 5 7 - 2 8 3
1 -3 4

A binary pervasive operation f satisfies the equation

A f B = A EACHBOTH f B

A unary operation which reduces a simple array to an atom is multi pervasive.

When a multi pervasive operation, such as sum, is applied to an array A with
items all of identical structure, it returns an array of that same structure. The
atoms of the result are computed by applying sum to the simple arrays formed
by taking the atoms from positions in the corresponding items of the argument.

Thus, for example, if T is a table, sum rows T returns the column totals for T.

T := 2 4 reshape count 8

1 2 3 4
5 6 7 8

rows T

+-------+-------+
|1 2 3 4|5 6 7 8|
+-------+-------+

sum rows T

6 8 10 12

13

A multi pervasive operation used on a pair behaves in precisely the same manner
as a binary pervasive operation.

A multi pervasive operation f satisfies the equations

f A = EACHALL f A
f A = REDUCE f A

In binary pervasive and multi pervasive operations, the items of the argument
must all be of the same shape and structure. If they are not, items that have
only one item, (eg. atoms, singles and solitaries), are reshaped to the common
shape. If all items with more than one item are not the same shape, the fault
?conform is returned.

A predicate is an operation that tests a condition and returns true if the
condition holds and false otherwise. A predicate is not pervasive.

Logic Operations

A logic operation is one that combines arrays of booleans or produces a result
of booleans. The predefined logic operations follow:

A = B true if A and B are the same array value; false otherwise

A ~= B true if A and B are not the same array value; false otherwise

= A true if all the items of A are equal; false otherwise,

diverse A true if no two items of A are the same array value; false otherwise

and A true if all the items of A are true; false otherwise

or A true if at least one item of A is true; false otherwise

not A the opposite boolean from A

The operations equal and unequal are synonyms for = and ~= respectively. The
infix use of equal is a special case of the prefix use that tests if all the items
of an array are the same. The operation diverse is the opposite test. The
operations and and or are multi pervasive; not is unary pervasive. They provide
the fundamental operations of boolean logic in a very general setting.

Arithmetic Operations

The arithmetic operations include elementary and modular arithmetic
operations and operations for real number computations in science and engineer-
ing.

14

Arithmetic formulae may be applied to single numbers or to nested collections of
numbers. There is also a random number generation operation. The arithmetic
operations are given below by class of pervasiveness:

Unary Pervasive Binary Pervasive Multi Pervasive
opposite, sin plus sum +
reciprocal, cos minus - product *
floor, tan times
ceiling, arcsin divide /
sqrt, arccos mod
abs, arctan quotient
exp, sinh power
ln, cosh
log, tanh

All of the above operation names and syonyms represent the corresponding
mathematical functions where sqrt is square root, abs is absolute value, exp is
exponent, ln is natural logarithm, log is logarithm to the base 10 and mod is
modulus.

The standard programming symbols for arithmetic can be used. The symbol +
is a synonym for sum. It can be used both in a prefix way to sum an array of
numbers or in an infix way to add two numbers together. Since sum is pervasive,
its meaning is extended to do itemwise additions.

The symbol - must be used with care in Nial. It is a synonym for minus and
can form part of a negative number. When used as minus it must be separated
from a following number by at least one space to avoid ambiguity.

The operation opposite reverses the sign of a number.

Linear Algebra Operations

Q’Nial supports the following linear algebra operations; as well, inv is provided
as a synonym for inverse and ip is one forinnerproduct:

inverse A The inverse of square matrix A

innerproduct A B The inner product of A and B.

solve A B The values of X that satisfy the set of linear equations AX=B

15

Comparison Operations

The comparison operations compare numeric or literal atoms according to an
implicit ordering. All the comparison operations are pervasive. They are given
below by class of pervasiveness:

Binary Pervasive Multi Pervasive Non Pervasive
< <= max up
> >= min
match
mate

The operations gt, lt, gte and lte are synonyms for >, <, >= and <=, respectively.

The comparison operations are defined for all atomic types. For numeric types,
the comparison reflects the usual ordering of the numbers. For characters and
phrases, the comparison is made by using a predefined collating sequence. For
phrases and faults, the comparison is judged on the first character that differs.

Comparisons between numeric types and nonnumeric types are defined to be
false, as are comparisons between phrases and single characters.

The operations <, <=, >, >=, and mate convert numeric arguments to be the
same type before doing the comparison. The operation match does an equal
comparison of atoms without conversion whereas mate does an equal comparison
with conversion.

The operations max and min find the upper and lower bounds of the items of
the argument, respectively. Special faults are returned to indicate the top (?I)
and bottom (?O) of the pre-lattice of atomic objects if there are no items or if
the items are incomparable.

The operation up defines a total ordering on the arrays of Nial. It compares
valence, then length of axes in order, and then items. Atomic items are compared
by type, and if of equal type by lte. Non-atomic items are compared by applying
up recursively.

Type Testing Operations

The operation type is unary pervasive and returns a representative atom corre-
sponding to its argument type as defined by the following table.

Representative

Atomic type Atom Predicate
boolean o isboolean

16

Atomic type Atom Predicate
integer 0 isinteger
real number 0. isreal
character <blank> ischar
phrase “” isphrase
fault ?? isfault

The operation type can be used to test whether an atom is of a particular type.
For convenience a predicate is provided for testing each atomic type directly. For
convenience, there is an additional predicate operation, isstring to test whether
or not an array is a string.

Set-like Operations

There are two set-like operations defined in defs.ndf.

allin A B Tests whether or not all items of A are in B.

like A B Tests whether or not all items of A are in B and vice versa.

Conversion Operations

A common requirement in programming is to convert data from one representa-
tion to another. For example, numbers are read from a file in literal form as a
string but are required in numeric form for arithmetic calculations. Alternately,
numbers are converted to a string representation before they are written to a
file.

The conversion operations return a result of the type specified by the operation
name.

Operation From To
string atom string
phrase string phrase
fault string fault
quiet_fault string fault
char integer character
charrep character integer
tonumber string number
tolower string lower case string
toupper string upper case string
toraw simple bitstring
fromraw bitstring simple
gage array simple integers

17

Operations toupper and tolower take an atomic character or a string argument
and return one in which the letters have been changed to upper or lower case
respectively. The operations char and charrep are unary pervasive. The oper-
ations toraw and fromraw are used to convert simple arrays of characters or
numbers into bitstrings in order to do low level bit manipulation. The operation
gage is used to remove unnecessary structure from an array representing a shape
or address.

Structure Testing Operations

The following table describes operations that test the structure of an array. The
test that an array is simple always holds if an array is atomic or if it is empty.

atomic A A is an atom.

simple A All items of A are atoms.

empty A A has no items.

Measurement Operations

The following table describes operations that measure the structure of an ar ray.
They can be used to construct other tests on the structure of an array.

tally A number of items in A

valence A number of axes that A has

shape A list of the lengths of axes of A

axes A list of the axis numbers for A

Array Construction Operations

The following table describes several operations that construct an array from
one or more components. These include the unary operations, single and solitary,
that add a level and enclose an argument array as an item, the binary operations,
pair, hitch and append, that join two arrays into a new structure, and four
operations, link, cart, laminate, and catenate that combine an arbitrary number
of arrays into a new structure. The operations link and cart are unary, but are
often used in infix mode to combine two arrays.

single A single holding A as its item

solitary A solitary holding A as its item

18

A pair B list of 2 items having items A and B

A hitch B list having A as the first item and the items of B as the remaining
items

A append B list with items of A as the beginning items followed by B as the
last item

link A list with items of items of A in orde

cart A array of all arrays of the same shape as A taking one item from each of
the items of A

I laminate A merged items of A along a new axis before axis I of the items

I catenate A items of A joined along axis I

Reshaping Operations

The following table describes the operations that preserve the level structure
and ordering of items of an array, but possibly alter the shape. The operation
reshape is used both for providing shape and for replicating items if there are not
enough to fill out the desired shape. The operation pass serves as the identity
operation on arrays and is provided for mathematical completeness.

A reshape B array having shape A and items taken from B cyclically

list A list of items of A

pass A A, unchanged

post A table with tally A rows and one column holding the items of A

Array Generation Operations

The operations that are used to generate arrays are described in next.

tell A array of addresses for an array of shape A in 0 origin

count A array of shape A equal to 1 + tell A

grid A array with the same shape as A holding the addresses of A

random S An array of uniformly distributed random real numbers between
0.0 and 1.0 of shape S. The value returned depends on the current value
of the internal seed.

seed A Sets the random number seed to A, a real number between 0. and 1.

19

The operations tell and grid generate arrays of addresses. The operation random
is used to generate pseudo random numbers. A seed number is initialized when
a Nial session is started and subsequent numbers are generated using a linear
congruential method. The operation seed can be used to reset the generator.

Selection Operations

Many of the operations involve the selection of an array from a given array
according to some control argument. The selected array may be an item, an
array of items of the given array or an array deep in the nesting structure of the
array. The selection operations are described below.
The operations take and drop use a negative value to indicate that the right end
or bottom parts of the array are to be taken or dropped. Earlier versions had
operations takeright and dropright that defined in defs.ndf for compatibility.

first A first item of A

second A second item of A

third A third item of A

last A last item of A

A pick B item of B at address A

A choose B array of the same shape as A with items selected from B according
to addresses A

A reach B part of B that is reached by succes sive pick operations using the
items of path A

A take B corner of B with shape abs A chosen by signs of items of A

A drop B corner of B left after dropping extents of length abs A from the ends
speci fied by the signs of items of A

A sublist B list of items of B selected according to the boolean pattern A,
where true indicates selection

A except B list of items of A not in B

front A list of items of A excluding the last

rest A list of items of A excluding the first

cull A list of unique items in A

A cut B list of lists of items of B separated at positionscorresponding to true
values in A, eliminating items of B inpositions corresponding to true

A cutall B list of lists of items of B separated at positions corresponding to
true values in A, with all items of B retained in the result

20

Insertion Operations

The operations pick, choose and reach select an array from a given array using
addresses. The corresponding operations that insert items according to addresses
are place, placeall and deepplace.

A B place C array that is the same as C except that the item at address B is
replaced by A

A B placeall C array that is the same as C except that items at addresses B
are repla ced by items of A

A B deepplace C array the same as C except that the part at path B is
replaced by A

The notations described in Chapter 5 provide an alternative way to achieve
selection and insertion in arrays.

Searching Operations

The table below describes operations that locate one array in another. The
operation seek combines the work of find and in since both can be done with one
search. There are two search algorithms used internally. If B has been sorted
with sortup, a binary search is done; otherwise a linear is search is used.

A find B address of the first position in B that holds A; if A is not an item of
B, then gage shape B

A in B true if A is an item of B; otherwisefalse

A notin B true if A is not an item of B; otherwisefalse

A seek B pair with first item A in B and second item A find B

A findall list of addresses of all positions in B that hold A

Nesting Restructuring Operations

The next table describes operations that add or remove levels to an array by
splitting or merging arrays along axes. The operations rows, cols, raise and
lower are all special cases of split. The operation mix is a special case of blend
in which the axes of the items are placed at the end of the axes of the result.
The operation content removes all nesting structure from the array, returning
the atoms at the leaves as a list.

21

rows A rows of A

cols A columns of A

mix A array formed by merging the first two levels of A, placing the axes of
the top level first

A raise B array containing arrays of items of B partitioned along axes so that
the result has the first A axes of B

A lower B array containing arrays of items of B partitioned along axes so that
the items have the last A axes of B

A split B arrays of items of B where the axes mentioned in A become the axes
of the items of the result

A blend B array of valence equal to valence of B plus the valence of an item
of B obtained by merging axes of B according to axis numbers in A

content A A list of atoms of A in depth-first row-major order

Data Rearrangement Operations

The table below describes the operations that involve the rearrangement of items
within an array. The operations reverse and rotate work on the list of items of
the array, leaving the result in an array of the same shape as originally given.

The operation transpose interchanges items in the array to produce the array
with the axes in reverse order. It is a special case of the fuse, which does a
reordering and possible fusion of axes according to the axis numbers in its left
argument. If the argument is a nested array, items with 2 or more axis numbers
indicate that the corresponding diagonal elements along those axes should be
selected.

The operation pack interchanges the top two levels of its argument. Thus, if its
is given a pair of triples the result is a triple of pairs.

reverse A array of the same shape as A with the items of A in reverse order

N rotate A A with items rotated N places. If N > 0, the items are rotated to
the left; if N < 0, the items are rotated to the right.

transpose A array formed by reversing axes of A

A fuse B array formed from B with the axes reordered according to permuta-
tion A. Non-atomic items in A specify axes to be merged by diagonalization.

pack A array formed by interchanging the top two levels of A after replicating
items with one item to the same shape as the other items

22

String Manipulation Operations using Regular Expressions

Regular expressions are string patterns commonly used to describe a search
in a string for substrings that have some desired property. The first table
below describes the notation for regular expressions used by some of the string
manipulation operations described in the second table.

Notation Matching String
. any character
* the previous character zero or more times
+ the previous character 1 or more times
ˆ when at the beginning of a regular expression, matches the beginning of

the string.
$ when at the end of a regular expression, matches the end of the string.
[xyz] any character in the sequence of characters “xyz” where ?xyz? can be

almost any sequence of characters.
[ˆxyz] any character NOT in the sequence of characters “xyz”.
[x-y] any character in the range of x to y.
| allows the optional match of the regular expression on the left or the right

of the “|”.
() bracketing allows the specification of groups. Anything that is matched

between a set of brackets can later be extracted. Also used for bracketing
regular expressions to force order of precedence.

