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 A theory of classical quantum mechanics (CQM) is derived from first principles that 
successfully applies physical laws on all scales. Using Maxwell’s equations, the classical wave 
equation is solved with the constraint that a bound electron cannot radiate energy. By further 
application of Maxwell’s equations to electromagnetic and gravitational fields at particle 
production, the Schwarzschild metric (SM) is derived from the classical wave equation which 
modifies general relativity to include conservation of spacetime in addition to momentum and 
matter/energy. The result gives a natural relationship between Maxwell’s equations, special 
relativity, and general relativity. It gives gravitation from the atom to the cosmos. 
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INTRODUCTION 
 A theory of classical quantum mechanics (CQM), derived from first principles, successfully 
applies physical laws on all scales [1].  The classical wave equation is solved with the constraint 
that a bound electron cannot radiate energy.  The mathematical formulation for zero radiation 
based on Maxwell’s equations follows from a derivation by Haus [2].  The function that 
describes the motion of the electron must not possess spacetime Fourier components that are 
synchronous with waves traveling at the speed of light.  CQM gives closed form solutions for the 
atom including the stability of the n = 1 state and the instability of the excited states, the 
equation of the photon and electron in excited states, the equation of the free electron, and 
photon which predict the wave particle duality behavior of particles and light.  The current and 
charge density functions of the electron may be directly physically interpreted.  For example, 
spin angular momentum results from the motion of negatively charged mass moving 
systematically, and the equation for angular momentum, r × p , can be applied directly to the 
wave function (a current density function) that describes the electron.  The magnetic moment of 
a Bohr magneton, Stern Gerlach experiment, g factor, Lamb shift, resonant line width and shape, 
selection rules, correspondence principle, wave particle duality, excited states, reduced mass, 
rotational energies, and momenta, orbital and spin splitting, spin-orbital coupling, Knight shift, 
and spin-nuclear coupling, ionization of two electron atoms, inelastic electron scattering from 
helium atoms, and the nature of the chemical bond are derived in closed form equations based on 
Maxwell’s equations.  The calculations agree with experimental observations. 
 For any kind of wave advancing with limiting velocity and capable of transmitting signals, 
the equation of front propagation is the same as the equation for the front of a light wave.  By 
applying this condition to electromagnetic and gravitational fields at particle production, the 
Schwarzschild metric (SM) is derived from the classical wave equation which modifies general 
relativity to include conservation of spacetime in addition to momentum and matter/energy.  The 
result gives a natural relationship between Maxwell’s equations, special relativity, and general 
relativity.  It gives gravitation from the atom to the cosmos.  The Universe is time harmonically 
oscillatory in matter energy and spacetime expansion and contraction with a minimum radius 
that is the gravitational radius.  In closed form equations with fundamental constants only, CQM 
gives the deflection of light by stars, the precession of the perihelion of Mercury, the particle 
masses, the Hubble constant, the age of the Universe, the observed acceleration of the expansion, 
the power of the Universe, the power spectrum of the Universe, the microwave background 
temperature, the uniformity of the microwave background radiation, the microkelvin spatial 
variation of the microwave background radiation, the observed violation of the GZK cutoff, the 
mass density, the large scale structure of the Universe, and the identity of dark matter which  
matches the criteria for the structure of galaxies.  In a special case wherein the gravitational 
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potential energy density of a blackhole equals that of the Plank mass, matter converts to energy 
and spacetime expands with the release of a gamma ray burst.  The singularity in the SM is 
eliminated. 
 
CLASSICAL QUANTUM THEORY OF THE ATOM BASED ON MAXWELL’S 
EQUATIONS 
 One-electron atoms include the hydrogen atom, He+ , Li2 + , Be3+ , and so on.  The mass-
energy and angular momentum of the electron are constant; this requires that the equation of 
motion of the electron be temporally and spatially harmonic.  Thus, the classical wave equation 
applies and 
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where ρ(r,θ,φ , t) is the charge density function of the electron in time and space.  In general, the 
wave equation has an infinite number of solutions.  To arrive at the solution which represents the 
electron, a suitable boundary condition must be imposed.  It is well known from experiments that 
each single atomic electron of a given isotope radiates to the same stable state.  Thus, the 
physical boundary condition of nonradiation of the bound electron was imposed on the solution 
of the wave equation for the charge density function of the electron [1].  The condition for 
radiation by a moving point charge given by Haus [2] is that its spacetime Fourier transform 
does possess components that are synchronous with waves traveling at the speed of light.  
Conversely, it is proposed that the condition for nonradiation by an ensemble of moving point 
charges that comprises a current density function is  
 

For non-radiative states, the current-density function must NOT possess spacetime Fourier 
components that are synchronous with waves traveling at the speed of light. 
 

The time, radial, and angular solutions of the wave equation are separable.  The motion is time 
harmonic with frequency ωn .  A constant angular function is a solution to the wave equation.  

The solution for the radial function which satisfies the boundary condition is a delta function  

 f (r) =
1
r2 δ(r − rn )  (2) 

which defines a constant charge function on a spherical shell where rn = nr1.  Given time 

harmonic motion and a radial delta function, the relationship between an allowed radius and the 
electron wavelength is  given by 
 2πrn = λn  (3) 

Using the de Broglie relationship for the electron mass where the coordinates are spherical, 
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and the magnitude of the velocity for every point on the orbitsphere is 

 
  
vn =

h

mern

 (5) 

The sum of the L i , the magnitude of the angular momentum of each infinitesimal point of the 
orbitsphere of mass mi , must be constant.  The constant is  h . 

 
  

|L i |∑ = r × miv∑ = mern
h

mern

= h  (6) 

Thus, an electron is a spinning, two-dimensional spherical surface, called an electron 
orbitsphere, that can exist in a bound state at only specified distances from the nucleus as shown 
in Figure 1.  The corresponding current function shown in Figure 2 which gives rise to the 
phenomenon of spin is derived in the “Spin Function” section. 
 Nonconstant functions are also solutions for the angular functions.  To be a harmonic 
solution of the wave equation in spherical coordinates, these angular functions must be spherical 
harmonic functions.  A zero of the spacetime Fourier transform of the product function of two 
spherical harmonic angular functions, a time harmonic function, and an unknown radial function 
is sought.  The solution for the radial function which satisfies the boundary condition is also a 
delta function given by Eq. (2).  Thus, bound electrons are described by a charge-density (mass-
density) function which is the product of a radial delta function, two angular functions (spherical 
harmonic functions), and a time harmonic function. 

 ρ(r,θ,φ, t) = f (r)A(θ,φ,t) =
1
r 2 δ (r − rn )A(θ,φ,t); A(θ,φ, t) = Y (θ,φ)k(t) (7) 

In these cases, the spherical harmonic functions correspond to a traveling charge density wave 
confined to the spherical shell which gives rise to the phenomenon of orbital angular momentum.  
The orbital functions which modulate the constant “spin” function shown graphically in Figure 3 
are given in the “Angular Functions” section. 
 
SPIN FUNCTION 
 The orbitsphere spin function comprises a constant charge density function with moving 
charge confined to a two-dimensional spherical shell.  The current pattern of the orbitsphere spin 
function comprises an infinite series of correlated orthogonal great circle current loops wherein 
each point moves time harmonically with angular velocity  

 
  
ωn =

h

mern
2  (8) 

 The current pattern is generated over the surface by a series of nested rotations of two 
orthogonal great circle current loops where the coordinate axes rotate with the two orthogonal 
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great circles.  Half of the pattern is generated as the z-axis rotates to the negative z-axis during a 
1st set of nested rotations.  The mirror image, second half of the pattern is generated as the z-axis 
rotates back to its original direction during a 2nd set of nested rotations. 
 