<other char> matches itself
\<char> matches the character

regexp R S Applies the regular expression R to string S and returns a list.
The first item is a boolean indicating if the search succeeded. The second
item is the first substring matched by R and the remaining items, if any,
are the substrings that match the subgroups indicated by parentheses in
R.

regexp_match R S [O] Applies the regular expression R to string S and
returns a boolean indicating if the search succeeded. If O is ?i then the
search is case insensitive.

regexp_substitute R S T [O] Applies the regular expression R to string T
doing substitutions based on S. Return the modified string if the search
matches; otherwise return T. O provides options for case insensitive search
(?i) or for doing all substitutions (?g).

string_split C S [N] Splits the string S whenever one of the character in C
occurs in S, eliminating the character. N indicates a limit on the number
of substrings obtained.

23

string_translate C D S [O] Translates characters in string S based on map-
ping characters in C to the corresponding ones in D. Options include (?d)
to delete characters and (?c) to complement characters and (??s) to squeeze
many occurrences to one.

The string manipulation operations are based on a package of public domain
C++ routines developed by Henry Spencer at the University of Toronto. The
regular expressions obey the standard syntax rules for regular expressions used
in Perl and Unix software.

Chapter 4 Predefined Transformers

The expressiveness of using operations to achieve a solution to a computational
problem is enhanced by the use of transformers or operation modifiers. A
transformer maps a predefined or user defined operation to a related operation.
It is said to be a second order function because it has an operation (a first
order function) as both its argument and its result. This chapter provides brief
descriptions of the transformers or operation modifiers that are built into Q’Nial.
More complete descriptions of the predefined transformers, along with examples
are found in the Nial Dictionary.

Each and Related Transformers

The most important transformer is EACH. It modifies an operation so that
the operation is applied to the items of an array rather than the array itself.
The result is an array of the same shape as the array to which the modified
operation is applied. There is a family of transformers related to EACH in that
they apply the argument operation to arrays formed from parts of the argument.
The transformers EACHLEFT, EACHRIGHT and EACHBOTH produce binary
operations. They are described in the following table:

EACH f A items of A

A EACHLEFT f B pairs formed from items of A and array B

A EACHRIGHT f B pairs formed from array A and items of B

A EACHBOTH f B pairs formed from items of A paired with corresponding
items of B

EACHALL f A arrays of the same shape as A formed from corresponding
items of items of A

TWIG f A deeply nested simple arrays of A

LEAF f A deeply nested atoms of A

24

Partitioning Transformers

The transformers described below apply their argument operation to partitions
of an array and then build an array by using the results of the applications as
partitions of the result. The transformer RANK is primitive and the others are
defined from it in defs.ndf. The last two transformers do a reduction of the given
operation to the partitions.

N RANK f A items of N lower A; mix

[A,B] PARTITION f C items of A split C ; B blend

BYROWS f A items of rows A; mix

BYCOLS f A items of cols A; 1 blend

REDUCEROWS f A reduce items of rows A; mix

REDUCECOLS f A reduce items of cols A; 1 blend

Applicative Transformers

There are a number of transformers described below that control how an operation
or an atlas of operations is applied.

A CONVERSE f B result of B f A

N FOLD f A apply f to A; and then to the result, etc. N times

TEAM f A operations in atlas f are applied to items in corresponding positions
in A; if f is an operation other than an atlas, it is applied directly to A

OUTER f A applyf to the items of cart A, the array of all combinations of
items of items of A

A INNER [f,g] B generalized inner product using a reductive operation f to
reduce each list formed from the outer product of the binary pervasive
operation g applied to the
rows of A and the columns of B

The transformers OUTER and INNER generalize the outer and inner product
concepts from linear algebra. The expression A OUTER * B, where A and B
are numeric vectors, produces the matrix formed by multiplying each item of A
with each item of B. A INNER [+,*] B does matrix multiplication if A and B
are conformable matrices.

25

Sorting Transformers

The sorting of data objects depends on a comparison operation that describes
the desired ordering relation on the items. The operation up provides a total
ordering for the universe of arrays; the operation lte (<=) provides a partial
ordering of the universe of atoms.

The transformer SORT expects as its argument a comparator that will partially
or totally order the universe of the items to which the resulting operation will
be applied. When the modified operation is applied the result is an array of the
same shape as the argument with the items in order according to the comparator.

The transformer GRADE is similar to SORT except applying the modified
operation returns a permutation array which, if used to choose the argument,
will result in the sorted array.

SORT f A array of shape A of the items of A sorted according to f. If f is <=,
the items are returned in ascending sequence

GRADE f A indices of the items of A in the sequence such that choosing the
items according to the sequence of the indices returns the items sorted
according to f

The operations sortup and gradeup are defined in defs.ndf as abbreviations for
SORT up and GRADE up respectively.

Reduction Transformers

The reduction of a list by an operation is the same as placing the operation
between each pair of items in a list and then evaluating the resulting expression.
The transformer REDUCE applied to a binary operation f implements this
concept. Thus,

REDUCE f [A, B, C] = A f (B f C)

where the parentheses indicate that the grouping is to the right. For an associative
operation, i.e. an operation f such that

(A f B) f C = A f (B f C)

the result of applying the operation between items is the same regardless of
whether the grouping is to the left or to the right. However, for a non-associative
operation, the result varies depending on which way the grouping is done. Thus,
REDUCE is a right grouping reduction.

A related transformer is ACCUMULATE, which forms right grouping reductions
of the initial lists of an array. For an associative operationf, the amount of work
needed to compute

26

ACCUMULATE f [A, B, C]
can be lessened by using the fact that the reductions can be done with left
grouping and each item in the result can be formed by one application of f using
the preceding reduction value.
The operations sum, product, and, or, max, min and link are reductive by
definition and are not affected by applying a reduction transformer to them.
They are all associative operations when applied as a binary operation.

REDUCE f A reduce A applying f in a right-to-left order

ACCUMULATE f A accumulate A using right-to-left reductions

Control Structure Transformers

One of the interesting features of Q’Nial is that it allows the user to choose
a style of programming appropriate to the problem. For some purposes, an
imperative style using the control structure expres sions is appropriate while
for other purposes a more functional approach is simpler. Q’Nial integrates
these two styles by providing transformers that have the same result as two of
the control structure mechan isms. ITERATE is equivalent to the for-loop and
FORK is equivalent to the if-expression.

ITERATE f A f is applied to the items of A in row major order and the result
of the last application is returned

FORK [f0, f1 . . . fn] A For even values of i less than or equal to n, f i A is
applied sequentially until one of the results is true; then f i+1 A is returned.
If no application of f i A evaluates to true, then, if n is even, f n A is
returned; otherwise the fault ?noexpr is returned

Selection Transformer

There is one additional built in transformer to select items of an array based on
a predicate.

FILTER f A f is applied to the items of A and the resulting boolean array is
used to select items of A using sublist

Chapter 5 The Formal Description of Nial Pro-
grams

Nial is a programming language specifically designed for use in an interactive
environment. The formal description of the language given in this chapter

27

describes the valid language constructs that can be entered in one interaction,
and explains the meaning of one such entry in terms of the environment created
by earlier inter actions in the same session. The term program fragment is
used to describe a meaningful piece of program text.

The rules for writing well-formed program fragments in Nial are called the
syntax rules of Nial. A program fragment that is well-formed is said to be
syntactically correct. The syntax rules are analogous to the rules of grammar
that determine the correct ness of English. Nial uses a small number of syntactic
constructs that can be grouped into the following classes:

• juxtapositional forms

• list forms

• control structure expressions

• parameterized functional forms

• indexing forms

• assignments

• definitions

• declarations

These are combined using punctuation symbols and spacing to build program
fragments that can be processed by the Q’Nial interpreter. The meaning of
a program fragment, its semantics, is explained in terms of three classes of
objects:

arrays: the data objects

operations : functional objects that map arrays to arrays

transformers : functional objects that modify operations

The explanations are given in relationship to the global environment, which is
the set of associations between names and objects formed earlier in the session;
and in terms of how the objects are combined.

In the remainder of this chapter, the syntax of Nial is described using an extended
Backus-Naur Form (BNF) formalism using the following rules:

• Symbols that appear in program fragments are in bold text.

• A single optional form is enclosed in brackets [].

• A choice between options, where one must be chosen, is written in paren-
theses () with a vertical bar | separating choices.

28

• Alternative rules for a construct are separated by the vertical bar |.

• Fragments that can be repeated are enclosed in curly braces {}, where {}
means repeated zero or more times, and {}+ means repeated one or more
times.
In the following sections, the meaning given to a rule is given in a description
following the rule.

Environment

Nial program fragments are entered during interactive input with a process
called the top level loop; or brought into the system under the control of a
systems operation, loaddefs. This operation has the effect of loading a sequence
of program fragments from a file. The effect is as if the fragments had been
entered interactively in the order they appear in the file.

The global environment is the collection of associations between names and
objects that are known at the top level loop. Such names have global scope
in that they can be referenced by any program text. All other names have a
local scope that associates a meaning with the name only during execution of
a specific portion of a program text.

A local environment is a collection of associations that are known within a
limited section of program text. These limited sections are formed by blocks,
operation-forms and transformer-forms as discussed in the relevant sections
below. A name that has a local association in one of these forms is said to have
local scope.

Program fragments in which local variables are being assigned can be nested,
so that one local scope encloses another. A local association is not visible
outside the construct in which it is defined; and a name with local scope hides
associations that the name has in surrounding scopes.

At any point in a program fragment, there is a current environment consisting
of all names whose associations are visible. It includes the names having local
scope in the program fragment being executed, names that are visible in the
surrounding scopes and names that have global scope.

In any environment, a name can have only one role: either a variable, an
expression name, an operation name, a transformer name, or an identifier.

In program text, the scope of all names is determined by the static structure of
the program text. The one exception is program text in a string that has the
operation execute applied to it under program control. Dynamic execution of
program text is described in Chapter 8.

29

Action

An action is the construct that is entered in the interactive loop of the Q’Nial
interpreter or accepted as a group of lines by the operation loaddefs:

<action> ::= <definition-sequence>
| <expression-sequence>
| <external-declaration>
| <remark>

If an action is a <definition-sequence>, its definitions are installed in the global
environment.

If an action is an <expression-sequence>, it is executed and a value is returned.
The value returned by an <expression-sequence> is displayed on the screen
unless it is the fault ?noexpr.

An <external-declaration> assigns a role to a name in the global environment so
that the name can be used in other definitions before it is completely specified.

A <remark> is treated as commentary input and is ignored.

Definition

<definition-sequence> ::= <definition> {; <definition> } [;]

<definition> ::= <identifier> IS
(<simple-expression> | <operation-expression> | <transformer-

expression>)
| <comment>

Every well formed program fragment that can appear on the right of the keyword
IS in a definition is interpreted to be one of the three kinds of semantic objects
in Nial: an array, an operation or a transformer.

A definition is used to associate a name (identifier) with a program fragment
that is an array expression, an operation expression or a transformer expression.

If the definition appears within a block, the association is made in the local
environment. Otherwise, the association is made in the global environment and
assigns a role to the name as representing that kind of expression.

If the program fragment is syntactically correct, the name is associated with the
program fragment in the environment and no result is given. If a syntax error is
detected in the analysis of the program fragment, an explanatory fault message
is returned and the name association is not made.

If the name being associated in a definition is already in use, the new definition
must be for a construct of the same role and the earlier definition is replaced.
The use of a defined name always refers to its most recent definition.

30

The name is formed according to the rules for specifying an identifier:

<identifier> ::= <letter> { (<letter> | <digit>) }

<letter> ::= & | _ | a | b | . . . | Y | Z

<digit> ::= 0 | 1 | 2 | . . . | 9

In Q’Nial, identifiers are limited to 80 character positions in order to facilitate
the reconstruction of program text in the canonical form used in see and defedit.
They may be entered in upper or lower case. Internally, Q’Nial translates the
letters of an identifier to upper case so that Data, data and DATA would all be
the same identifier. An identifier displayed in canonical form is presented in upper
or lower case appropriate to its role. An expression or a variable is displayed
with its first letter in upper case and the rest in lower case. An operation is
displayed in lower case. A transformer or a reserved word is displayed in upper
case.

Definitions in which the associated object is a simple-expression are used to name
program fragments that return an array value but which do not need parameters.
The resulting named-expression behaves like a function having no parameters.

An operation definition associates a name with an operation expression and
results in a named-operation. A transformer definition associates a name with a
transformer expression and results in a named-transformer.

There is no distinction in the way user-defined named objects and predefined
objects are used other than the fact that predefined ones cannot be redefined in
the global environment.

If the expression on the right of IS uses the name being defined, the definition
is assumed to be recursive. The name is assigned a role compatible with its use
on the right if it does not already have a role. If the expression on the right
of IS is itself a named object, the name being defined is associated with the
right-hand-side name rather than the expression it has as its association.

External Declaration

<external-declaration> ::= <identifier> IS EXTERNAL (
EXPRESSION | OPERATION |
TRANSFORMER | VARIABLE)

An external-declaration assigns a role to a name, allowing it to be used in a
definition before its own definition is given. This mechanism is useful for creating
mutually recursive definitions. An external declaration is made only in the global
environment.

If the name is already defined with the same role, the declaration has no effect.
If the name has another role, a fault is reported. If the name is not currently
defined, a default object is associated with it.

31

Remark

<remark> ::= # < any text >

A remark is an input to the Q’Nial interpreter that is not processed. It begins
with a line that has the symbol # as the first non-blank character in the line.
In direct input at the top level loop, a remark ends at the end of the line unless
a backslash symbol (\) is used to extend the line. In a definition file, a remark
ends at the first blank line. A remark cannot appear within a definition or
expression-sequence. The purpose of a remark is to permit an extended textual
description within a definition file for documentation purposes.

Array Expression

An array is a data element of the Nial language as described in Chapter 2.

An array-expression is a well formed fragment of program text that returns an
array when interpreted by Q’Nial. It is usually called an expression rather than
an array-expression in this manual except in contexts where the abbreviated
term might cause confusion.

The following sections describe how expressions are formed and what they mean.
In most contexts, an array-expression is formed as an expression-sequence as
described in the next section. In some contexts, however, it is limited to being
to be a simple-expression as described in the subsequent section.

Expression Sequence

An expression-sequence is sequence of one or more expressions separated by
semicolons.

<expression-sequence> ::= <expression> { ; <expression> } [;]

An expression is a simple-expression, a comment, or one of the control structure
expressions.

<expression> ::= <simple-expression>
| <assign-expression>
| <selection-expression>
| <loop-expression>
| <comment>

The expressions in an expression-sequence are evaluated in left-to-right order.
If the sequence does not terminate with a semicolon, the array returned is the
result of the last expression. If the sequence does end with a semicolon, the
array returned is the fault ?noexpr. At the top level loop, if the array returned
is the fault ?noexpr, it is not displayed.

32

Simple Expression

A simple-expression is defined by a juxtaposition syntax involving primary-
expressions and operations.

<simple-expression> ::= <primary-sequence>
| <operation-sequence> <primary-sequence>
| <simple-expression> <simple-operation> <primary-

sequence>
| <simple-expression> <simple-operation> <operation-

sequence> <primary-sequence>

<primary-sequence> ::= { <primary-expression> }+

<primary-expression> ::= <constant>
| <variable>
| <indexed-variable>
| <named-expression>
| <expression-list>
| (<expression-sequence>)
| <block>
| <cast>

A primary-expression is a program fragment that denotes an array. If a primary-
sequence has exactly one primary-expression, its value is the value of the one
expression. A primary-sequence of length two or greater is called a strand. The
value of a strand is a list of values. Each item of the list has the value of the
primary-expression in the corresponding position in the primary-sequence. The
value of a simple-expression formed by a primary-sequence is the value of the
primary-sequence.

The value of a simple-expression formed by the construct operation-sequence
primary-sequence is determined as follows: the primary-sequence to the right of
the operation-sequence is evaluated, then the operations in the operation-sequence
are applied to the result in a right-to-left order.

The construct simple-expression simple-operation primary-sequence corresponds
to infix usage of a simple-operation. The value of a simple-expression formed
by this construct is determined as follows: the simple-expression to the left is
evaluated, then the primary-sequence to the right is evaluated; the two values
are made into a pair and the result is obtained by applying the simple-operation
to the pair. A simple-expression can be formed by the infix use of two or more
simple-operations separating primary-sequences. The interpretation given for
a single infix use just explained implies that the infix operations are used in a
left-to-right order.

The last construct for forming a simple expression describes infix usage in the
case where the program fragment after the simple-operation involves applying an
operation-sequence to the primary-sequence. It is evaluated in a fashion similar

33

to the rule governing the previous construct except that the operation-sequence
is applied to the value of the primary-sequence prior to forming the pair.

The syntax rules for simple-expressions show three uses of the side-by-side or
juxtapositional notation of Nial: strand formation, prefix operation application
and infix operation application. There are no syntactic restrictions as to whether
or not a particular operation may be applied in infix or prefix form. A fault is
returned at run time if an operation is used inappropriately.

Primary Expressions

There are several forms of primary-expressions that can form a simple-expression.
They are described in the next few sections.

Constant

A constant is a primary-expression that denotes an explicit data value. It is an
array that has a fixed specific value throughout the computation and forms one
syntactic unit in the formation of a strand. Constants provide a notation for
constructing each of the six atomic types as well as a boolean list (bitstring) and
a character list (string):

<constant> ::= <boolean-constant>
| <bitstring-constant>
| <integer-constant>
| <real-constant>
| <character-constant>
| <string-constant>
| <phrase-constant>
| <fault-constant>

A boolean-constant is a numeric atom that repre sents a logical value.

<boolean-constant> ::= l | o

<bitstring> ::= <boolean-constant> { <boolean-constant> }+

The two letters l and o are used to denote the abstract boolean values true and
false, respectively. When used as numbers, they are treated as the integers 1
and 0. The names True and False are predefined named-expressions denoting
the values.

A bitstring-constant denotes a list of two or more booleans, called a bitstring.
A bitstring of length one is denoted by [l] or [o].

An integer-constant is a numeric atom representing a whole number.

<integer-constant> ::= [-] { <digit> }+

34

The limits of the range of an integer number depend on the word size of the host
computer. If an integer-constant exceeds the limit a real constant is used in its
place.

A real-constant is a numeric atom that denotes a real number. A number that
has a decimal point or an exponent part is a real-constant.

<real-constant> ::= [-] { <digit> }+ . { <digit> } [<exponent>]
| [-] { <digit> } . { <digit> }+ [<exponent>]
| [-] { <digit> }+ [<exponent>]

<exponent> ::= (e | E) [+ | -] { <digit> }+

A real-constant is represented by a double precision floating-point number within
the computer system. It is converted to the nearest one in the floating-point
number system. Because the computer has a fixed length for its representation
of floating-point numbers, the precision of the number stored may be less than
that specified in the constant.

There is one predefined real-constant, Pi, which is defined in defs.ndf.

A character-constant denotes a single atomic character; a string denotes a list of
characters.

<character-constant> ::= ‘ <symbol>

<string-constant> ::= ’ { <symbol> }+ ’

where symbol is a member of the set of characters for the host system.

A character-constant denotes a literal atom that can be represented on the
keyboard, on the screen or on the printer of the computer by a single symbol.
The set of characters for Q’Nial is determined by the host system. On most
systems, the 128 characters of the ASCII character set are represented in the
stan dard way. On some systems, an additional 128 characters are available for
special use. The ordering sequence of the characters for sorting purposes is fixed
for each Q’Nial version.

There is one character-constant predefined in defs.ndf called Separator. It has
the value / on UNIX and OSX systems. It is useful for building path names for
host files on these systems.

A string-constant denotes a list of zero or more characters. A string-constant is
denoted by a sequence of zero or more symbols bounded by single quote marks.
A pair of adjacent single quote marks within the bounding ones denotes a single
quote mark in the resulting list.

The remaining two constant constructs denote literal atoms that are phrases or
faults.

<phrase-constant> ::= " { <non-terminating-symbol> }

<fault-constant> ::= ? { <non-terminating-symbol> }

35

where non-terminating-symbol is a member of the set symbols excluding the
characters:

<blank> () [] { } # , ;

The excluded symbols are omitted in phrase-constants and fault-constants because
they tend to be punctuation symbols which naturally end a phrase. Omitting
them avoids easily created errors. A phrase or fault containing the excluded
symbols can be created using the operations phrase or fault, respectively, each
taking a string as argument.

A phrase-constant denotes an atomic literal that is treated as a unit. Phrases
are stored uniquely in an internal table and represented by an internal pointer.
Comparisons of phrases for equality are as efficient as integer comparisons since
only the internal pointers are compared.

A fault-constant denotes an atomic literal that is used to represent an erroneous
or extraordinary result. Faults are very similar to phrases but are treated
differently by the non-structural operations in order to propagate error reporting
information. A fault indicates the type of error or condition detected. All faults
produced by Q’Nial begin with a question mark.

Not all faults indicate errors; some signal special values. The fault ?eof, for
example, indicates the end of an input file.

In the default mode of operation of Q’Nial, most fault values are not created.
Rather, an interrupt is triggered. A description of the fault triggering mechanism
is given in Chapter 9.

Variable

A variable is a name associated with an array value. Its syntactic form is that of
an identifier.

<variable> ::= <identifier>
| <identifier> : <identifier>

A variable is given an association with an array value by its use on the left
side of an assign-expression, its appearance in a local or nonlocal declaration,
its designation as a variable in an external-declaration or its use as the first
argument of the operation assign.

When a variable is used as a primary-expression, its meaning is the array value
associated with the identifier. If the variable exists but has not been assigned, it
will have as its default value the fault ?no_value. If an identifier is mentioned
as a primary-expression but has not yet been given an association, a parse error
will occur with the fault ?undefined identifier:.

The second form of variable is used to refer to a variable in a scope that has
invoked the scope in which the form appears. It is useful in debugging situations

36

where the value of variables in the calling environment need to be examined.
The first identifier refers to the name of the definition and the second to the
variable in scope of the definition.

A variable gives a name to the result of a computation. If the same result is
needed later in the program, the named variable can be used, thereby avoiding
the necessity of repeating the computation. A variable can be assigned different
array values throughout the computation.

Although an identifier can be of any length up to 80 characters, a compromise
is usually made between choosing explicit variable names and choosing brief
names to avoid unnecessary typing. An identifier used as a variable cannot be a
reserved word. (A table of the reserved words is given in the Nial Dictionary
under reserved words.) In a local environment, a variable identifier can be
chosen the same as a predefined or user-defined global definition name. Such a
choice makes the global use of the name unavailable in the local context.

In any environment, an identifier can name only one of: a variable, an array-
expression, an operation-expression, or a transformer-expression. During one
session, the role of a global identifier, i.e. the class of syntactic object it names,
cannot be changed.

Scope of a Variable

The use of an assign-expression indicates that a name (identifier) is to be treated
as a variable in the context surrounding the assign-expression. This context is
called the scope of the variable. The context may be global, in which case the
variable may be visible at all levels; or it may be local to some region of program
text. A local scope is created for the parameters of operation forms and for
variables created within a block.

Because operation forms or blocks may appear within other operation forms or
blocks, it is possible to have one scope for a name nested within another. A name
is said to be visible at a point in a program text if it has a local meaning at that
point or has a meaning in some surrounding scope or is a global name. When a
name is used in a local scope, it is the local association in the innermost scope
that is used, instead of an association with the same name in a surrounding
scope.

Indexed Variable

An indexed variable is a variable for which a part of the associated array value
is referenced:

<indexed-variable> ::= <variable> @ <primary-expression>
| <variable> **@@** <primary-expression>

37

| <variable> # <primary-expression>
| <variable> | <primary-expression>

An index is the value of the primary-expression within an indexed-variable which
specifies the location or locations of the part or parts of the array that are
selected.

If an indexed-variable is used as a primary-expression, its value is the value of
the selected part of the variable. There are four ways to index an array in Nial
as described in the following table:

Symbol Type
Name Index Result

@ at address item at the address
@@ at-path path part at the path
at-all array of addresses the array of items at the

addresses
| slice positions on axes cross sections of items

Nial uses zero-origin indexing, so that the first item in a list is at address 0 and
the first item in a table is at address (0 0). When the indexed-variable notation is
interpreted, the primary-expression is evaluated. The result of the evaluation of
the primary-expression and the form of indexing together determine the locations
specified by the particular indexed-variable notation. If the primary-expression
does not evaluate to a valid index for the array and the type of indexing, a fault
is returned.

In the at form of indexing, the result is the item at the given address of the
array associated with the variable.

In the at-path form of indexing, the value of the index is a list of addresses for
subparts of the array on a path descending into the nesting structure of the
array. The notation refers to the value of an item of an item etc. for as many
levels as the length of the path.

In the at-all form of indexing, the index is an array of addresses. An array of the
same shape as the index is selected from the array associated with the variable,
with items chosen using the index items as addresses.

In the slice form of indexing, the index is a list of arrays, each array representing
the positions to be chosen for one of the axes of the array being indexed. There
must be as many items in the index as there are axes. If an item of the index
is the fault ?noexpr (usually generated using an expression-list with a missing
position) that entry is expanded to be the list of all positions on that axis.
The cartesian product of the expanded index is then used to form an array of
addresses, which are used to select the corresponding items as in at-all indexing.
The cartesian product of a list of arrays is an array of lists containing all the

38

combinations formed by taking one item from each of the arrays in turn. It is
implemented by the same algorithm used for the operation cart.

The shape of the result of slice indexing is found by linking the shapes of the
items of the expanded index.

Named Expression

<named-expression> ::= <identifier>

A *named-expression** is an array-expression that is associated with a name by
being predefined or through a definition. The use of a named-expression in a
primary-expression causes the associated expression to be executed when the
primary-sequence in which it is embedded is evaluated. Each mention of the
name causes the expression to be evaluated.

Expression List

<expression-list> ::= [<expression-comma-sequence>]
| [<expression-comma-sequence> <simple-expression>]

<expression-comma-sequence> ::= <expression-comma-sequence> ,
| <expression-comma-sequence> <simple-expression> ,
| <empty>

The value of an expression-list is a list of the length of the number of simple-
expressions in the expression list, counting expressions omitted before or after a
comma. The items of the result are the values of the simple-expressions evaluated
and sequenced in left-to-right order. If there are no items in the expression list,
the result is Null, the predefined empty list.

An expression can be missing before or after a comma. The value corresponding
to a missing expression is the no-expression fault: ?noexpr. An expression-list
containing omitted expressions is useful in providing an index for the at-slice
form of indexing.

A list may be constructed directly by using brackets notation or strand notation.
In brackets-comma notation, the elements of a list are separated by commas
and the list is bounded by square brackets. In strand notation, the elements
of a list are separated by one or more blank spaces. Parentheses can be used
with strand notation for grouping two or more items as a strand that forms a
sublist of the list denoted by the strand notation. Extra parentheses are ignored
in strands.

A list may contain arrays of any type in any sequence desired. Both strand and
brackets notation may occur in the same list. A list in brackets notation is one
unit in the construction of a list using strand notation. Strand notation can be

39

used to create a list with two or more items. Brackets notation can be used to
create a list with no items, one item, or many items.

Parenthesized Expression Sequence

The value of a parenthesized expression-sequence is the value of the expression-
sequence. The parenthe ses indicate that the expression-sequence is evaluated
before inclusion in a further computation. This use of parentheses is consistent
with their use in mathematical notation. An expression-sequence can be made
into a primary-expression by enclosing it in parenthe ses.

Block

<block> ::= { [LOCAL { <identifier-sequence> }+;]
[NONLOCAL { <identifier-sequence> }+;]
[<definition-sequence> ;]
<expression-sequence>

}

A block is a scope-creating mechanism that permits an expression-sequence to
be created so that it has local definitions and variables which are visible only
inside the block. A block may appear as a primary-expression or as the body of
an operation-form.