Points on Great Circle Current Loop One: 
 

 

























































α∆α∆α∆α∆
α∆−α∆

α∆α∆−α∆−α∆
=

'

'

'

z
y
x

  
)(cos     )sin()cos(   )sin(

)sin(            )cos(                  
)cos()sin(    )(sin    )cos(

z
y
x

1

1

1

2

2

1

1

1
0  (9) 

 

and ∆α' = −∆α  replaces ∆α  for ∑
α∆
π

=
π=α∆

2

1
2

n
; ∑

α∆
π

=
π=α∆

'

n
'

2

1
2  

 
Points on Great Circle Current Loop Two: 
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The orbitsphere is given by reiterations of Eqs. (9) and (10).  The output given by the non primed 
coordinates is the input of the next iteration corresponding to each successive nested rotation by 
the infinitesimal angle where the summation of the rotation about each of the x-axis and the y-

axis is ∑
α∆
π

=
π=α∆

2

1
2

n
 (1st set) and ∑

α∆
π

=
π=α∆

'

n
'

2

1
2  (2nd set).  The current pattern corresponding 

to great circle current loop one and two shown with 8.49 degree increments of the infinitesimal 
angular variable ∆α(∆α' )  of Eqs. (9) and (10) is shown from the perspective of looking along 
the z-axis in Figure 2.  The true orbitsphere current pattern is given as ∆α(∆α' )  approaches 
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zero.  This current pattern gives rise to the phenomenon corresponding to the spin quantum 
number of the electron. 
 
MAGNETIC FIELD EQUATIONS OF THE ELECTRON 
 The orbitsphere is a shell of negative charge current comprising correlated charge motion 
along great circles.  For  = 0, the orbitsphere gives rise to a magnetic moment of 1 Bohr 
magneton [3]. 

 
  
µB =

eh
2me

= 9.274 X 10−24
 JT −1,  (11) 

The magnetic field of the electron shown in Figure 4 is given by 

 
  
H =

eh

mern
3 (ir cosθ − iθ sinθ )      for r < rn  (12) 

 
  
H =

eh
2mer

3 (ir 2 cosθ − iθ sin θ)     for r > rn  (13) 

The energy stored in the magnetic field of the electron is 

 Emag =
1
2

µ o H 2r 2 sin θdrdθdΦ
0

∞

∫
0

π

∫
0

2π

∫  (14) 

 
  
Emag total =

πµ oe
2 h2

me
2r1

3  (15) 

 
STERN-GERLACH EXPERIMENT 
 The Stern-Gerlach experiment implies a magnetic moment of one Bohr magneton and an 
associated angular momentum quantum number of 1/2.  Historically, this quantum number is 

called the spin quantum number, s (s =
1
2

; ms = ±
1
2

).  The superposition of the vector projection 

of the orbitsphere angular momentum on to an axis S  that precesses about the z-axis called the 

spin axis at an angle of θ =
π
3

 and an angle of φ = π  with respect to 
α∆∑xyL  is  

 h
4
3

±=S  (16) 

S  rotates about the z-axis at the Larmor frequency.  Sz , the time averaged projection of the 

orbitsphere angular momentum onto the axis of the applied magnetic field is  

 
  
L z ∑ ∆α ±

h

2
. (17) 

 
ELECTRON g FACTOR 
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 Conservation of angular momentum of the orbitsphere permits a discrete change of its 

“kinetic angular momentum” (r × mv)  by the applied magnetic field of 
  

h

2
, and concomitantly 

the “potential angular momentum” (r × eA)  must change by 
 
−

h

2
. 
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In order that the change of angular momentum, ∆L , equals zero, φ  must be 
e

h
2

=0Φ , the 

magnetic flux quantum.  The magnetic moment of the electron is parallel or antiparallel to the 
applied field only.  During the spin-flip transition, power must be conserved.  Power flow is 
governed by the Poynting power theorem, 
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Eq. (21) gives the total energy of the flip transition which is the sum of the energy of 
reorientation of the magnetic moment (1st term), the magnetic energy (2nd term), the electric 
energy (3rd term), and the dissipated energy of a fluxon treading the orbitsphere (4th term), 
respectively. 
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 ∆Emag

spin = gµBB  (22) 

where the stored magnetic energy corresponding to the 



 •µ

∂
∂ HHot 2

1  term increases, the 

stored electric energy corresponding to the 



 •ε

∂
∂ EEot 2

1  term increases, and the J •E  term is 

dissipative.  The spin-flip transition can be considered as involving a magnetic moment of g  
times that of a Bohr magneton.  The g  factor is redesignated the fluxon g  factor as opposed to 

the anomalous g  factor.  The calculated value of 
g
2

 is 1.001  159  652  137.  The experimental 

value [4] of 
g
2

 is 1.001  159  652  188(4). 

 
ANGULAR FUNCTIONS 
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 The time, radial, and angular solutions of the wave equation are separable.  Also based on the 
radial solution, the angular charge and current-density functions of the electron, A(θ, φ, t), must 
be a solution of the wave equation in two dimensions (plus time), 
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whereρ(r,θ,φ ,t) = f (r)A(θ ,φ, t) =
1
r 2 δ(r − rn )A(θ,φ,t)  and A(θ, φ, t) = Y (θ,φ )k(t) 
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where v  is the linear velocity of the electron.  The charge-density functions including the time-
function factor are 
 

 = 0 
 
 

  
ρ(r,θ,φ ,t) =

e
8πr2 [δ(r − rn )] Yl

m θ, φ( )+ Y0
0 θ,φ( )[ ] (25) 
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and ωn = 0 for m = 0.   

 
SPIN AND ORBITAL PARAMETERS 
 The total function that describes the spinning motion of each electron orbitsphere is 
composed of two functions.  One function, the spin function, is spatially uniform over the 
orbitsphere, spins with a quantized angular velocity, and gives rise to spin angular momentum.  
The other function, the modulation function, can be spatially uniform—in which case there is no 
orbital angular momentum and the magnetic moment of the electron orbitsphere is one Bohr 
magneton—or not spatially uniform—in which case there is orbital angular momentum.  The 
modulation function also rotates with a quantized angular velocity.   
 The spin function of the electron  corresponds to the nonradiative n = 1,   l  = 0 state of atomic 
hydrogen which is well known as an s state or orbital.  (See Figure 1 for the charge function and 
Figure 2 for the current function.)  For orbitals with the  l  quantum number not equal to zero, the 
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constant spin function is modulated by a time and spherical harmonic function as given by Eq. 
(26) and shown in Figure 3.  The modulation or traveling charge density wave corresponds to an 
orbital angular momentum in addition to a spin angular momentum.  These states are typically 
referred to as p, d, f, etc. orbitals.  Application of Haus’s [2] condition also predicts nonradiation 
for a constant spin function modulated by a time and spherically harmonic orbital function.  
There is acceleration without radiation.  (Also see Abbott and Griffiths and Goedecke [5-6]).  
However, in the case that such a state arises as an excited state by photon absorption, it is 
radiative due to a radial dipole term in its current density function since it possesses spacetime 
Fourier Transform components synchronous with waves traveling at the speed of light [2].  (See 
“Instability of Excited States” section.) 
 
Moment of Inertia and Spin and Rotational Energies 
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 hmL z =   (31) 
 Lz total = Lz spin + Lz orbital   (32) 
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 Erotational , orbital = 0  (35) 

From Eq. (35), the time average rotational energy is zero; thus, the principal levels are 
degenerate except when a magnetic field is applied. 
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NONRADIATION CONDITION (Acceleration Without Radiation) 
 The Fourier transform of the electron charge density function is a solution of the four-
dimensional wave equation in frequency space (k,ω space ).  Then the corresponding Fourier 
transform of the current density function K(s,Θ,Φ,ω) is given by multiplying by the constant 
angular frequency. 

K(s,Θ,Φ,ω) = 4πωn
sin(2snrn )
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sn • vn = s n • c = ωn  implies rn = λ n    Spacetime harmonics of k
c

n =
ω

 or k
c o

n =
ε
εω

 for 

which the Fourier transform of the current-density function is nonzero do not exist.  Radiation 
due to charge motion does not occur in any medium when this boundary condition is met. 
 