If a block is used as a primary-expression, the local environment created by a
block is determined by the block itself. If it is the body of an operation-form, the
local environment includes the formal parameter names of the operation-form as
variables.

The value of a block is the value of the expression-sequence within the block,
evaluated within the local context formed by the declarations and definitions
within the block, if any.

Local and Nonlocal Declaration

The identifiers included in the local and nonlocal declarations are declared to
be variables. Both forms of declarations are optional, but if both are given,
local declarations must be made first. If the block is the body of a globally
defined operation-form or expression, a nonlocal declaration effectively declares
its variables as global ones.

A block delimits a local environment. It allows new uses of names which do
not interfere with uses of those names outside the block. For example, within
a block, a predefined operation name can be redefined and used for a different
purpose. Only the reserved words of Q’Nial cannot be reused in this fashion.

40

Definitions that appear within the block have local scope. That is, the definitions
can be referenced only in the body of the block. Variables assigned within the
block may or may not have local scope, depending on the appearance of a
local and/or a nonlocal declaration. If there is no declaration, all assigned
variables have local scope. Declaring some variables as local does not change the
effect on undeclared variables that are used on the left of assignment; they are
automatically localized.

If a nonlocal declaration is used, an assigned name that is on the nonlocal list is
sought in surrounding scopes. If the name is not found, a variable is created in
the global environment.

The determination of the scope of a variable is done when the program fragment
in which it is located is analysed. The same scope is then used each time the
fragment is evaluated.

Nested Definition

A nested definition is one that appears in a definition sequence within a block.
The defined name is local to the block. If the name is also used outside the
block, the external meaning is not known in the block.

Nested definitions can be used to encapsulate supporting definitions within a
larger definition that is to be made available to other users. This avoids cluttering
up the name space with names that might interfere with the user’s other work. It
is often easier to develop the large definition without encapsulation and package
it in encapsulated form once the design is completed.

Cast

A cast is an array that denotes an internal representation of a valid fragment of
Q’Nial program text:

<cast> ::= ! <identifier>
| ! (<expression-sequence>)
| ! (<operation-expression>)
| ! (<transformer-expression>)

The use of the exclamation symbol (!) before an identifier causes Q’Nial to
select the internal represen tation for the identifier rather than the value of the
array associated with the identifier. Its use before a parenthesized program
fragment selects the internal representation of the program fragment. The
internal representation is a nested array forming the parse tree of the construct.

The major use of casts is in conjunction with the operations assign and apply.
These operations mimic the Q’Nial constructs for assignment to a variable and
application of an operation to an array. Casts permit passing an argument to an

41

operation by variable name rather than by value. They also permit evaluation of
a program fragment that has been stored in its internal form using the operation
eval rather than requiring the use of the operation execute on the corresponding
program text stored as a string. The details of the internal representation is not
specified as part of the Nial language.

The description of the syntactic construct simple-expression is now complete.

Assign Expression

<assign-expression> ::= { variable }+ := <expression>
| <indexed-variable> := <expression>

An assign-expression assigns an array value to one or more variables at the
time of evaluation of the assign expression. The semantics of an assign expression
is interpreted in two stages: when the expression is analysed (parsed) and when
it is executed.

During the parse of an assign-expression appearing in a block, each name on the
variable list is sought in the local environment. If the name exists in the local
environment, the assignment affects the local association. If a name does not
exist in the local environment and no reference has been made to a nonlocal
variable with the same name, a local variable is created in the block and the
association is with this new variable. An assign-expression parsed in the global
environment creates a global variable if a variable with that name does not
already exist.

When an assign expression is executed, the expression on the right of the
assignment symbol (:=) is evaluated. If the variable list on the left has only
one name, the value of the expression is assigned to that variable. That is, the
value is associated with that name.

If the variable list has several names, the items of the value are assigned to the
variables in the order in which they appear. If the number of items does not
match the number of variables, the fault ?assignment is returned as the value of
the assign-expression. Otherwise, the value of the assign-expression is the value
of the expression on the right.

When an indexed-variable is used on the left in an assign-expression, the parts
of the array associated with the variable at the locations specified by the index
are replaced by the values of the expression on the right.

If the index expression for an indexed-variable assignment specifies a number of
locations (at-all or slice indexing), there are two cases: if the value on the right is
a single, the item of the single is placed in each location; otherwise, the value on
the right must have the same number of items as the index expres sion indicates
and the corresponding locations are updated with the items of the array value.

The keyword GETS is a synonym for the assignment symbol := .

42

Selection Expression

Selection-expressions are used to describe computations in which one of many
actions or values is to be evaluated.

<selection-expression> ::= <if-expression>
| <case-expression>

<if-expression> ::= IF <simple-expression> THEN
<expression-sequence>

{ELSEIF<simple-expression>THEN<expression-sequence>
}

[ELSE <expression-sequence>]
ENDIF

<case-expression> ::= CASE <simple-expression> FROM
{ <constant> : <expression-sequence> END }+
[ELSE <expression-sequence>]

ENDCASE

In the if-expression the selection is made by evaluating the simple-expressions
after the if and elseif keywords as boolean expressions. As soon as one of these
evaluates to true, the expression-sequence following the corresponding then is
evaluated and its value returned as the result of the if-expression.

All the simple-expressions after the if and elseif may evaluate to false. If they
do and an else is pre sent, the result is the value of the expression-sequence
following the else. If all the simple-expressions after the if and elseif evaluate
to false and there is no else present, the result is the fault ?noexpr. If one of the
simple-expres sions evaluates to a non-boolean value, the result is the fault ?L.

In the case-expression, the selection is made by evaluating the simple-
expression following the case and comparing it to the constants preceding the
colons. If the value matches a constant, the expression-sequence following the
corresponding colon is returned as the result of the case-expression. If the value
does not match one of the constants, the result returned by the case-expression is
the value of the expression-sequence following the else if it is present; otherwise
the result is the fault ?noexpr.

The case-expression form of selection is useful when the choice depends on a single
atomic value and there are a large number of possible values the simple-expression
can take on.

Both of these forms can be used in a value oriented way or as an imperative. If
the desired effect is to return a value, each expression-sequence must omit the
final semicolon so that if it is selected, its value rather than the fault ?noexpr is
returned.

43

Loop Expression

Loop expressions are used to repeat a computation a number of times. In
the three forms of loops, the computation is in the form of a loop-body. This is
an expression-sequence as described above with the additional property that it,
or expression-sequences embedded within it, can use the exit-expression as an
additional form of expression.
<loop-expression> ::= <for-expression>

| <while-expression>
| <repeat-expression>

<for-expression> ::= FOR <variable> WITH <simple-expression> DO
<loop-body>

ENDFOR
<while-expression> ::= WHILE <simple-expression> DO

<loop-body>
ENDWHILE

<repeat-expression> ::= REPEAT
<loop-body>

UNTIL
<simple-expression>

ENDREPEAT
<exit-expression> ::= EXIT <simple-expression>

In the for-expression, the simple-expression evalua tes to an array value used
to control the loop. The loop-body is evaluated repeatedly with the variable
taking on the items of the control array in turn. If the control array is empty,
the loop-body is not evaluated.
A while-expression implements a loop with a pretest. The simple-expression
and the loop-body are evaluated alternately as long as the simple-expression
evaluates to a boolean value and is true. If the simple-expression is false on the
first evaluation, the loop-body is not executed.
A repeat-expression implements a loop with a post test. The loop-body
and the simple-expression are evaluated alternately until the simple-expression
evaluates to a boolean value and is true. If the simple-expression is true on the
first evaluation, the loop body is executed once.
In all three loop forms, if an embedded exit-expression is evaluated, the loop
terminates early and returns with the value of the simple-expression following the
reserved word exit. The exit-expression cannot be used outside a loop-expression.
The value of a loop expression in all three cases is the value of the expression-
sequence on the last evaluation of the loop body. If the loop body is never
evaluated, the value is the fault: ?noexpr. In the last two forms, if the simple-
expression does not return a boolean, the value of the loop is the logical fault
?L.

44

Comment

<comment> ::= % <any text excluding a semicolon> ;

A comment is a brief section of text included in a program fragment to assist
readability. Comments may be placed anywhere in a block before or after decla-
rations, definitions or expressions. Their purpose is to provide an explanation of
the program fragment for the programmer who may be required to modify the
definition at a later date. The value of a comment as an expression is the ?noexpr
fault. Comments are retained when a definition is translated into internal form
and they appear in its creation in the canonical form used by the operations see
and defedit.
The description of the construct expression is now complete. The next three
sections describe the constructs for operation-expression.

Operation Expression

Q’Nial has a large number of predefined operations chosen both for their generality
and for their practical utility in a wide variety of applications. Programming
in Nial is achieved by defining new operations and using them to carry out a
required computation. The following sections describe the program fragments
that can be used as operation-expressions.
<operation-expression> ::= <operation-sequence>

| <operation-form>
| <curried-operation>

<operation-sequence> ::= { <simple-operation> }+
<curried-operation> ::= <simple-expression> <simple-operation>

The result of applying an operation-sequence to an argument is determined
by applying the simple-opera tions in the sequence in right-to-left order.
The simple-operation on the right is applied to the argument giving an interme-
diate result. Then the simple-operation to the immediate left is applied to the
result of the first application. Subsequent simple-operations are applied to the
results in turn.
Thus, the effect of applying an operation-sequence of two or more simple-
operations to an argument is equivalent to the effect of applying the functional
composition of the operations to the argument. (The word effect is used in
this explanation because the application of an operation to an array will always
produce a result; but some operations produce a side-effect such as, for example,
writing a record to a file.)
The result of applying a curried-operation is determined by applying the
simple-operation to the pair formed from the value of the simple-expression and
the argument to the curried-operation.

45

Simple Operation

<simple-operation> ::= <named-operation>
| <atlas>
| <transform>
| (<operation>)

<named-operation> ::= <identifier>

A named-operation is a predefined operation or an operation that is associated
with a name through a definition.

An operation does not need to be named. It can be created and used in place
without being named. However, except for very brief operation-expressions, the
normal procedure is to give an operation-expres sion a name using the definition
mechanism.

When a predefined operation is applied to an argument, the algorithm implied
by the description of the operation (given briefly in Part 2, or in more detail in
the Nial Dictionary) is followed.

The effect of applying a user-defined operation is equivalent to the effect of
evaluating the program text fragment with the following change: the occurrence
of the name of the user-defined operation is replaced by the operation-expression
(possibly in parentheses if context requires it) which is associated with the
user-defined operation name.

An operation can be viewed as a black box with input and output. The argument
is the input to the operation and the result is the output. The application
of the operation may also produce side effects if the operation does input or
output operations or if assignments are made to variables that are declared to
be nonlocal.

<atlas> ::= [<operation-expression> { , <operation-expression> }]

An atlas is an operation made up of a list of component operations. The result
of applying an atlas is a list of the same length as the atlas. Each operation
in the atlas is applied in turn to the argument resulting in an array value that
becomes the item of the result list in the corresponding position.

<transform> ::= <named-transformer> <simple-operation>

A transform is a simple-operation formed by modifying a given simple-operation.
This is done by placing a transformer name before the given simple-operation. An
operation-expression that is not a simple-operation can be modified by placing
it in parentheses.

The result of the modification denotes a new operation. This new operation is
called a transform. When the transform is applied to an array, the operation
that is part of the transform is used in the evaluation of the result in the manner
determined by the transformer.

46

A transformer usually specifies a general algorithm which can have one or
more operations as parameters. For example, the EACH related transformers
generalize a number of looping mechanisms for applying an operation to items
of arrays.

A user-defined transformer could provide the skeleton for processing the records
of a file and allow an arbitrary operation to be applied to each record.

If a transform is formed using a named-operation, it is the name of the operation
to which the transform is bound. The transform is not bound to any specific
definition of the operation. Thus, a subsequent redefinition of the named-
operation will change the meaning of the transform.

Any operation-expression is made into a simple-operation by enclosing it within
parentheses. A simple-operation formed by parenthesizing an operation-sequence
returns the same result as the operation-sequence. Parenthesized operations
permit curried operations to appear within an operation-sequence and allow
compositions of operations to be an argument of a transformer.

Operation Form

<operation-form> ::= OPERATION { <identifiers> }+ <block>
| OPERATION { <identifiers> }+ (<expression-sequence>

)

An operation-form is the syntactic structure used to describe an operation
in terms of a parameterized expression-sequence. The identifiers following
the keyword operation are called the formal parameters. The body of an
operation-form is normally a block but it may be an expression-sequence in
parentheses without automatic localization.

An operation-form defines a local environment. The formal parameter names
are names of local variables. If the body of the operation form is a block, the
local environment of the block is extended to include the formal parameters.

When the operation-form is applied, the formal parameter names are assigned
from the value of the actual argument. If there is only one formal parameter, the
actual argument is assigned to it as a whole; otherwise, the items of the actual
argument are assigned to the formal parameters in corresponding order. If there
is a length mismatch between the list of formal parameter names and the values
of the actual argument, the fault ?op_parameter is returned.

The value of the application of the operation is the value of the body of the
operation-form, which is evaluated with the local variables in the parameter list
assigned as described above. In determining the association for a name that
appears in the body of an operation form, Q’Nial looks for the name in the local
environment. If the name is not found locally, the name is sought in surrounding
environments until it is found or until the global environment is searched. If it

47

is not found, a fault ?unknown identifier is given when the operation-form is
translated to internal form (parsed).
Operation-forms are most frequently used in definitions where they are given
an associated name. However, an operation-form can appear directly in an
expression provided it is enclosed in parentheses. In this usage, it can be an
argument to a transformer name or can be applied to an array argument.
The description of the construct operation-expression is now complete.