FORCE BALANCE EQUATION 
 The radius of the nonradiative (n = 1) state is solved using the electromagnetic force 
equations of Maxwell relating the charge and mass density functions wherein the angular 
momentum of the electron is given by Planck’s constant bar.  The reduced mass arises naturally 
from an electrodynamic interaction between the electron and the proton. 
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 r1 =
aH

Z
 (38) 

ENERGY CALCULATIONS 
 From Maxwell’s equations, the potential energy V , kinetic energy T , electric energy or 
binding energy Eele  are 

 V =
−Ze2

4πεor1

=
−Z 2e2

4πεoaH

= −Z2
 X 4.3675 X 10−18

 J = −Z 2
 X 27.2 eV  (39) 

 T =
Z 2e2

8πεoaH

= Z 2
 X 13.59 eV  (40) 

 T = Eele = −
1
2

ε o E2dv
∞

r1

∫   where E = −
Ze

4πεor
2 . (41) 

 Eele = −
Z 2e2

8πεoaH

= −Z 2
 X 2.1786 X 10−18  J = −Z 2

 X 13.598 eV  (42) 
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The calculated Rydberg constant is 109,677.58 cm−1 ; the experimental Rydberg constant is 
109,677.58 cm−1 .   
 
EXCITED STATES 
 CQM gives closed form solutions for the resonant photons and excited state electron 
functions.  The angular momentum of the photon given by  

 
  
m =

1
8π

Re r × (E × B*)[ ]= h   (43) 

is conserved [7].  The change in angular velocity of the electron is equal to the angular frequency 
of the resonant photon. The energy is given by Planck’s equation.  The predicted energies, Lamb 
shift, hyperfine structure, resonant line shape, line width, selection rules, etc. are in agreement 
with observation. 
 The orbitsphere is a dynamic spherical resonator cavity which traps photons of discrete 
frequencies. The relationship between an allowed radius and the “photon standing wave” 
wavelength is  
 2πr = nλ  (44) 
where n  is an integer.  The relationship between an allowed radius and the electron wavelength 
is  
 2π(nr1) = 2πrn = nλ1 = λ n  (45) 

where n = 1,2,3,4,.. . .  The radius of an orbitsphere increases with the absorption of 
electromagnetic energy.  The radii of excited states are solved using the electromagnetic force 
equations of Maxwell relating the field from the charge of the proton, the electric field the 
photon, and charge and mass density functions of the electron wherein the angular momentum of 
the electron is given by Planck’s constant bar (Eq. (37)).  The solutions to Maxwell’s equations 
for modes that can be excited in the orbitsphere resonator cavity give rise to four quantum 
numbers, and the energies of the modes are the experimentally known hydrogen spectrum.  The 
relationship between the electric field equation and the “trapped photon” source charge-density 
function is given by Maxwell’s equation in two dimensions. 

 n • E1 − E2( )=
σ
ε0

 (46) 

The photon standing electromagnetic wave is phase matched with the electron 
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 ωn = 0 for m = 0 
For r = naH  and m = 0, the total radial electric field is 

 E rtotal =
1
n

e
4πεo naH( )2  (49) 

 The energy of the photon which excites a mode in the electron spherical resonator cavity 
from radius aH  to radius naH  is 

 ω=ν=



 −

πε
= hh

na
eE

Ho
photon 2

2 11
8

 (50) 

The change in angular velocity of the orbitsphere for an excitation from n = 1 to n = n  is  

 
( ) ( ) ( ) 



 −=−=ω∆ 2222

11
namnamam HeHeHe

hhh  (51) 

The kinetic energy change of the transition is 

 ω=



 −

πε
=∆ h2

0

2
2 11

82
1

na
e)v(m

H
e  (52) 

The change in angular velocity of the electron orbitsphere is identical to the angular velocity of 
the photon necessary for the excitation, ω photon .  The correspondence principle holds.  It can be 

demonstrated that the resonance condition between these frequencies is to be satisfied in order to 
have a net change of the energy field [8]. 
 
ORBITAL AND SPIN SPLITTING 
 The ratio of the square of the angular momentum, M2 , to the square of the energy, U2 , for a 
pure (  l , m) multipole is [9] 

 
M2

U 2 =
m 2

ω 2  (53) 

The magnetic moment is defined as 

 µ =
charge x angular momentum

2 x mass
 (54) 

The radiation of a multipole of order (  l , m) carries m  h  units of the z component of angular 
momentum per photon of energy   hω .  Thus, the z component of the angular momentum of the 
corresponding excited state electron orbitsphere is 
   Lz = mh  (55) 
Therefore, 

 
  
µ z =

emh

2me

= mµB  (56) 
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where µB  is the Bohr magneton.  The orbital splitting energy is 
 Emag

orb = mµBB  (57) 

The spin and orbital splitting energies superimpose; thus, the principal excited state energy 
levels of the hydrogen atom are split by the energy Emag

spin/ orb . 

 
  
Emag

spin / orb = m
eh

2me

B + msg
eh

me

B  where (58) 

 

  

n = 2,3,4,.. .
l = 1,2,... ,n − 1
m = −l,−l +1,.. .,0,... ,+l

ms = ±
1
2

 

For the electric dipole transition, the selection rules are 

 
∆m = 0,±1
∆ms = 0

 (59) 

 
RESONANT LINE SHAPE AND LAMB SHIFT 
 The spectroscopic linewidth shown in Figure 5 arises from the classical rise-time band-width 
relationship, and the Lamb Shift is due to conservation of energy and linear momentum and 
arises from the radiation reaction force between the electron and the photon.  It follows from the 
Poynting power theorem with spherical radiation that the transition probabilities are given by the 
ratio of power and the energy of the transition [10].  The transition probability in the case of the 
electric multipole moment is 

 
1
τ

=
power
energy

 (60) 
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  (61) 

 E ω( ) ∝ e−αt
0

∞

∫ e−iωtdt =
1

α − iω
 (62) 

The relationship between the rise-time and the band-width for exponential decay is 

 τΓ =
1
π

 (63) 

The energy radiated per unit frequency interval is 

 
dI ω( )

dω
= I0

Γ
2π

1
ω − ω 0 − ∆ω( )2

+ Γ / 2( )2  (64) 
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LAMB SHIFT  
 The Lamb Shift of the 2P1/ 2  state of the hydrogen atom is due to conservation of linear 

momentum of the electron, atom, and photon.  The electron component is 

 ∆f =
∆ω
2π

=
Ehυ

h
= 3

Ehυ( )2

h2mec
2 =1052 MHz  (65) 

where Ehυ  is 

 
  

Ehν =13.6 1 −
1
n2

 
 

 
 

1
Xlm l=1

2 − h∆f  (66) 

 Ehν =13.6 1 −
1
n2

 
 

 
 

3
8π

− h∆f  (67) 

 h∆f <<<1 (68) 
Therefore, 

 Ehν =13.6 1 −
1
n2

 
 

 
 

3
8π

 (69) 

The atom component is 

 ∆f =
∆ω
2π

=
Ehυ

h
=

1
2

Ehυ( )2

2mHc2 = 6.5 MHz  (70) 

The sum of the components is 
 ∆f = 1052 MHz + 6.5 MHz = 1058.5 MHz  (71) 
The experimental Lamb Shift is 1058 MHz . 
 
INSTABILITY OF EXCITED STATES  
 For the excited energy states of the hydrogen atom, σ photon , the two dimensional surface 

charge due to the “trapped photons” at the electron orbitsphere, given by Eq. (46) and Eq. (47) is 

 ( ) ( ) ( )[ ]{ }[ ] )rr(e,YRe,Y
n

,Y
)r(

e
n

tim

n
photon

n −δ



 +φθ+φθ−φθ

π
=σ ω11

4
0

0
0

02 l  (72) 

where n = 2,3,4,.. ., .  Whereas, σelectron , the two dimensional surface charge of the electron 

orbitsphere given by Eq. (26) is 

 ( ) ( )[ ]{ }[ ] )rr(e,YRe,Y
)r(

e
n

tim

n
electron

n −δ+φθ+φθ
π

−
=σ ω1

4
0

02 l  (73) 

The superposition of σ photon  (Eq. (72)) and σelectron  is equivalent to the sum of a radial electric 

dipole represented by a doublet function and a radial electric monopole represented by a delta 
function. 
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 74) 

where n = 2,3,4,..., .  Due to the radial doublet, excited states are radiative since spacetime 

harmonics of 
ωn

c
= k  or k

c o

n =
ε
εω

 do exist for which the spacetime Fourier transform of the 

current density function is nonzero.  
 
PHOTON EQUATIONS 
 The time-averaged angular-momentum density, m , of an emitted photon is  

 
  
m =

1
8π

Re r × (E × B*)[ ]= h  (75) 

A linearly polarized photon orbitsphere is generated from two orthogonal great circle field lines 
shown in Figure 6 rather than two great circle current loops as in the case of the electron spin 
function.  The right-handed circularly polarized photon orbitsphere shown in Figure 7 
corresponds to the case wherein the summation of the rotation about each of the x-axis and the y-

axis is ∑
α∆
π

=
π=α∆

2

1
2

n
, and the mirror image left-handed circularly polarized photon orbitsphere 

corresponds to the case wherein the summation of the rotation about each of the x-axis and the y-

axis is ∑
α∆
π

=
π=α∆

'

n
'

2

1
2 . 

 
Nested Set of Great Circle Field Lines Generates the Photon Function 
 
H Field: 
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and ∆α' = −∆α  replaces ∆α  for ∑
α∆
π

=
π=α∆

2

1
2

n
; ∑

α∆
π

=
π=α∆

'

n
'

2

1
2  
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E Field: 
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and ∆α' = −∆α  replaces ∆α  for ∑
α∆
π

=
π=α∆

2

1
2

n
; ∑

α∆
π

=
π=α∆

'

n
'

2

1
2  

 
 The field lines in the lab frame follow from the relativistic invariance of charge as given by 
Purcell [11].  The relationship between the relativistic velocity and the electric field of a moving 

charge shown schematically in Figure 8.  From Eqs. (76-77) with ∑
α∆
π

=
π=α∆

2

1
2

n
, the photon 

equation in the lab frame of a right-handed circularly polarized photon orbitsphere is 
 E = E0 x + iy[ ]e− jkzz e− jωt  (78) 

 [ ] [ ] tjzjktjzjk eeieei zz ω−−ω−− −
µ
ε

=−







η

= xyExy
E

H 0
0  (79) 

with a wavelength of 

 λ = 2π
c
ω

 (80) 

The relationship between the photon orbitsphere radius and wavelength is  
 2πr0 = λ 0  (81) 

The electric field lines of a right-handed circularly polarized photon orbitsphere as seen along 
the axis of propagation in the lab inertial reference frame as it passes a fixed point is shown in 
Figure 9. 
 
Spherical Wave 
 Photons superimpose, and the amplitude due to N  photons is 

 ∑
=

−−

φθ
−π

=
N

n

'ik

total ),(f
||

e r

1

rr

4 r'r
E  (82) 

In the far field, the emitted wave is a spherical wave  
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 E total = Eo
e−ikr

r
 (83) 

The Green Function is given as the solution of the wave equation.  Thus, the superposition of 
photons gives the classical result.  As r  goes to infinity, the spherical wave becomes a plane 
wave.  The double slit interference pattern is predicted.  From the equation of a photon, the 
wave-particle duality arises naturally.  The energy is always given by Planck’s equation; yet, an 
interference pattern is observed when photons add over time or space. 
 
EQUATIONS OF THE FREE ELECTRON 
Charge Density Function 
 The radius of an electron orbitsphere increases with the absorption of electromagnetic energy 
[12].  With the absorption of a photon of energy exactly equal to the ionization energy, the 
electron becomes ionized and is a plane wave (spherical wave in the limit) with the de Broglie 
wavelength.  The ionized electron traveling at constant velocity is nonradiative and is a two 
dimensional surface having a total charge of e  and a total mass of me .  The solution of the 

boundary value problem of the free electron is given by the projection of the orbitsphere into a 
plane that linearly propagates along an axis perpendicular to the plane where the velocity of the 
plane and the orbitsphere is given by  

 
  
v =

h

meρ0

 (84) 

and the radius of the orbitsphere in spherical coordinates is equal to the radius of the free 
electron in cylindrical coordinates ( ρ0 = r0 ).  The mass density function of a free electron shown 
in Figure 10 is a two dimensional disk having the mass density distribution in the xy(ρ )-plane 

 ( ) )z(
m

z,,
o

e
m δρ−ρ








ρ
ρ

πρ
=φρρ π 22

0
3

0
2

3
2

 (85) 

and charge-density distribution, ρe ρ,φ,z( ), in the xy-plane given by replacing me  with e .  The 

charge density distribution of the free electron has recently been confirmed experimentally [13-
14].  Researchers working at the Japanese National Laboratory for High Energy Physics (KEK) 
demonstrated that the charge of the free electron increases toward the particle’s core and is 
symmetrical as a function of φ .  In addition, the wave-particle duality arises naturally, and the 
result is consistent with scattering experiments from helium and the double split experiment [1]. 
 
Current Density Function 
 Consider an electron initially bound as an orbitsphere of radius r = rn = ro  ionized from a 

hydrogen atom with the magnitude of the angular velocity of the orbitsphere is given by 
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ω =

h

mer
2

 (86) 

The current-density function of the free electron propagating with velocity vz  along the z-axis in 
the inertial frame of the proton is given by the vector projection of the current into xy-plane as 
the radius increases from r = ro  to r = ∞ .  The current-density function of the free electron, is 
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where ρo = ro .  The angular momentum, L , is given by 
 Liz = mer

2ω  (88) 

Substitution of me  for e  in Eq. (87) followed by substitution into Eq. (88) gives the angular 

momentum density function, L  
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The total angular momentum of the free electron is given by integration over the two 
dimensional disk having the angular momentum density given by Eq. (89). 
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The four dimensional spacetime current-density function of the free electron that propagates 
along the z-axis with velocity given by Eq. (84) corresponding to r = ro = ρ0  is given by 

substitution of Eq. (84) into Eq. (88). 
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The spacetime Fourier Transform of is 
 

  

e
4
3

πρ0
3

h

me

sinc(2πsρo ) + 2πe
h

meρ0

δ(ω − kz • vz ) (92) 

Spacetime harmonics of k
c

 or k
c o

nn =
ε
εω

=
ω

 do not exist.  Radiation due to charge motion 

does not occur in any medium when this boundary condition is met.  Thus, no Fourier 

components that are synchronous with light velocity with the propagation constant kz =
ω
c

 

exist.  Radiation due to charge motion does not occur when this boundary condition is met.  It 
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follows from Eq. (84) and the relationship 2πρo = λo  that the wavelength of the free electron is 

the de Broglie wavelength. 

 λ o =
h

mevz

= 2πρo  (93) 

 In the presence of a z-axis applied magnetic field, the free electron precesses.  The time 
average vector projection of the total angular momentum of the fee electron onto an axis S  that 

rotates about the z-axis is h
4
3

± , and the time averaged projection of the angular momentum 

onto the axis of the applied magnetic field is 
 
±

h

2
.  Magnetic flux is linked by the electron in 

units of the magnetic flux quantum with conservation of angular momentum as in the case of the 

orbitsphere as the projection of the angular momentum along the magnetic field axis of 
 

h

2
  

reverses direction.  The energy, ∆Emag
spin , of the spin flip transition corresponding to the ms = 

1
2

 

quantum number is given by Eq. (22). 
 ∆Emag

spin = gµBB  (94) 

The Stern-Gerlach experiment implies a magnetic moment of one Bohr magneton and an 
associated angular momentum quantum number of 1/2.  Historically, this quantum number is 
called the spin quantum number, ms, and that designation is maintained. 

 
TWO ELECTRON ATOMS 
 Two electron atoms may be solved from a central force balance equation with the 
nonradiation condition.  The force balance equation is 
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which gives the radius of both electrons as 
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Ionization Energies Calculated using the Poynting Power Theorem 
 For helium, which has no electric field beyond r1  
 Ionization Energy(He) = −E(electric) + E(magnetic) (97) 
where, 

 E(electric) = −
(Z −1)e2

8πεor1

 (98) 
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E(magnetic) =

2πµ 0e
2h2

me
2r1

3  (99) 

For 3 ≤ Z  

 Ionization Energy = −Electric Energy −
1
Z

Magnetic Energy  (100) 

The energies of several two-electron atoms are given in Table 1. 
 