Transformer Expression

A transformer is a functional object in Nial which, when applied to an operation,
forms a new operation called a transform. Transformers provide a systematic way
of modifying or generalizing operations. Q’Nial provides a number of predefined
transformers that have proven useful in extending the expressive power of the
language. A mechanism is provided to extend Nial with user defined transformers.
Applying a transformer has no action associated with it other than capturing the
environment where it is applied to an argument operation. When the resulting
transform is applied, the captured environment is used as the environment in
which to invoke the argument operation when it is used within the algorithm of
the transformer.
<transformer-expression> ::= <named-transformer>

| <transformer-form>

<named-transformer> ::= <identifier>

A named-transformer is one associated with a name by a definition or is a
predefined transformer. A transformer cannot be used without being given a
name. A predefined transformer modifies its operation argument according to
the algorithm given in its description.
A user defined transformer has the effect of the named-transformer expression
with which it is associated. A transformer definition associates a name with a
transformer-form or with another transformer name. In the latter case, it is the
name of the other transformer that is bound not the trans former-expression
defined by the other transformer.

Transformer Form

<transformer-form> ::= TRANSFORMER { <identifier> }+ <operation-
form>

| TRANSFORMER { <identifier> }+ (<operation-
expression>)
A transformer-form is the syntactic structure used to describe a transformer
in terms of an operation expression involving formal operation parameters. The

48

names that follow the keyword TRANSFORMERin the transformer-form are
called formal operation parameters. The body of a transformer-form is the
operation-expression which uses these names. The first construct requires that
the operation-expression be an operation-form; the second allows any operation-
expression enclosed in parentheses to be used.

The effect of applying a transformer-form to an operation-expression is the
effect of the operation formed from the body of the transformer, such that
wherever one of the formal operation parameters occurs, it is replaced with the
corresponding argument operation-expression. If there is only one parameter
then its occurrences are replaced by the argument. If there is more than one
parameter then the operation-expression must be an atlas of the same length
and the formal parameters are replaced by the corresponding operations of the
argument atlas. If there is a mismatch between the number of formal operation
parameters and the argument, the result of applying the transform is the fault
?tr_parameter.

The associations are made with the argument opera tion-expression in the envi-
ronment where the trans former is applied. Thus, if the transformer is recursive,
the formal parameter may have a different association on each recurrence.

Summary of Juxtapositional Syntax

The following table summarizes the uses of juxtaposition in Nial, where A and B
are array-expressions, f and g are operation expressions, and T is a transformer

Form Name Object Class
A B strand array
A f currying operation
f A prefix use array
f g composition operation
T f transform operation
A f B infix use array
T f A transform use array

An informal description of the rules for parsing the juxtapositional forms is given
in Chapter 3 of Part 1 of the Manual.

Synonyms

The synonyms given below abbreviate typing for interactive use or avoid
difficulties with some termi nals on older compu ter systems that do not support
the full character set used in the syntax rules. The following synonyms are
available for keywords or delimiters used in the syntax rules:

49

Usual Alternate
[<<
] >>
:= GETS
{ BEGIN
} END
OPERATION OP
TRANSFORMER TR

Chapter 6 File Input and Output Operations

Q’Nial includes operations to create and manipulate files of textual information,
to communicate with devices as read/write files and to provide direct access to
component files holding arrays or strings. The files are stored externally to the
workspace using the mechanisms of the host system.

Sequential Files

A sequential file corresponds to a sequence of lines of text with lines separated
by an end-of-line indicator. The files are read and written in units of lines which
are converted to and from Nial strings. A sequential file is opened for read, write,
append, communications or as a pipe.

The sequential file capabilities are:

open Fn Mode Open file Fn in mode Mode and return an integer file number
F.

close F Close the file designated by F

readfile F [N] If N is missing, return a string holding one record from the file
designated by F, omitting the end of line indication; otherwise, return N
characters from the file F including end of line characters; or return a fault
?eof indicating end of file.

writefile F A [M] Write character array A to the file designated by F. If M
is true or missing, write the end of line indica tion; if M is false, do not
write the end of line indication.

getfile Fn Obtain all the records of file Fn as a list of strings.

putfile Fn S Write strings S to the file Fn.

appendfile Fn S Append strings S to end of file Fn.

50

Filestatus Return a list of triples giving the file number, filename and mode of
use of each open file.

A filename is specified by a phrase or a string. The name is given to the operation
open along with a mode indication given by the following table

Indicator Open Mode
"r read
"w write
"a append
?c communications
?pr pipe read
?pw pipe write
?d direct access

A file number, used in all subsequent operations on the file, is returned. A file
opened in read mode can be used only for input with the operation readfile. A file
opened in write or append mode can be used only for output with the operation
writefile. Write mode creates a new file; append mode opens an existing file at
the end, so that additional records can be written to it. If the file does not exist
when open is used, append mode is equi valent to write mode.

A file must be open to be used by readfile or writefile. Fault ?eof is returned if
an attempt is made to read beyond the end of the file. If the second argument
to writefile is a table, one record is written for each row of the table.

Communication mode assumes that the file is being used for both reading and
writing. The version of readfile in which a number of characters can be specified,
provides the low level control of the reading process. The version of writefile
in which no end of line control is added, allows control over the charac ters
transmitted to a communications device.

Pipe read and pipe write modes are used for executing a host command that
either reads the result of the execution using readfile or provides input to the
execution using writefile. The command is given as a string in place of the file
name. See the discussion of the operation host in Chapter 9.

The operations getfile and putfile are intended for use on relatively small files in
which all the data can be held in the workspace. Getfile is equivalent to opening
the file in read mode, reading all its records and then closing the file. Putfile is
the similar composite opera tion for the writing process.

The first three file numbers are used as follows:

0 stdin the standard input stream
1 stdout the standard output stream
2 stderr the error output stream

51

Thus, readfile 0 accepts input from the keyboard, and writefile 1 Data sends the
string Data to the display screen. These are useful for testing out a file-oriented
program during debugging.

Q’Nial Specific Direct Access File Operations

Q’Nial supports a component style of direct access to binary files in two forms:
files in which the components are alphanumeric records that are treated as
Nial character strings; and files in which the components are representations of
arbitrary array values.

The same underlying mechanism is used to support both forms of direct access
files. The direct access files are Q’Nial specific but use the host system files for
their representation. Two files are used: a record file given the extension .rec
and an index file given the extension .ndx.

It is possible to treat an externally created file as a record direct file provided it
is named appropriately and a suitable index file is created.

A direct access file is prepared for use by calling the operation open with a
file name without an extension and the mode indication *“d*. If the two
corresponding host files exist, they are opened. If they do not exist they are
created and initialized.

The kind of direct access file is determined by the first write operation applied
to it. The use of writearray creates a file of array components, whereas the use
of writerecord creates a file of record components. All subsequent read and write
accesses to the direct access file must be of the same kind.

The operations that support direct access files are described as follows

open Fn "d Open the file Fn for direct access and return an integer.

filetally F Return the highest component number in the file designated by
integer F.

readrecord F N Return string component N of the file designated by integer
F.

readarray F N Return array component N from the file designated by integer
F.

writerecord F N B Write the string B to component N of the file designated
by integer F.

writearray F N B Write the array B to component N of the file designated
by integer F.

eraserecord F N Erase component N in the file designated by integer F.

52

In the above operations, N can be a list of component numbers. For a read,
the corresponding list of components is obtained. For a write, B must be a
corresponding number of components to be written. The components can be
read or written in any order. Note that using an integer with the read operation
returns the component as the result, and using a solitary integer, a list with one
integer, returns a solitary list with the component as the item.

There is no requirement that all the component numbers below the number
returned by filetally F be in use. If there is no component at a position specified
in N in a readarray, the result is the fault ?missing. For readrecord, the result is
the empty string. The result in both operations is the fault ?eof if N is greater
than the result of filetally F. In a writearray of writerecord operation, if N is
greater than or equal to filetally F, then the record is written and the filetally
is increased to one higher than N. Note that the index file used to implement
direct access files has an entry for each possible record and hence leaving huge
gaps in the record numbers can waste a substantial amount of space.

Eraserecord is used for both kinds of files. If the component removed is the
last one, any components immediately preceding it that are not in use are also
removed and the filetally is adjusted accordingly. For a file of records it is not
possible to distinguish between an unused record and a record consisting of an
empty string.

In the write operations, if a component already exists, its value is replaced. The
physical host file used to hold the components is not necessarily in the same
order as the component numbers. As components are overwritten, their previous
space is used if possible, otherwise the information is appended to the end of
the .rec file. For fixed length components, the order of the components is not
changed because of an update.

As components of a direct access file are rewritten out of place because of
increased size, or as they are erased, unused space accumulates in the .rec file. A
record is maintained on the amount of unused space in the file and, after every
write or erase, if the unused space has become significant relative to the size of
the file, an automatic compression process is executed which rebuilds the file so
that the components are in index order.

It is possible to use Q’Nial to access files created by another process. To do this,
the file must be renamed to have the extension .rec and an index file that is
appropriate to the data structure within the file must be built. If the file has
a logical structure of fixed size that repeats, the index file need have only as
many records as make up one unit of the logical structure. If the record number
used in a readrecord is above filetally, the record file is checked to see if the file
extends beyond the length indicated by the filetally. If so, the file is assumed to
consist of a sequence of blocks of records of the same structure as indicated in
the index file and the record selected is determined by N mod filetally F.

53

Direct Access Operations for Host Files

Q’Nial also provides operations that can access the raw byte data of files on the
host system. In these operations the name of the file is used as the argument
and file open and closes are done implicitly.

readfield Fnm P N Return N bytes of the file Fnm starting at position P as
a string.

writefield Fnm P S Write the string S to the file named Fnm at position P.

filelength Fnm Return the number of bytes in the file named Fnm.

The direct access operations for host files are useful in applications where pre-
existing files need to be accessed or modified under program control. The
readfield operation can be used to read in any portion of a file as a string without
interpretation of newline characters. If the position plus the length requested is
greater than the filelength the fault ?eof is returned.

The operation writefield can write a string of any length to any position in a file.
If it is written in a position beyond the current file length, the intervening space
may be filled with arbitrary data. If the file does not exist, writefield will create
it.

Chapter 7 Operations for the Interpreter Mech-
anisms

Q’Nial has operations that provide direct access by the user to most of the
underlying mechanisms that support the evaluation of Nial constructs. These
operations behave like most other operations in Q’Nial but they are dependent
on the internal representations used in the Q’Nial implementation and may
not produce identical results from one version to another. They should not be
considered part of the Nial language; rather, they are extensions made specifically
in the Q’Nial implementation.

Top Level Loop

Q’Nial7 is implemented as an interactive program running on a console or in a
terminal emulation window. The direct input to the interpreter mechanism is a
string representing Nial program text. The execution of the text is carried out in
a three stage process. First, the string is scanned to produce a list of tokens that
represent the component parts of the text. The result is a list beginning with a
Token Stream Tag (the number 99) and followed by an alternating sequence of
integer codes and phrases.

54

There is no limitation on the size of tokens corresponding to the literal types.
That is, a constant token for a literal string, phrase or fault can be as long
as required for an application. However, identifiers are stored only up to a
maximum length of 80 characters. The following segments from a log of a session
illustrate the top level loop mechanism:

set "decor;
Token_list := scan 'A := 3*5.2'
99 2 "A 1 ":= 16 "3 2 "* 18 "5.2

The codes for tokens used by scan are:

Code Meaning
1 reserved word or delimiter
2 identifier
14 string
15 phrase
16 integer
18 real number
22 fault
42 atomic character
40 atomic boolean or bitstring

To select the token pairs from the result of scan, the following expression is used:

Token_pairs := lo cutall rest Token_list
+----+-----+-----+----+-------+
|2 "A|1 ":=|16 "3|2 "*|18 "5.2|
+----+-----+-----+----+-------+

To test which tokens are constants, the comparison is:

EACH first Token_pairs > 2
oolol

The last token pair represents a real number:

Realtoken := last Token_pairs
18 "5.2

The value of a constant token pair can be obtained by executing the string of
the token or by using parse as described below:

55

tonumber second Realtoken
5.2

The second stage of executing the string of text is called the parsing stage. The
token list is processed and a nested array that represents the structure of the
expression denoted by the text is returned. The resulting data structure is a pair:
the first item is a Parse Tree tag (the number 100), indicating that the data
structure represents a parse data structure; the second item is a nested list of
lists where each list is a node of the parse tree for the expression. Each node of
the parse tree has an integer tag as the first item to indicate the type of construct
that the node represents. The remaining items of a node are themselves nodes of
the corresponding components of the construct or represent constants or names:

Parse_tree := parse Token_list

+---+--+
100	+-+--+															
		9	+--+-----------------+---------------------------------+													
				13	+--+------------+	+--+----------+------+----------+										
						22	2 7670 43248			49	3 1 3 82 1	1 3 "3	1 5.2 "5.2			
					+--+------------+	+--+----------+------+----------+										
			+--+-----------------+---------------------------------+													
	+-+--+															
+---+--+

In the above example, the tags have the meanings described in the following
table:

Tag Meaning
100 parse tree
9 expression sequence
13 assignment expression
22 variable list
2 variable
49 binary operation application
3 basic operation
1 constant

The parse trees are not intended for modification or for examination by program
control. They provide an effective representation for expressions that can be
used for evaluation or for recovery of the textual form as described below.