ELASTIC ELECTRON SCATTERING FROM HELIUM ATOMS 
 The aperture distribution function, a(ρ,φ ,z) , for the elastic scattering of an incident electron 
plane wave represented by π (z) by a helium atom represented by  

 
2

4π(0.567aο )2 [δ(r − 0.567aο)] (101) 

is given by the convolution of the plane wave with the helium atom function: 

 a(ρ,φ ,z) = π(z) ⊗
2

4π(0.567aο )2 [δ(r − 0.567aο)] (102) 

The aperture function is 
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Far Field Scattering (circular symmetry) 
 Applying Huygens’ principle to a disturbance caused by the plane wave electron over the 
helium atom as an aperture gives the amplitude of the far field or Fraunhofer diffraction pattern 
F s( ) as the Fourier Transform of the aperture distribution.  The intensity I1

ed  is the square of the 
amplitude. 
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 s =
4π
λ

sin
θ
2

;  w = 0 (units of Å−1)  (106) 

 
The experimental results of Bromberg [17], the extrapolated experimental data of Hughes [17], 
the small angle data of Geiger [18] and the semiexperimental results of Lassettre [17] for the 
elastic differential cross section for the elastic scattering of electrons by helium atoms is shown 
graphically in Figure 11.  The elastic differential cross section as a function of angle numerically 
calculated by Khare [17] using the first Born approximation and first-order exchange 
approximation also appear in Figure 11.  These results which are based on a quantum mechanical 
model are compared with experimentation [17-18].  The closed form function (Eqs. (105) and 
(106)) for the elastic differential cross section for the elastic scattering of electrons by helium 
atoms is shown graphically in Figure 12.  The scattering amplitude function, F(s) (Eq. (104), is 
shown as an insert.  It is apparent from Figure 11 that the quantum mechanical calculations fail 
completely at predicting the experimental results at small scattering angles; whereas, there is 
good agreement between Eq. (105) and the experimental results. 
 
THE NATURE OF THE CHEMICAL BOND OF HYDROGEN 
 The hydrogen molecule charge and current density functions, bond distance and energies are 
solved from the Laplacian in ellipsoidal coordinates with the constraint of nonradiation.  

 (η − ζ)Rξ
∂
∂ξ

(Rξ
∂φ
∂ξ

) + (ζ − ξ)Rη
∂

∂η
(Rη

∂φ
∂η

) + (ξ −η)Rζ
∂
∂ζ

(Rζ
∂φ
∂ζ

) = 0  (107) 

The force balance equation for the hydrogen molecule is 

 
  

h2

mea
2b2 2ab2X =

e2

4πεo

X +
h2

2mea
2b2 2ab2 X  (108) 

where 

 
η−ξ
1−ξ

+ξ+ξ
=

2

2

cba
X 111

22
  (109) 

Eq. (108) has the parametric solution 
 r(t) = ia cosωt + jbsinωt  (110) 
when the semimajor axis, a , is 
 a = ao .  (111) 

The internuclear distance, 2c' , which is the distance between the foci is  
 oa'c 22 =  (112) 

The experimental internuclear distance is oa2 .  The semiminor axis is 
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 oab
2

1
=  (113) 

The eccentricity, e , is  
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1
=e  (114) 

 
The Energies of the Hydrogen Molecule  
 The potential energy of the two electrons in the central field of the protons at the foci is 
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The potential energy of the two protons is 
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The kinetic energy of the electrons is 
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The energy, Vm , of the magnetic force between the electrons is 

 
  
Vm =

−h2

4mea a2 − b2
ln

a + a2 − b2

a − a2 − b2
= −16.9533 eV  (118) 

The total energy is 
 ET = Ve + T + Vm + Vp  (119) 
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The energy of two hydrogen atoms is 
 [ ] eV .)aH(E H 21272 −=  (121) 
The bond dissociation energy, ED , is the difference between the total energy of the 
corresponding hydrogen atoms (Eq. (121)) and ET  (Eq. (120)). 
 [ ] eV .E)aH(EE THD 4342 =−=  (122) 

The experimental energy determined by calorimetry is 
 ED = 4.45 eV  (123) 
 
COSMOLOGICAL THEORY BASED ON MAXWELL’S EQUATIONS 
 Maxwell’s equations and special relativity are based on the law of propagation of a 
electromagnetic wave front in the form 
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For any kind of wave advancing with limiting velocity and capable of transmitting signals, the 
equation of front propagation is the same as the equation for the front of a light wave.  Thus, the 
equation 

 
1
c2

∂ω
∂t

 
 

 
 

2

− gradω( )2 = 0 (125) 

acquires a general character; it is more general than Maxwell’s equations from which Maxwell 
originally derived it.  
 A discovery of the present work is that the classical wave equation governs: (1) the motion of 
bound electrons, (2) the propagation of any form of energy, (3) measurements between inertial 
frames of reference such as time, mass, momentum, and length (Minkowski tensor), (4) 
fundamental particle production and the conversion of matter to energy, (5) a relativistic 
correction of spacetime due to particle production or annihilation (Schwarzschild metric), (6) the 
expansion and contraction of the Universe, (7) the basis of the relationship between Maxwell’s 
equations, Planck’s equation, the de Broglie equation, Newton’s laws, and special, and general 
relativity. 
 The relationship between the time interval between ticks t  of a clock in motion with velocity 
v  relative to an observer and the time interval t0  between ticks on a clock at rest relative to an 

observer is [19] 
 ct( )2 = ct0( )2

+ vt( )2  (126) 

Thus, the time dilation relationship based on the constant maximum speed of light c  in any 
inertial frame is  
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2
0

1
c
v

t
t

−

=  (127) 

The metric gµν  for Euclidean space is the Minkowski tensor ηµν .  In this case, the separation of 
proper time between two events xµ  and xµ + dxµ  is dτ 2 = −ηµν dxµdx ν . 

 
THE EQUIVALENCE OF THE GRAVITATIONAL MASS AND THE INERTIAL MASS 
 The equivalence of the gravitational mass and the inertial mass, mg / mi = universal constant , 

which is predicted by Newton’s law of mechanics and gravitation is experimentally confirmed to 
less 1 X 10−11  [20].  In physics, the discovery of a universal constant often leads to the 
development of an entirely new theory.  From the universal constancy of the velocity of light, c  
the special theory of relativity was derived; and from Planck’s constant h , the quantum theory 
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was deduced.  Therefore, the universal constant mg / mi  should be the key to the gravitational 

problem.   The energy equation of Newtonian gravitation is  

 
E =

1
2

mv2 −
GMm

r
=

1
2

mv0
2 −

GMm
r0

= constant  (128)
 

Since h , the angular momentum per unit mass, is  
 h = L / m = r × v = r0v0 sinφ  

the eccentricity e  may be written as  

 e = [1 + v0
2 −

2GM
r0

 

 
  

 
 r0

2v0
2 sin2 φ

G2 M2 ]1/ 2  (129)
 

where m  is the inertial mass of a particle, v0  is the speed of the particle, r0  is the distance of the 
particle from a massive object, φ  is the angle between the direction of motion of the particle and 
the radius vector from the object, and M  is the total mass of the object (including a particle).  
The eccentricity e  given by Newton’s differential equations of motion in the case of the central 
field permits the classification of the orbits according to the total energy E  [21] (column 1) and 

the orbital velocity squared, v0
2 , relative to the gravitational velocity squared, 

2GM
r0

 [21] 

(column 2): 

 E < 0        v0
2 <

2GM
r0

e <1 ellipse 

 E < 0        v0
2 <

2GM
r0

e = 0 circle (special case of ellipse) 

 E = 0         v0
2 =

2GM
r0

e =1 parabolic orbit 

 E > 0        v0
2 >

2GM
r0

e >1 hyperbolic orbit 

  (130) 
 
CONTINUITY CONDITIONS FOR THE PRODUCTION OF A PARTICLE FROM A 
PHOTON TRAVELING AT LIGHT SPEED  
 A photon traveling at the speed of light gives rise to a particle with an initial radius equal to 
its Compton wavelength bar. 

 
  
r = DC =

h

mc
= rα

*  (131) 

The particle must have an orbital velocity equal to Newtonian gravitational escape velocity vg  of 

the antiparticle.  
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The eccentricity is one.  The orbital energy is zero.  The particle production trajectory is a 
parabola relative to the center of mass of the antiparticle. 
 
A Gravitational Field as a Front Equivalent to Light Wave Front 
 The particle with a finite gravitational mass gives rise to a gravitational field that travels out 
as a front equivalent to a light wave front.  The form of the outgoing gravitational field front 

traveling at the speed of light is 





 −

c
rtf , and dτ 2  is given by 

 
( ) ( )[ ]2222221

2
22 1

φθ+θ+−=τ − dsinrdrdrrf
c

dtrfd  (133) 

The speed of light as a constant maximum as well as phase matching and continuity conditions 
of the electromagnetic and gravitational waves require the following form of the squared 
displacements: 

 ( ) ( ) ( )222 cttvc g =+τ  (134) 
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In order that the wave front velocity does not exceed c  in any frame, spacetime must undergo 
time dilation and length contraction due to the particle production event.  The derivation and 
result of spacetime time dilation is analogous to the derivation and result of special relativistic 
time dilation wherein the relative velocity of two inertial frames replaces the gravitational 
velocity. 
 The general form of the metric due to the relativistic effect on spacetime due to mass m0  
with vg  given by Eq. (132) is 
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The gravitational radius, rg , of each orbitsphere of the particle production event, each of mass 
m0 , and the corresponding general form of the metric are respectively 

 rg =
2Gm
c2 , (137) 
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The metric gµν  for non-Euclidean space due to the relativistic effect on spacetime due to mass 
m0  is 
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 Masses and their effects on spacetime superimpose.  The separation of proper time between 
two events xµ  and xµ + dxµ  is 
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The Schwarzschild metric (Eq. (140)) gives the relationship whereby matter causes relativistic 
corrections to spacetime that determines the curvature of spacetime and is the origin of gravity. 
 
Particle Production Continuity Conditions from Maxwell’s Equations, and the 
Schwarzschild Metric 
 The photon to particle event requires a transition state that is continuous wherein the velocity 
of a transition state orbitsphere is the speed of light.  The radius, r , is the Compton wavelength 
bar,   D C , given by Eq. (131).  At production, the Planck equation energy, the electric potential 
energy, and the magnetic energy are equal to m0c

2 . 

 The Schwarzschild metric gives the relationship whereby matter causes relativistic 
corrections to spacetime that determines the masses of fundamental particles.  Substitution of 

  r = DC  ; dr = 0 ; dθ = 0 ; sin2 θ =1 into the Schwarzschild metric gives 

 dτ = dt 1 −
2Gm0
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1
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with v2 = c2 , the relationship between the proper time and the coordinate time is 

 
c

v
ti

c
GMti

rc
GMti g

c
* ===τ
α D22

22  (142) 

When the orbitsphere velocity is the speed of light, continuity conditions based on the constant 
maximum speed of light given by Maxwell’s equations are mass energy = Planck equation 
energy = electric potential energy = magnetic energy = mass/spacetime metric energy.  
Therefore,  
   moc

2 = hω* = V = Emag = Espacetime  (143) 
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The continuity conditions based on the constant maximum speed of light given by the 
Schwarzschild metric are: 
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eproper tim

(145) 

 
MASSES OF FUNDAMENTAL PARTICLES 
 Each of the Planck equation energy, electric energy, and magnetic energy corresponds to a 
particle given by the relationship between the proper time and the coordinate time.  The electron 
and down-down-up neutron correspond to the Planck equation energy.  The muon and strange-
strange-charmed neutron correspond to the electric energy.  The tau and bottom-bottom-top 
neutron correspond to the magnetic energy.  The particle must possess the escape velocity vg   
relative to the antiparticle where vg < c .  According to Newton’s law of gravitation, the 

eccentricity is one and the particle production trajectory is a parabola relative to the center of 
mass of the antiparticle.  
 
The Electron-Antielectron Lepton Pair 
 A clock is defined in terms of a self consistent system of units used to measure the particle 
mass.  The proper time of the particle is equated with the coordinate time according to the 
Schwarzschild metric corresponding to light speed.  The special relativistic condition 
corresponding to the Planck energy gives the mass of the electron. 
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 me = 9.1097 X 10−31
 kg −18 eV (νe ) = 9.1094 X 10−31

 kg  (148) 
 me experimental = 9.1095 X 10−31

 kg  (149) 

 
Down-Down-Up Neutron (DDU) 
 The corresponding equation for production of the neutron is 
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 mN calculated = (3)(2π )
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1 −α
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 mNexperimental =1.6749X10−27
 kg  (152) 

 
GRAVITATIONAL POTENTIAL ENERGY 
 The gravitational radius, αG  or rG , of an orbitsphere of mass m0  is defined as  

 αG = rG =
Gm0

c2  (153) 

When   rG = rα
* = DC , the gravitational potential energy equals m0c

2  
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The mass m0  is the Planck mass, mu , 
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The corresponding gravitational velocity, vG , is defined as 
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Relationship of the Equivalent Planck Mass Particle Production Energies 
 For the Plank mass particle, the relationships corresponding to Eq. (144) are: (mass energy = 
Planck equation energy = electric potential energy = magnetic energy = gravitational potential 
energy = mass/spacetime metric energy) 
 

   moc
2 = hω* = V = Emag = Egrav = Espacetime  (158) 
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These equivalent energies give the particle masses in terms of the gravitational velocity, vG  and 
the Planck mass, mu  
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Planck Mass Particles 
 A pair of particles each of the Planck mass corresponding to the gravitational potential 
energy is not observed since the velocity of each transition state orbitsphere is the gravitational 
velocity vG  that in this case is the speed of light; whereas, the Newtonian gravitational escape 
velocity vg  is 2  the speed of light.  In this case, an electromagnetic wave of mass energy 

equivalent to the Planck mass travels in a circular orbit about the center of mass of another 
electromagnetic wave of mass energy equivalent to the Planck mass wherein the eccentricity is 
equal to zero and the escape velocity can never be reached.  The Planck mass is a “measuring 

stick.” The extraordinarily high Planck mass ( kg  X .
G
c 810182 −=

h ) is the unobtainable mass 

bound imposed by the angular momentum and speed of the photon relative to the gravitational 
constant.  It is analogous to the unattainable bound of the speed of light for a particle possessing 
finite rest mass imposed by the Minkowski tensor. 
 
Astrophysical Implications of Planck Mass Particles 
 The limiting speed of light eliminates the singularity problem of Einstein’s equation that 
arises as the radius of a blackhole equals the Schwarzschild radius.  General relativity with the 
singularity eliminated resolves the paradox of the infinite propagation velocity required for the 
gravitational force in order to explain why the angular momentum of objects orbiting a 
gravitating body does not increase due to the finite propagation delay of the gravitational force 
according to special relativity [22].  When the gravitational potential energy density of a massive 
body such as a blackhole equals that of a particle having the Planck mass, the matter may 
transition to photons of the Planck mass.  Even light from a blackhole will escape when the 
decay rate of the trapped matter with the concomitant spacetime expansion is greater than the 
effects of gravity which oppose this expansion.  Gamma-ray bursts are the most energetic 
phenomenon known that can release an explosion of gamma rays packing 100 times more energy 
than a supernova explosion [23].  The annihilation of a blackhole may be the source of γ -ray 
bursts.  The source may be due to conversion of matter to photons of the Planck mass/energy 
which may also give rise to cosmic rays which are the most energetic particles known, and their 
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origin is also a mystery [24].  According to the GZK cutoff, the cosmic spectrum cannot extend 
beyond 5 X 1019  eV , but AGASA, the world’s largest air shower array, has shown that the 
spectrum is extending beyond 1020 eV  without any clear sign of cutoff [25].  Photons each of the 
Planck mass may be the source of these inexplicably energetic cosmic rays. 
 