However, they can be used in simple ways such as converting a constant token
to its value. For example, to get the value corresponding to Realtoken we can

56

form the corresponding parse tree by:

parse (99 hitch Realtoken)

+---+--------------+
100	+-+----------+			
		9	1 5.2 "5.2	
	+-+----------+			
+---+--------------+

The real number can be selected by

R := second second parse (99 hitch Realtoken)
5.2

The third stage in the execution of the string of text is the evaluation stage. The
evaluation is done by recursively “walking” the parse tree and evaluating each
construct according to the semantic rules of Q’Nial:

eval Parse_tree
15.6

We have illustrated that a string containing a Nial array expression can be
evaluated by the composition of *eval**, parse* and scan, which is how the
operation execute is defined:

execute IS eval parse scan
execute 'A := 3 * 5.2'
15.6

It is not intended that users understand or manipulate the internals of parse
tree representations of con structs. Q’Nial has few safeguards if eval is applied
to data structures that are not created directly by the interpreter itself.

In order to reduce the need for users to deal with parse trees, Q’Nial has a
method to obtain the internal representation of a valid construct. This is the
cast array-expression, designated by placing an exclamation mark before the
construct.

Q’Nial also has operations to recover the textual form from the internal represen-
tation. The operations deparse and descan accomplish this in two steps: deparse
converts a parse tree to a token stream that has a few extra token symbols to
indicate indentation and line breaks and descan converts a token stream into a
list of strings. For example:

57

New_token_list := deparse Parse_tree
99 2 "A 1 ":= 16 "3 2 "* 18 "5.2
Link descan New_token_list
'A := 3 * 5.2 '

When descan and deparse are applied to the parse trees for array expressions
with control constructs such as if-expressions and for-expressions, the result is a
list of lines which when written provide the construct in an indented form. In
addition, all identifiers appear with their use encoded as follows:

Type Canonical Form
variable First letter upper case, the rest lower case
expression First letter upper case, the rest lower case
operation all lower case
transformer all upper case
reserved word all upper case

Figure 8-3 Canonical Form for Nial Identifiers

The operation:

canonical IS link descan deparse parse scan

provides a canonical string representation for any valid Nial action, in the sense
that for such a string S, the two following identities hold:

canonical canonical S = canonical S
execute canonical S = execute S

The first identity states that the canonical operation has no effect on a string
already in canonical form. The second states that the canonical form of an
action has the same meaning as the action itself.

The deparse and descan operations are used by defedit to transform the parse
tree of a definition to textual form. They are also accessed implicitly in the
operation see.

The evaluation operations:

scan A The token stream corresponding to the string A as a program fragment.

parse A The parse tree corresponding to token stream A.

eval A The value obtained by evaluating a parse tree, cast or a named array
expression A.

58

deparse A Canonical token stream corresponding to parse tree A.

descan A The list of strings corresponding to token stream A.

execute A The value derived by executing the string A as a program fragment.

For console versions the top level loop of Q’Nial is informally described by:

EndSignal := false ;
Prompt := ' ' ;
WHILE not EndSignal DO
X := eval parse scan readscreen Prompt ;
IF X \~= ??noexpr THEN
writescreen picture X ;
ENDIF
ENDWHILE

where it is assumed that the expressions Bye and Continue will set the variable
EndSignal to True. Also this version of a top level loop does not implement the
use of ?]? to capture the last value computed. A loop is easily written for an
application to use a different prompt or a different convention with respect to
output of the results of computations. In this way, the Q’Nial interpreter can be
tailored for different styles of use.

Picture Operations

The five operations described below give access to the picture drawing capabilities.

picture A The character table that is the picture of A with the current mode
settings. In the picture of A, all non-atomic arrays are left justified and
numeric atoms are right justified.

sketch A The picture of A in the form that it takes when the mode switches
are set to diagram and nodecor.

diagram A The picture of A in the form it takes when diagram mode is set
and the decor mode uses its current setting.

display A A string which, when executed, returns A.

paste Sw A A character table constructed by pasting an array A of character
tables together according to the settings in switch Sw for vertical edge
spacing, horizontal edge spacing, vertical line switch, horizontal line switch,
vertical justification indicator and horizontal justification indicator.

positions A The array of addresses in the picture of A where each item of A is
placed.

59

The paste operation is used internally by the picture operation. Paste allows a
programmer to produce non-standard pictures of arrays.

The justification indicator is an array of the shape of A, with integer codes for
each item; or a single integer code applicable to all items. The justification codes
are 0, 1 and 2 for left or top, centred and right or bottom respectively.

The vertical edge spacing is an integer indicating the number of blank lines
between rows of items. The horizontal edge spacing is an integer indicating the
number of blank spaces between columns of items. The line switch is 1 to draw
lines, or 0 to suppress lines.

Phrases, Names and Casts

The names used in Q’Nial in forming associations are represented internally as
phrases. The associations are stored in arrays called symbol tables that record
the environment in which the name is used and its role in that environment.

Q’Nial uses two different mechanisms to refer to names at the scan and parse
levels. At the scan level a name is a phrase, which has to be looked up in the
correct environment by examining the symbol tables in an appropriate order
while parsing the tokens. After the parse is done, a name is denoted by a parse
tree that points to its symbol table entry. The cast notation !Name is used to
denote the parse tree that represents the name. Note that at the top level ,
parentheses must be included around the use of the cast notation, e.g. (!Name),
to avoid ambiguity with the use of ! to indicate a host command.

Both representations of names are useful. The phrase is readable. It is looked
up in the symbol tables in the context where it is used and hence refers to the
object in a dynamic way. The cast, because it is analyzed in the context in
which it appears, refers to a variable or definition in a static way.

Q’Nial contains operations that mimic the underlying meaning of variables,
expressions and operations in Q’Nial. The operations use strings, phrases or
casts to represent the name of the object under consideration (except that see
and getdef do not take casts).

value A Return the value of a variable nam ed by string, phrase or cast A.

A assign B Assign the array B to the variable named by string, phrase or cast
A; return B.

A apply B Apply the operation named by string, phrase or cast A to array B;
re turn the result of the operation.

getdef A Return the parse tree associated with the definition name by string
or phrase A.

see A Display the definition named by the stri ng or phrase A.

60

update P A B Put array B at address A in the array associated with the vari
able named by the phrase, string or cast P; return the new value of the
array.

updateall P A B Put items of B at addresses A in the array associated with
the variable named by the phrase, string or cas P; return the new value of
the array.

deepupdate P A B Put array B at path A in the array associated with the
variable named by the string, phrase or cast P; return new value of the
array.

getname A Converts a parse tree symbol table reference A (a triple) to the
corresponding name.

getsyms Nm Gets the parameters and local variables of definition Nm.

Assign mimics the behaviour of gets or := but does it dynamically. The left
argument to assign is a phrase, string or a cast naming the variable to be
changed or crea ted. The major difference between the operation assign and
assigning using the := construct is that the former occurs entirely during program
execution, whereas the latter has a translation stage in which the scope of the
variable name is determined and then an execution phase when the assignment is
done. One effect of the difference is that a new variable created by the operation
assign is always placed in the global environment. Another difference is that the
operation assign does not have the restriction that the phrase or string obey the
lexical rule for an identifier and hence it is possible to build associations that do
not interfere with variables in the program text.
An important use of assign is to mimic a by-variable form of parameter passing
in place of Nial’s by-value form. The result depends on what kind of name is
provided, a phrase or a cast. If the name is provided as a phrase, the variable
that is selected is determined by assign when it does the assignment by looking
first in the local environment and then in the surrounding ones. If the name
is provided as a cast, the variable selected is the one that exists at the point
where the cast is formed. Thus, by-variable parameter passing is achieved by
using the cast of the variable as an argument in the call; whereas in the body of
the operation the formal parameter is assigned using assign and evaluated using
value.
The operation apply mimics the application of an operation to an array. The
operation to be applied is provided as a phrase or a cast. One use of apply is to
provide a dynamic switch, where the operation to be applied is selected from a
list using pick and then applied with apply.
The operation see writes the canonical form of a definition to the terminal screen.
The character table is displayed as if:

ITERATE writescreen descan deparse getdef Defnm

61

were executed with sketch and nodecor display modes. It does not affect the
settings of the display modes.

The operations update, updateall and deepupdate mimic the indexed assignment
notations for *at**, at-all* and at-path indexing. They are provided to allow
selective updating of global variables with no copying.

The operations getname and getsyms are provided for detailed parse tree analysis
and are not intended for general use.

Operations that give user access to the internal mechanisms should be used with
due recognition that they may make programs implementation dependent.

Dynamic Execution of Name Associations

The operation execute can be used within the execution of a block to make an
assignment to variables or to invoke the definition mechanism. If execute is
used to make a new definition or to create a new variable, the resulting variable
or definition is placed in the global environment. However, if the block has
local variables or local definitions, execute can be used to change a local version
dynamically. A similar situation occurs with dynamic alteration of variables
using assign.

Chapter 8 Management of the Programming En-
vironment

The topics in this chapter describe aspects of the programming environment for
Q’Nial that are common to all versions.

The Q’Nial Programming Environment

When Q’Nial is invoked, an area of memory is set aside for use during the
interactive session. This area is called the active workspace. It holds all
the definitions and variables that are created during a session. The size of the
workspace can grow as more space is required as long as system space is available.

After initialization, Q’Nial begins interaction, by entering a top level loop. It
accepts program text interactively and executes it. Definitions and variables are
created by entering actions interactively or by reading in a program text file
using loaddefs.

The active workspace can be saved and restarted at a later time. It can be
cleared or reset to its status at the beginning of the session. A Q’Nial session
ends when either Bye or Continue is executed.

62

Invoking Q’Nial

There are a number of command line options in invoking the console version of
Q’Nial which provide flexibility for its use in applications. A Q’Nial session is
invoked by the command:

Nial

It has the following syntax:

Nial [(+\-)size Wssize] [-defs Filename] [-lws WSFilename] [-i] [-h]

The parameters are shown within brackets [] to indicate that they are all optional.
The order of the parameters does not matter. The meanings of the parameters
are as follows:

Wsname The named workspace is loaded instead of the clearws.nws file that
is normally entered or created on invocation. The workspace can contain a
Latent expres sion and hence can trigger an applica tion. This feature gives
direct control over where to start the work. If no name is given, Q’Nial
looks for file co tinue.nws in the current directory. If it exists, the session
is started with it rather than the clear workspace.

*** (+|-)size Wssize*** This option begins Q’Nial with a workspace of Ws-
size words. Wssize is an integer (.>= 50000) with a possible suffix of M
for megawords or K for kilowords. If +size Wssize is used, the workspace
size is fixed at the specified size. If an operation cannot complete with the
given size, a jump to the top level occurs with the message:
Warning: workspace full Returning to top level.

-defs Filename After loading the starting workspace and executing its Latent
expression if any, the definition file Filename.ndf is loaded using the
loaddefs operation. The effect is equivalent to executing the expression
loaddefs Filename when the first prompt is given. The definitions are not
displayed when loaded. If the Latent expression enters an interaction loop,
the file is not loaded until the loop terminates.

-i Run Q’Nial in interactive mode

-h display the help information for invoking Q?Nial.

The options for invoking Q’Nial can be used in the following ways:

63

1. During application development, the part of an application that is stable
could be stored in a workspace, say appl.nws, and the current defini tions
being debugged could be in newdefs.ndf. A system script file (.bat under
MS-DOS) having the following line could be used to enter Nial with
everything loaded:
nial -defs newdefs appl

2. An application could be tailored for particular use by loading a predefined
set of definitions using the Wsname or the -defs Filename options.

3. Q’Nial could be used as a filter that executes a program silently and then
quits could be invoked with the following linewhere the expression Bye is
placed at the end of file Filename.ndf. The actions in the file are executed
but the top level loop is not entered.
nial -q -defs Filename

If the -q option is not used, a banner message such as the following is displayed:

Q'Nial V7.0 Open Source Edition Intel x86 64bit Linux Feb 21 2016
Copyright (c) NIAL Systems Limited
clear workspace created

If none of the -defs, Filename or Wsname options is used, the clearws.nws
workspace is loaded. If the clearws.nws file does not exist in the current directory,
it is sought in the nialroot directory. If it is not present in either place, it is
created automatically by the initialization process and kept internal to Q’Nial.
Once the initial workspace has been made, it can be saved using:**

save "clearws

When the clear workspace is loaded, the default prompt of five blank characters
is displayed and the cursor is placed at the sixth position.
Q’Nial views its input as a stream from the standard input file stdin. This means
that a file of actions can be piped to Q’Nial to use Q’Nial as a filter. One side
effect of this design is that one can end a Q’Nial session in the console versions
by giving it the end of file signal interactively. On Unix systems by <Ctrl d>.
Terminating a Q’Nial session in this manner is equivalent to using Bye and hence
the current workspace is not saved.

Naming the Latest Result

Q’Nial retains the result of the most recent interaction. To give the last value
computed a name, eg. Var, the right bracket symbol (]) is followed by the
variable name.

]Var

64

Session Related Expressions and Operations

There are a number of operations that assist in workspace management, managing
program development, interfacing with host facilities and debugging.

Restarting a Q’Nial Session

During a session, to start over with the workspace restored to its original contents,
one of the expressions Restart or Clearws is used.

Restart Reset the active workspace to have the same content as that provided
when Q’Nial was invoked and retun to top level.

Clearws Reset the active workspace to be cleared of all user defined variables
and definitions.

Ending a Q’Nial Session

A session on Q’Nial is ended by the execution of one of the following expressions:

Bye End the session of Q’Nial and return to the host operating system. Infor-
mation in the current workspace is lost.

Continue Save the workspace as continue.nws in the current directory; end
the session of Q’Nial and return control to the host operating system. The
workspace is restored in the next session started from the same directory
using the invocation of nial without the Ws name option from the same
direc tory.

The continue workspace is a convenience for short term saving of current work.
If a session that was started from a continue workspace is ended by using Bye,
the file continue.nws is deleted.

Interrupts and Error Recovery

There are certain invalid computations or resource limitations that prevent
Q’Nial from continuing with a computation. A message is displayed when such
situations arise. Q’Nial can normally return to the top level loop when errors
of this type occur. It calls the user-defined operation recover (if it exists) after
cleaning up all the temporary values existing when the error occurred. The
recovery may take a few seconds if there is extensive cleanup of temporary values
to be done.