RELATIONSHIP OF MATTER TO ENERGY AND SPACETIME EXPANSION 
 The Schwarzschild metric gives the relationship whereby matter causes relativistic 
corrections to spacetime.  The limiting velocity c  results in the contraction of spacetime due to 
particle production, which is given by 2πrg  where rg  is the gravitational radius of the particle.  

This has implications for the expansion of spacetime when matter converts to energy.  Q  the 
mass/energy to expansion/contraction quotient of spacetime is given by the ratio of the mass of a 
particle at production divided by T , the period of production. 

 Q =
m0

T
=

m0
2πrg

c

=
m0

2π 2Gm0

c2

c

=
c3

4πG
= 3.22 X 1034

 
kg
sec

 (161) 

The gravitational equations with the equivalence of the particle production energies (Eq. (144)) 

permit the conservation of mass/energy ( E = mc2 ) and spacetime (
c3

4πG
= 3.22 X 1034

 
kg
sec

).  

With the conversion of 3.22 X 1034  kg  of matter to energy, spacetime expands by 1 sec.  The 
photon has inertial mass and angular momentum, but due to Maxwell’s equations and the 
implicit special relativity it does not have a gravitational mass. 
 
Cosmological Consequences 
 The Universe is closed (it is finite but with no boundary).  It is a 3-sphere Universe-
Riemannian three dimensional hyperspace plus time of constant positive curvature at each r-
sphere.  The Universe is oscillatory in matter/energy and spacetime with a finite minimum 
radius, the gravitational radius.  Spacetime expands as mass is released as energy which provides 
the basis of the atomic, thermodynamic, and cosmological arrows of time.  Different regions of 
space are isothermal even though they are separated by greater distances than that over which 
light could travel during the time of the expansion of the Universe [26].  Presently, stars and 
large scale structures exist which are older than the elapsed time of the present expansion as 
stellar, galaxy, and supercluster evolution occurred during the contraction phase [27–33].  The 
maximum power radiated by the Universe which occurs at the beginning of the expansion phase 

is PU =
c5

4πG
= 2.89 X 1051

 W .  Observations beyond the beginning of the expansion phase are 

not possible since the Universe was entirely matter filled. 
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The Period of Oscillation of the Universe Based on Closed Propagation of Light 
 Mass/energy is conserved during harmonic expansion and contraction.  The gravitational 
potential energy Egrav  given by Eq. (155) with m0 = mU  is equal to mUc2  when the radius of the 
Universe r  is the gravitational radius rG .  The gravitational velocity vG  (Eq. (157) with r = rG  
and m0 = mU ) is the speed of light in a circular orbit wherein the eccentricity is equal to zero and 

the escape velocity from the Universe can never be reached.  The period of the oscillation of the 
Universe and the period for light to transverse the Universe corresponding to the gravitational 
radius rG  must be equal.  The harmonic oscillation period, T , is 
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where the mass of the Universe, mU , is approximately 2 X 1054
 kg.  (The initial mass of the 

Universe of 2 X 1054
 kg is based on internal consistency with the size, age, Hubble constant, 

temperature, density of matter, and power spectrum.)  Thus, the observed Universe will expand 
as mass is released as photons for 4.92 X 1011

 years .  At this point in its world line, the Universe 
will obtain its maximum size and begin to contract. 
 
THE DIFFERENTIAL EQUATION OF THE RADIUS OF THE UNIVERSE 

 Based on conservation of mass/energy ( E = mc2 ) and spacetime (
c3

4πG
= 3.22 X 1034

 
kg
sec

).  

The Universe behaves as a simple harmonic oscillator having a restoring force, F , which is 
proportional to the radius.  The proportionality constant, k , is given in terms of the potential 
energy, E , gained as the radius decreases from the maximum expansion to the minimum 
contraction. 
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Since the gravitational potential energy Egrav  is equal to mUc2  when the radius of the Universe r  
is the gravitational radius rG  
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And, the differential equation of the radius of the Universe,  is 
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 The maximum radius of the Universe, the amplitude, ro , of the time harmonic variation in the 
radius of the Universe, is given by the quotient of the total mass of the Universe and Q  ((Eq. 
(161)), the mass/energy to expansion/contraction quotient. 

 r0 =
mU

Q
=

mU

c3

4πG

=
2 X 1054  kg

c3

4πG

= 1.97 X 1012
  light years  (166) 

 The minimum radius which corresponds to the gravitational radius, rg , given by Eq. (137) 
with m0 = mU  is  

 rg =
2GmU

c2 = 2.96 X 1027
 m = 3.12 X 1011

 light years  (167) 

When the radius of the Universe is the gravitational radius, rg , the proper time is equal to the 
coordinate time by Eq. (142), and the gravitational escape velocity vg  of the Universe is the 

speed of light.  The radius of the Universe as a function of time as shown in Figure 13 is 
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 The expansion/contraction rate, 
•

ℵ , as shown in Figure 14 is given by time derivative of Eq. 
(168) 
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THE HUBBLE CONSTANT 

 The Hubble constant is given by the ratio of the expansion rate given in units of 
sec
km  divided 

by the radius of the expansion in Mpc .  The radius of expansion is equivalent to the radius of the 
light sphere with an origin at the time point when the Universe stopped contracting and started to 
expand.  
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For t = 1010  light years = 3.069 X 103 Mpc , the Hubble constant, H0 , is 

 
Mpcsec

km .H
⋅

= 6780  (171) 
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The experimental value [34] as shown in Figure 15 is 

 
Mpcsec

km H
⋅

±= 17800  (172) 

 
THE DENSITY OF THE UNIVERSE AS A FUNCTION OF TIME 
 The density of the Universe as a function of time ρU t( ) given by the ratio of the mass as a 

function of time and the volume as a function of time as shown in Figure 16 is 
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For t = 1010 light years , ρU =1.7 X 10−32  g/ cm3

.  The density of luminous matter of stars and gas 

of galaxies is about ρU = 2 X 10−31  g / cm3  [35–36]. 

 
THE POWER OF THE UNIVERSE AS A FUNCTION OF TIME, PU t( ) 

 From E = mc2  and Eq. (161), 
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For t = 1010  light years , PU t( ) = 2.88 X 1051
 W .  The observed power is consistent with that 

predicted.  The power of the Universe as a function of time is shown in Figure 17. 
 
THE TEMPERATURE OF THE UNIVERSE AS A FUNCTION OF TIME 
 The temperature of the Universe as a function of time, TU t( ), as shown in Figure 18, follows 

from the Stefan-Boltzmann law. 
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The calculated uniform temperature is about 2.7 K which is in agreement with the observed 
microwave background temperature [34].  
 
POWER SPECTRUM OF THE COSMOS 
 The power spectrum of the cosmos, as measured by the Las Campanas survey, generally 
follows the prediction of cold dark matter on the scales of 200 million to 600 million light-years.  
However, the power increases dramatically on scales of 600 million to 900 million light-years 
[33].  This discrepancy means that the Universe is much more structured on those scales than 
current theories can explain.   
 The Universe is oscillatory in matter/energy and spacetime with a finite minimum radius.  
The minimum radius which corresponds to the gravitational radius, rg , given by Eq. (167) is 

3.12 X 1011
  light years .  The minimum radius is larger than that provided by the current 

expansion, approximately 10 billion light years [34].  The Universe is a four dimensional 
hyperspace of constant positive curvature at each r-sphere.  The coordinates are spherical, and 
the space can be described as a series of spheres each of constant radius r  whose centers 
coincide at the origin.  The existence of the mass mU  causes the area of the spheres to be less 

than 4πr2  and causes the clock of each r-sphere to run so that it is no longer observed from other 
r-spheres to be at the same rate.  The Schwarzschild metric given by Eq. (140) is the general 
form of the metric which allows for these effects.  Consider the present observable Universe that 
has undergone expansion for 10 billion years.  The radius of the Universe as a function of time 
from the coordinate r-sphere is of the same form as Eq. (168).  The average size of the Universe, 
rU , is given as the sum of the gravitational radius, rg , and the observed radius, 10 billion light 

years. 
 yrs light  X .years lightyrs light X .yrs lightrr        gU

11101110 10223101012310 =+=+=  (176) 