65

In the definition of an operation or expression, a situation may occur which
is best handled by interrupting the computation and returning control to the
interaction loop. There are also situations when recovery is needed to prevent
returning to the interaction loop. The expression Toplevel causes a return to
top level.

Q’Nial permits interruption of a computation by using an interrupt signal that
is host system dependent. The interrupt signal is <Ctrl c> on most console
versions of Q’Nial.

A user initiated interrupt is equivalent to execution of Toplevel. When such
an interrupt occurs and recover is present, recover is executed. Interrupts can
be inhibited using the operation setinterrupts. It should be used for control
of a process which must be completed, such as database updating or user
identification.

Toplevel Return control to the user interaction loop after applying the operation
recover if it is present in the workspace.

recover Msg The occurrence of any condition that forces a return to the
interaction loop. The argument is the warning message which can be used
to determine the cause of the jump.

setinterrupts A Permit or prevent the interruption of computation. If A is
true, interrupts are permitted; if it is false, interrupts are blocked. The
default is to permit interrupts.

Fault Triggering

Nial assumes that every computation that terminates results in an array value.
However, there are many cases where a computation does not have a sensible
answer. If division by zero occurs, for example, there is no suitable number to
return. Nial uses special atomic arrays called faults to indicate such results.
For division by zero it is ?div.

Q’Nial has two ways of handling a fault:

• a trigger mechanism is executed that causes an interruption when a fault is
created during execution of a defined operation, expression or transformer,
or

• the fault is treated as a normal atomic array.

When Q’Nial is invoked, the fault triggering mecha nism is turned on by default.
(This effect can be suppressed by using an option in the setup for each version).
During execution, the state of the triggering mechanism can be turned on or off
using the operation settrigger. The operation quiet_fault, defined in defs.ndf,

66

can be used to create a fault without causing fault triggering. Fault triggering
can be controlled using the following operations.

Operation Action

settrigger A Permit or prevent the interruption of computation by the fault
triggering mechanism. If A is true, a fault triggers an interrupt.

quiet_fault A Return the result of fault A without causing fault triggering.

If fault triggering is set and a fault is generated during execution of a defined
operation, execution is interrupted. On an interruption caused by a fault, a
display mes sage appears giving the call stack of definitions currently executing
and the line of text that caused the fault. For example, the definition:

foo is op A B { A / B + 1 }

followed by the evaluation of the expression

foo 3 0

results in the output:

--
Fault interruption loop: enter expressions or
type: \<Return\> to jump to top level
current call stack :
foo
?div triggered in : ... A / B
--
>>>

where the string ?>>>? is a special prompt indicating that a fault has occurred
and execution has been interrupted. The prompt permits you to query the value
of variables in the expression and its surrounding computation or to view the
operation that has triggered the fault. The above session might continue as:

>>> see ?foo
foo IS OPERATION A B {A / B + 1 }
>>> A
3
>>> B
0
>>>

67

A variable in a definition that called the current one can be referenced by
preceding the variables name by the definition name and a colon, e.g.G:X
denotes variable X in definitionG. You can execute any expressions you want at
the prompt. A useful thing to do is to see the definition that has interrupted.
When you are ready to resume, reply to the prompt with a Return and control
returns to the top level loop without an attempt to recover.

Workspace Management

To assist in the management of the workspace, Q’Nial has expressions and
operations that are used in the following ways:

Saving and Loading the Workspace

Q’Nial includes mechanisms to save the contents of the current workspace in
an external file and to load a previously saved workspace as the current one.
During program development, workspaces can be used to avoid reloading a large
definition file at the beginning of each session. Also, a workspace can encode an
application that is shared with other users without providing the source to them.

The storage scheme used to store the workspace, designed to permit rapid saving
and loading, is not portable between versions of Q’Nial on different systems or
between revised versions on the same system. Hence, it is always wise to retain
definition files in order to be able to reconstruct a workspace. A library program
wsdump.ndf is available to convert the contents of a workspace into a definition
file.

When a save or load is executed, the current computation is ended and the
Checkpoint or Latent expression is done in the interaction loop environment. If a
workspace being saved contains an expression named Checkpoint, the expression
is executed following the saving of the workspace and prior to restarting the
interaction loop. It can be used to restart a computational process after an
intermediate dump of the workspace.

If a workspace being loaded contains an expression named Latent, the expression
is executed following the load of the workspace and prior to restarting the
interaction loop. Latent can be used to initiate a comput ational process or to
set internal system variables prior to entering the interaction loop.

save Wsname Save the current workspace under the name Wsname with
extension .nws.

load Wsname Load the workspace in the file named Wsname having exten
sion .nws.

Checkpoint User defined expression executed after a save.

68

Latent User defined expression executed after a load.

With load or save, the extension .nws may be omitted in the filename. The
filename can be specified as a phrase or a string. If the file naming convention
on the host computer is sensitive to upper and lower case, care must be taken to
spell the filename correctly.

Loading a Definition File

A definition file is a text file containing Q’Nial actions. It is viewed as a sequence
of actions supplied to the system when the file is loaded. A definition file has
the extension .ndf to distinguish it from other text files. The major purpose of
definition files is to collect definitions of expressions, operations and transformers
that form a module of code in an application. They may also provide a script of
inputs for computations done without user interaction.

loaddefs Fn Switch Read and execute the actions in definition file Fn. If
Switch is o or is omitted, do not display the definitions; if Switch is l,
display them.

library Fn Switch Read and execute the actions in definition file Fn from
directory niallib. If Switch is o or is omitted, do not display the definitions;
if Switch is l, display them.

In loaddefs, Fn may be any path that leads to a file with a .ndf extension. The
assumption is that the path starts from the current directory unless a complete
path is given. In library, Fn can be any path that starts in the niallib directory.
Fn can be specified as a phrase or a string. With loaddefs or library, the extension
.ndf may be omitted in the filename.
The operation library uses the environment variable nialroot to find the directory
that holds the subdirectory nialliband the other default libraries. The predefined
variable Libpath can be set under program control to indicate other directories
to be searched. The operation library is defined in the file defs.ndf and can be
modified to provide an alternative library strategy.

Setting Workspace Switches

Q’Nial has a number of optional behaviours that depend on the value of internal
switches. These are set by the mode setting operation set.

set Switch Set an internal switch that controls how execution is displayed,
controls tracing, or controls the output to log files. Return the previous
setting. The settings are sketch, diagram, decor, nodecor, trace, notrace,
logandnolog.

69

The switch setting can be specified as a phrase or a string in upper or lower case.

Workspace Status

The expression Status provides information about the workspace. Its results are
explained as follows:

Position Value Value Given Meaning
0 number of free words amount of space available in workspace
1 largest free block size determines largest object that can be built
2 number of free blocks indicates the fragmentation of memory
3 workspace size gives the current size of the workspace
4 size of internal stack used to hold intermediate values in evaluation
5 size of phrase/fault

table
area used for hash table for phrases and faults

6 internal buffer size used for temporary space by many operations

The last three items indicate the size of three internal areas that grow if required,
but never shrink in size. After some large computations these components may
be larger than needed. They are reset if the workspace saved and reloaded.

Symbol Table

Q’Nial maintains an internal symbol table holding the name and role of every
object in the workspace. The following operations provide access to the symbol
table information:

symbols Sw If Sw is o, return a list of pairs of names and roles of all user-
defined objects in the global environment. IfSw is l, also include the names
and roles of predefined objects.

erase A Erase the variable or definition specified by the phrase A.
Leave the phrase A in the symbol table with its role unchanged but change
its value to one of ?no_value, No_expr, no_op or NO_TR depending on
the role of A. This operation is used at top level to remove a user defined
object from the current workspace. It permits the use of the identifier for
a different purpose but not a differ ent role. It cannot be used to erase a
name in a local scope.

Vars The list of global variables in the workspace.

Exprs The list of user-defined expressions in the workspace.

Ops The list of user-defined operations in the workspace.

70

Trs The list of user-defined transformers in the workspace.

The operation symbols returns a list of the items in the table. The operation
erase removes the definition or variable from the workspace although the name
remains in the symbol table with the same role. The expressions Vars, Exprs,
Ops and Trs return the names of user-defined objects in each of these roles.

Logging the Work of the Session

Q’Nial has a number of switches that can be set to permit logging the work of
the session. The log file can also be renamed. The log file is opened and closed
for each line that is written in order to ensure that it is retained if a session is
terminated by an external process.

set Logsw Set a switch that controls how logging is to be handled. Return the
previous setting. The switch setting can be a phrase or a string in upper
or lower case. The possible settings are log, nolog and nolog.

setlogname Fn Set the name of the file used to log screen output to Fn, which
can be a string or a phrase. The name is case sensitive if the host file
system names are case sensitive.

The information displayed on the screen during a Q’Nial session is recorded in
a log file if logging is activated by the *set “log* action. The screen displays
that occur during the host interface operations are not saved in the log file. The
log file can be edited to make a working program from the series of trials made
while working interactively. The default log file name is auto.nlg.

Time Related Expressions

Q’Nial provides two expressions which access the internal clock of the computer.

Time System dependent timing information. On Unix, it is the processor time
used for the user and system tasks for the process since the beginning of
the session measured in seconds.

Timestamp The current date and time in the form of a string.

Display Related Settings

Q’Nial has a few settings that affect the way in which information is displayed
on the screen.

71

setprompt A Set the Q’Nial prompt to A, where A is a string or a phrase. The
maxi mum length prompt is 40 characters.

setwidth N Set the width of output displayed on the screen and sent to the log
to N characters. The result is the previous screen width setting. Setting
the output width to 0 allows the output to be of arbitrary length. Used by
default in CGI-Nial.

setformat Str Str is a format specification for real numbers using the conven-
tions for the C library routine printf. The result is the previous format
setting.

setscroll Mode Set the scroll setting for window mode to Mode. (Console
versions only)

Screensize Returns the height and width of the actual screen or window in
use.

The default prompt displayed by Q’Nial in the interaction loop is a string of five
blank characters. If a more visible prompt is preferred, setprompt can be used
to change it.

Array pictures are written to the screen and to log files so that they fold as a
unit; that is, if the array picture is too wide, all of its lines are displayed in the
available space and then after a blank line the remain ing portion of the picture
is displayed. The width of the display field defaults to the screen size but can be
increased or decreased using setwidth.

Real Number Formatting

The three styles of real number formats that can be set using setformat are given
below:

‘%f’ displays a fixed number of places after the decimal point in a fixed size
space with no scaling of the number,

‘%e’ displays the number in scientific notation with an exponent scaling the
number to have one digit before the decimal point, and

‘%g’ displays the number in f format if possible but defaults to e format if the
number is not within a suitable range.

Finer detail format specification is achieved by placing two numbers separated
by a period between the ‘%’ and the letter. For example ‘%15.5f’ uses a field of
width 15 to display a number in f format with 5 decimal places. In general, the
first digit refers to the width of the field. For f format the second digit gives the

72

number of places after the decimal, while for e and g it indicates the number of
significant digits to be displayed. Either digit can be left out

Because a real number display needs to be distinguishable from an integer, there
are some cases where the field is one space wider than predicted by the format
string in order to accommodate the decimal point added to the end. Also, if an
f format is not wide enough for the number, it is widened so that the number is
displayed.

The format string ‘%.17g’ is used by the operation display in depicting real
numbers. This format accurately reproduces the same number when executed
on most platforms.

The default format is ‘%g’, which displays the number in a compact format
displaying 5 significant digits. For numbers in the range 1e-5 < x < 1e6, it omits
the exponent, for larger or smaller numbers the exponent is included. In both
cases trailing zeros are removed.

System Related Expressions

There are four expressions which hold information about Q’Nial:

Copyright The copyright message.

Version The release and version of Q’Nial being used.

System The operating system in use.

Nialroot A string showing the path to the nialroot directory.

Host Interface Operations

Q’Nial provides access to the operating system and to an editor of choice.

host Cmd Pass string or phrase Cmd to the host command processor for
execution. The details of the use of host are specific to the operating
system of the com puter being used. At the top level loop, an input line
beginning with ! is treated as a host command. For most versions of
Q?Nial, the host command causes Q’Nialto block until the command is
completed.

edit Filename Edit the text file named by the phrase or string Filename using
the host default editor. Definition files can be prepared and modified from
within Q’Nial so that sessions of Q’Nial are not interrupted to handle
editing.

73

defedit Def Place the definition named by phrase or string Def in a window
in canonical form and invoke editwindow with the lines of the definition
as strings in the window. After editing, execute the strings to load the
definition. This is only available in the console versions of Q?Nial.

The operation host is platform dependent. Its argument is a command line that
is executed by the command processor for the host system. If the command
processor supports output redirection for the command in use then the results
of host command can be sent to a file and obtained with getfile. An alternative
is to use the pipe read mode of the operation open to have the lines of output of
the result available using readfile. The library operation newhostimplements a
version of hostthat uses pipes.

The operation edit is used to access a standard text editor on the host system
in console versions of Q’Nial. The editor to be used is determined by the
environment variable EDITOR which the user can set in the operating system
environment. If the variable is not set a default editor is chosen.

Defedit is convenient for quick modification of an operation. Its definition is in
file defs.ndf. It can be modified to suit individual tastes.

Session and Workspace Variables

During execution of Q’Nial, a number of global variables within the interpreter
determine how the environment behaves. These are classified as session or
workspace variables depending on whether or not they are saved with the
workspace and cause the environment to change when a workspace is loaded.
The two tables below contain some internal variables that are only used with
console versions.

Session Variable Default Setting Setting Operation
log file setting nolog set ?log; set ?nolog
log file name auto.nlg setlogname Fnm
screen display width 80 setwidth N
trace setting notrace set ?trace; set ?notrace
interrupts enabled true setinterrupts M
fault triggering on settrigger M
messages on setmessages M
prompt string 5 blanks setprompt Str
workspace size 200,000 words command line option
stack size 3,000 N/A
phrase/fault table size 4,000 N/A
Internal buffer 1,000 N/A

74

The following table describes the workspace variables.