The frequency of Eq. (168) is one half the amplitude of spacetime expansion from the 
conversion of the mass of Universe into energy according to Eq. (161).  Thus, keeping the same 
relationships, the frequency of the current expansion function is the reciprocal of one half the 
current age.  Substitution of the average size of the Universe, the frequency of expansion, and 
the amplitude of expansion, 10 billion light years, into Eq. (168) gives the radius of the Universe 
as a function of time for the coordinate r-sphere. 
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 The Schwarzschild metric gives the relationship between the proper time and the coordinate 
time.  The infinitesimal temporal displacement, dτ 2 , is given by Eq. (140).  In the case that 
dr 2 = dθ 2 = dφ 2 = 0 , the relationship between the proper time and the coordinate time is  
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 dτ 2 = 1 −
2GmU

c2r
 
 

 
 dt2  (178) 

 
r
r

t g−=τ 1  (179) 

The maximum power radiated by the Universe is given by Eqs. (174) which occurs when the 
proper radius, the coordinate radius, and the gravitational radius rg  are equal.  For the present 

Universe, the coordinate radius is given by Eq. (176).  The gravitational radius is given by Eq. 
(167).  The maximum of the power spectrum of a trigonometric function occurs at its frequency 
[37].  Thus, the coordinate maximum power according to Eq. (177) occurs at 5 X 109  light years .  
The maximum power corresponding to the proper time is given by the substitution of the 
coordinate radius, the gravitational radius rg , and the coordinate power maximum into Eq. (179).  

The power maximum in the proper frame occurs at 

 
τ = 5 X 109  light years 1− 3.12 X 1011

  light years
3.22 X 1011

  light years

τ = 880 X 106  light years

 (180) 

The power maximum of the current observable Universe is predicted to occur on the scale of 
880 X 106  light years .  There is excellent agreement between the predicted value and the 
experimental value of 600 - 900 X 106  light years  [33]. 
 
THE EXPANSION/CONTRACTION ACCELERATION, 

••
ℵ 

 The expansion/contraction acceleration rate, 
••
ℵ, as shown in Figure 19, is given by the time 

derivative of Eq. (169). 
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 The differential in the radius of the Universe, ∆ℵ, due to its acceleration is given by 
221 t/ ℵ=ℵ∆ && .  The differential in expanded radius for the elapsed time of expansion, 

t = 1010 light years  corresponds to a decease in brightness of a supernovae standard candle of 
about an order of magnitude of that expected where the distance is taken as ∆ℵ.  This result 
based on the predicted rate of acceleration of the expansion is consistent with the experimental 
observation [38–40]. 
 Furthermore, the microwave background radiation image obtained by the Boomerang 
telescope [41] is consistent with a Universe of nearly flat geometry since the commencement of 
its expansion.  The data is consistent with a large offset radius of the Universe with a fractional 
increase in size since the commencement of expansion about 10 billion years ago. 
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THE PERIODS OF SPACETIME EXPANSION/CONTRACTION AND PARTICLE 
DECAY/PRODUCTION FOR THE UNIVERSE ARE EQUAL 
 The period of the expansion/contraction cycle of the radius of the Universe, T , is given by 
Eq. (162).  It follows from the Poynting power theorem with spherical radiation that the 
transition lifetimes are given by the ratio of energy and the power of the transition (Eqs. (60-
61)).  Exponential decay applies to electromagnetic energy decay  

 h(t) = e
− 1

T
t
u t( ) (182) 

The coordinate time is imaginary because energy transitions are spacelike due spacetime 
expansion from matter to energy conversion.  For example, the mass of the electron (a 
fundamental particle) is given by 
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where vg  is Newtonian gravitational velocity (Eq. (132)).  When the gravitational radius rg  is the 

radius of the Universe, the proper time is equal to the coordinate time by Eq. (142), and the 
gravitational escape velocity vg  of the Universe is the speed of light.  Replacement of the 

coordinate time, t , by the spacelike time, it , gives 
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where the period is T  (Eq. (162)).  The continuity conditions based on the constant maximum 
speed of light (Maxwell’s equations) are given by Eqs. (143-144).  The continuity conditions 
based on the constant maximum speed of light (Schwarzschild metric) are given by Eq. (145).  
The periods of spacetime expansion/contraction and particle decay/production for the Universe 
are equal because only the particles which satisfy Maxwell’s equations and the relationship 
between proper time and coordinate time imposed by the Schwarzschild metric may exist.  
 
WAVE EQUATION 
 The general form of the light front wave equation is given by Eq. (124).  The equation of the 
radius of the Universe, ℵ , may be written as 
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which is a solution of the wave equation for a light wave front. 
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CONCLUSION 
 Maxwell’s equations, Planck’s equation, the de Broglie equation, Newton’s laws, and 
special, and general relativity are unified. 
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Table 1. The calculated electric (per electron), magnetic (per electron), and ionization
energies for some two-electron atoms.

____________________________________________________________________________

Atom Electric Magnetic Calculated Experimentale

( )a Energyb Energyc Ionization Ionization [14-15]

(eV) (eV) Energyd (eV) Energy (eV)
0.567 -23.96 0.63 24.59 24.59

0.356 -76.41 2.54 75.56 75.64

0.261 -156.08 6.42 154.48 153.89

0.207 -262.94 12.96 260.35 259.37

0.171 -396.98 22.83 393.18 392.08

0.146 -558.20 36.74 552.95 552.06

0.127 -746.59 55.35 739.67 739.32

0.113 -962.17 79.37 953.35 953.89
a from Equation (96)
b from Equation (98)
c from Equation (99)

 d from Equations (97) and (100)
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Figure 1.  The orbitsphere is a two dimensional spherical shell with the Bohr radius of the hydrogen atom.
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Figure 2.  The current pattern of the orbitsphere from the perspective of looking along the z-axis.  The current and

charge density are confined to two dimensions at rn = nr1 .  The corresponding charge density function is uniform.
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Figure 3.  The orbital function modulates the constant (spin) function (shown for t = 0; cross-sectional view).
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Figure 4.  The magnetic field of an electron orbitsphere.
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Figure 5.  Broadening of the spectral line due to the rise-time and shifting of the spectral line due to the radiative

reaction.  The resonant line shape has width Γ .  The level shift is ∆ .
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Figure 6.  The Cartesian coordinate system wherein the first great circle magnetic field line lies in the yz-plane,

and the second great circle electric field line lies in the xz-plane is designated the photon orbitsphere reference frame of a

photon orbitsphere.
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Figure 7.  The field line pattern from the perspective of looking along the z-axis of a right-handed circularly

polarized photon.
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Figure 8.  The electric field of a moving point charge (v =
4

5
c ).
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Figure 9.  The electric field lines of a right-handed circularly polarized photon orbitsphere as

seen along the axis of propagation in the lab inertial reference frame as it passes a fixed point.
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Figure 10.  The front view of the magnitude of the mass (charge) density function in the xy-plane of a free

electron; side view of a free electron along the axis of propagation--z-axis.
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Figure. 11.  The experimental results for the elastic differential cross section for the elastic scattering of electrons

by helium atoms and a Born approximation prediction.
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Figure. 12.  The closed form function [Eqs. (105) and (106)] for the elastic differential cross section for the elastic

scattering of electrons by helium atoms.  The scattering amplitude function, )s(F  (Eq. (104), is shown as an insert.
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Figure 13.  The radius of the universe as a function of time.
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Figure 14.  The expansion/contraction rate of the universe as a function of time.
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Figure 15.  The Hubble constant of the universe as a function of time.
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Figure 16.  The density of the universe as a function of time.
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Figure 17.  The power of the universe as a function of time.
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Figure 18.  The temperature of the universe as a function of time during the expansion phase.
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Figure 19.  The differential expansion of the light sphere due to the acceleration of the expansion of the cosmos as

a function of time.