Workspace Variable Default Setting Setting Operation
sketch/diagram switch sketch set ?sketch; set ?diagram
decor/nodecor switch nodecor set ?decor; set ?nodecor
real format ‘%g’ setformat Str
definition trace o for all definitions setdeftrace Defnm [M]

The sizes of the workspace, the stack and the phrase and fault table are auto-
matically increased as required during the session while space is available. Some
of the session variables can be set using start up options that differ from version
to version.

One approach to setting the programmable settings is to initialize them as desired
in a Latent expression in a workspace that is loaded when a Q’Nial session is
started. They session variables will then be set as Q’Nial is initialized or when
the Restart expression is executed.

Workspace variables are internal settings that are preserved with the workspace.
The above figure describes them. For example, if a workspace is saved with
diagram and nodecor modes set, the reloaded workspace will retain those settings.
However, if the log setting is in effect when the workspace is saved, nothing
is recorded in the saved workspace to restore that setting on a reload of the
workspace.

Chapter 9 Debugging and Profiling Nial Defini-
tions

Debugging Definitions

The Q’Nialsystem provides an optional debugging facility that aids interactive
debugging. It is active by default, but can be turned off for running production
applications. See the detailed documentation for the various versions on how to
turn off debugging.

The debugging system is based on the idea of placing breaks in the code and
stepping through the program code in a number of different ways. Due to
constraints in the way Q’Nial is implemented, debugging is always done in
the context of an expression sequence. A break point occurs either before the
execution of the expression sequence in a definition, or at an explicit break
expression within an expression sequence. There is also a watch mechanism that
executes a defined action whenever the value of a variable changes, and an ability
to monitor all uses of user defined objects and of the predefined operations.

75

Defining a Break Point

There are two ways to cause a break in a Nial definition: by using the expression
Breakin an expression sequence, or by using the operation breakin to set a break
on entry to an operation or expression.

Break Suspend evaluation of the expression and pass control to an evaluation
loop in the environment at the point of the Break. Variables accessible at
that point can be displayed. This loop recognizes a number of commands
described below.

breakin Nm [M] Set or reset an internal break flag for the definiton of Nm. If
the boolean value M is omitted, the flag is toggled. If set, a break occurs
before the execution of the expression sequence of the definition. The Nm
must be the name of a defined expression or a defined operation using the
operation form style of operation expression.

Breaklist Display the list of names of definitions with break flag set.

For console versions supporting the alphanumeric windows package, break mode
can also be entered when Q’Nial is awaiting keyboard entry in window mode
(except in editwindow) by typing <Ctrl b>. When normal operation is resumed,
the previous screen is displayed and the input request is still pending.

When initially entering the “debug mode” because of a break caused by any
of the above methods, a short banner is printed that indicates that the debug
evaluation loop has been entered and it is followed by the expression to be
executed and a prompt with a default debugging command.

Break debug loop: enter debug commands, expressions or
type: resume to exit debug loop
<Return> executes the indicated debug command
current call stack :
foo

?.. C := A + (+ A + A)

-->[stepv]

Whenever you initially enter debug mode, the current callstack is printed to
indicate where the break occurred. The debugging banner also reminds you that
you can resume execution by typing resume and that hitting return will cause
the debug action, indicated in square brackets at the prompt, to occur. The

76

debugging action defaults to stepv but changes to the last debug command used
if you execute another one.

At the debug prompt, the user can explore the values of variables by entering the
variables name, can evaluate any Nial expression, say to display the definition
with see or to get the shape of a variable, or can execute one of the debug
commands described below that moves the computation forward.

A breakpoint set by the operation breakin sets an internal breakpoint flag. If
the user reloads the definition (maybe as part of a loaddefs), then a breakpoint
flag remains set if it was set. The breakpoint flag is also preserved if the
workspace is saved and then subsequently loaded. Using breakin again or erase
on the definition name clears the internal breakpoint flag. To clear all internal
breakpoint flags execute

EACH breakin Breaklist

Access to Intermediate Scopes

Nial has lexical scoping, that is a name is only directly visible in a definition if
it is defined in the definition or in a surrounding one. For debugging, we often
wish to look at the value of a variable in an operation that called the operation
we are currently in. The scoped variable reference, one of the forms of a primary
expression, is used to observe the value of local variables in named expressions
that are blocks and in named operations that are operation forms. The use of a
scoped variable reference produces the value of the variable for the most recent
use of the definition in the call stack. The syntax is

funname:varname

This is general syntax that can be used under program control anywhere a
variable reference is made, but can only be used to reference a variable, not to
change it.

Debugging Commands

The debugging commands permit resumption of execution in several forms, with
or without the display of data computed during execution. The

step(v) [N] step executes the next executable expression (displayed after?..)
in either the current definition or in a definition called within the current
expression. It steps into definitions called within
an expression. If stepv is used, the value of the executed expression is
displayed. If N is provided (N>=1) then the command is executed N
times before the user is prompted again.

77

next(v) [N] next is similar to step except that it does not go into definition calls,
but rather, executes a definition within a the current expression quietly. It
is used to trace the statements within one definition, without showing the
detailed execution of definitions that are called by the current expression.
If nextv is used, the value of the executed expression is displayed. If N
is provided then the command is executed N times before the user is
prompted again.

stepin [N] stepin is the same as step except that it traces the evaluation of the
next expression to be executed. It is useful for seeing the details of how an
expression is computing its value.

toend(v) toend executes to the end of a loop or of a definition. It is useful
if you want to skip all of the remaining expressions within a loop or an
expression sequence in a definition and stop on the first expression after
the loop or definition call.

resume resume continues program execution until either another break or fault
is encountered, or until the expression being executed completes.

The debugging facilities can be used in a number of different ways. For example,
you can step forward from a breakpoint using nextv, stepv, or stepin, depending
on the details you wish to observe. If a breakin is used to break in a definition
then you may want to use next to move quickly to the area where the problem
is. Alternatively, you can edit the definition and insert a Break expression at the
point of concern and reload the definition. Then execution will be interrupted
at that point and you can enter variable references to observe the value of
variables that affect the computation, or try out parts of the next expression to
be executed to see why it is not working as expected.

Another way to get debugging started at a convenient place is to place a watch
on a variable with its corresponding action being a break. See the section below
on the Watch Mechanism.

The debugging commands step and next have special behaviour for the control
structure expressions such as if-then-else and while-do expressions. When the
next expression is a control structure expression only two lines of it are displayed.
If next or step are given as the command, then the next expression becomes
one of the components in the control structure expression. For example, in an
if-expression, the next expression becomes the boolean expression following IF.
Nothing is executed, just the focus of debugging has moved into the control
construct. If the value versions of the command are used, then on the execution of
the last expression in the control construct, both the value for the last expression
and the value for the entire control construct are displayed.

The toend command serves a dual purpose: it is used to terminate a loop,
or to terminate a definition. If execution is in a loop and toend is given as
the command, then all the remaining iterations of the loop are executed and

78

execution stops after completion of the loop. If the current loop is nested within
another, only the inner loop is executed to completion.

If the toend command is given at the debug prompt and the current expression
is not within a loop, then the execution continues to the end of the definition. If
the definition had been called during the execution of an expression by using step
or stepv then the execution will stop on the expression following the definition.
If the break that started debug mode was in the definition, then toend behaves
like resume.

In the rare case where there is a conflict between a variable name and a debugging
command you can precede an expression given in the debugging loop with a
backslash (\) to indicate that it is an expression to be evaluated.

Repeating Debug Commands

All versions of the debug commands also allow the addition of an integer argument.
This argument is interpreted as the number of times to execute the given debug
command, before returning to the debug prompt. For example, using the debug
command nextv 10 will show all the results of nextv as if the command was
issued ten times. After ten executions, the debug prompt is printed

Monitoring Execution Flow

In trying to understand the behaviour of a program it is sometimes necessary
to trace the flow of execution to see how the flow has gone. The operations
described in the next table assist in this endeavour.

Debugging is an art. There is no best way to use the debugging facilities to
solve a problem. For complex situations where the problem involves deeply
nested definition calls, it may be convenient to issue Callstack to find out what
definition is executing, and at what level of nesting it is at. Also using see on the
current definition helps to see the context in which the debugging is occurring.

Callstack Display the sequence of active definitions at the point of the break.

seeusercalls M Set the flag that controls display of entry to and exit from
user definitions to boolean value M. If M is True then display the call
information.

seeprimcalls M Set the flag that controls display of the execution of primitive
functions to boolean value M. If M is True then display the call information.

79

Watch Mechanism

The debugging system also includes an ability to place a watch on a global or
local variable. The capabilities are:

watch Var Expr Set a watch on the variable given by cast Var if Expr is a
non-empty string. If Expr is empty, remove the watch from the variable.

Watchlist Return the list of watch variables and expressions that are currently
set.

The approach is to associate an expression to be executed when the value of the
variable changes. The expression can display the value that has been assigned,
or execute a Break expression to interrupt the computation. The variable is
referenced by a cast, for a global variable X, the cast is!X, for a local variable Y
in definition G, the cast is !G:Y. The action to be performed is given as a string
of program text that denotes an expression.

Trace Mechanism

The trace facility has two capabilities: to trace the execution of expressions at
the top level and to trace the evaluation of the application of a defined opera
tion.

set Tracemode The action set "trace causes the execution of expressions at the
top level to be traced. It presents the result of the application of a defined
operation but does not trace the evaluation of the defined operation. Trace
mode is turned off by the action set "notrace.

setdeftrace Def [Sw] Change the trace mode setting for definition Def. If Sw
is true, turn on tracing; if it is false, turn it off. If Sw is omitted, reverse
the setting.

The trace mechanism provides a lot of output for the evaluation of an expression.
The intermediate expressions within the expression being traced are displayed
and their values printed. This is appropriate for small values, but becomes
unwieldy for large data objects. Thus, debugging with tracing is best done with
small arrays. The output produced by tracing is captured by the log facility and
hence it possible to study the details of the execution after the fact.

Profiling Capability

Q’Nial has a profiling capability that can be used to gather relative execution
times for defined operations, transformers and expressions. The data on execution

80

times is collected relative to the tree of function calls, so that both the total
time a routine is used and the time it is used from a specific other routine can
be computed. The profiling capability makes it easier to find inefficiencies in
Nial programs. The following summarizes the capabilities.

setprofile M sets the internal flag that turns on or off the collection of data
on execution time to M. If M is True the data is gathered.

profile Fnm displays the profile data to the screen if Fnm is the empty string
or writes it to the file named by Fnm.

Clearprofile clears the current profile information and reinitializes the profiling
system.

profiletable provides the profile information as a table

profiletree provides detailed profile information in terms of the tree of calls.

The profiling capabilities are described in more detail in the Nial Dictionary.

81

	The Language Definition
	Version 6.3

	Chapter 1 Introduction
	Language Concepts and Terminology
	The Objects of Nial

	Chapter 2 Data Objects
	Atomic Arrays
	Rectangularity Structure
	Nesting Structure
	Empty Arrays
	Array Diagrams

	Chapter 3 Predefined Data Operations
	Properties of Data
	Logic Operations
	Arithmetic Operations
	Linear Algebra Operations
	Comparison Operations
	Type Testing Operations
	Set-like Operations
	Conversion Operations
	Structure Testing Operations
	Measurement Operations
	Array Construction Operations
	Reshaping Operations
	Array Generation Operations
	Selection Operations
	Insertion Operations
	Searching Operations
	Nesting Restructuring Operations
	Data Rearrangement Operations
	String Manipulation Operations using Regular Expressions

	Chapter 4 Predefined Transformers
	Each and Related Transformers
	Partitioning Transformers
	Applicative Transformers
	Sorting Transformers
	Reduction Transformers
	Control Structure Transformers
	Selection Transformer

	Chapter 5 The Formal Description of Nial Programs
	Environment
	Action
	Definition
	External Declaration
	Remark
	Array Expression
	Expression Sequence
	Simple Expression
	Primary Expressions
	Constant
	Variable
	Scope of a Variable
	Indexed Variable
	Named Expression
	Expression List
	Parenthesized Expression Sequence
	Block
	Local and Nonlocal Declaration
	Nested Definition
	Cast
	Assign Expression
	Selection Expression
	Loop Expression
	Comment
	Operation Expression
	Simple Operation
	Operation Form
	Transformer Expression
	Transformer Form
	Summary of Juxtapositional Syntax
	Synonyms

	Chapter 6 File Input and Output Operations
	Sequential Files
	Q'Nial Specific Direct Access File Operations
	Direct Access Operations for Host Files

	Chapter 7 Operations for the Interpreter Mechanisms
	Top Level Loop
	Picture Operations
	Phrases, Names and Casts
	Dynamic Execution of Name Associations

	Chapter 8 Management of the Programming Environment
	The Q'Nial Programming Environment
	Invoking Q'Nial
	Naming the Latest Result
	Session Related Expressions and Operations
	Restarting a Q'Nial Session
	Ending a Q'Nial Session
	Interrupts and Error Recovery
	Fault Triggering
	Workspace Management
	Saving and Loading the Workspace
	Loading a Definition File
	Setting Workspace Switches
	Workspace Status
	Symbol Table
	Logging the Work of the Session
	Time Related Expressions
	Display Related Settings
	Real Number Formatting
	System Related Expressions
	Host Interface Operations
	Session and Workspace Variables

	Chapter 9 Debugging and Profiling Nial Definitions
	Debugging Definitions
	Defining a Break Point
	Access to Intermediate Scopes
	Debugging Commands
	Repeating Debug Commands
	Monitoring Execution Flow
	Watch Mechanism
	Trace Mechanism
	Profiling Capability

