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Abstract – Computational Neuro-Genetic Modeling (CNGM) is 
discussed from the perspective of building Artificial Neural 
Network architectures starting with substantially pre-defined 
modules and processes (DNA-ANNs).  This is equivalent to 
assuming that DNA code in a neuron can ultimately specify 
function, process and some level of data abstraction beyond the 
immediate role of genes to produce proteins or to regulate 
processes, and using that basis as a metaphor for DNA-ANNs.  
The potential advantages that might be derived from highly 
evolved, fine-grained hybrid genetic/connectionist systems, and 
some of the implementation challenges that they could present 
are discussed.  1 
 
 

I. INTRODUCTION 
 
ANNs were originally inspired by the search for ways to 
explain the functioning of the brain and to replicate its great 
computational powers (Anderson and Rosenfeld [1]).  The 
brain will likely remain a source of inspiration and a far-off 
golden standard for very advanced computational 
capabilities for quite some time to come, so it is not 
surprising to see ANN research consider ways to incorporate 
new concepts from genetics, even if this is somewhat 
speculative at the current time.   
 
Much of the focus of ANN research in the past has been on 
building connectionist architectures with various fixed 
activation functions for the nodes or neurons, using a variety 
of training approaches, and sometimes employing growth or 
pruning strategies to evolve a network structure.  Often the 
objective has been to develop powerful general learning 
algorithms with somewhat specialized ANN architectures to 
tackle a broad class of problems, for example the ubiquitous 
Multi-Layer Perceptron (MLP) with backpropagation 
(Werbos [2], Parker [3], LeCunn [4], Rummelhardt, Hinton, 
McLelland [5]), Adaptive Resonance Theory (Carpenter and 
Grossberg [6]), and Self Organizing Maps  (Kohonen [7]).  
 
Evidence is rapidly accumulating that non-protein-coding 
DNA (npcDNA), sometimes in the past popularly referred to 
as "junk DNA", is not all simply waste coding interspersed 
between gene-coding regions (exons), but that it may have 
many very important roles in directing cellular processes 
beyond protein coding (Marcus [8]) and even beyond well-
known regulatory functions (Mattick [9]).  This is an 
exciting area of research for biology and neuroscience, and it 
will likely influence thinking in the humanities, cognitive  
 
sciences and in Computational Intelligence.  Several 
researchers are looking into how one might incorporate 
DNA-like capabilities into Artificial Neural Networks 
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(ANNs), or apply ANN methods to better understand and 
model the role of genetics in biological NNs.  This work, 
currently described by Kasabov's phrase "Computational 
Neuro-Genetic Modeling" [10],  is proceeding even though 
our knowledge of  the biological processes is still in its 
infancy. 
 
 

Work relating genetics and neuron or brain information 
processing is very broad, and is discussed in more detail in 
Section II.A.  However, it is worthwhile to quickly list a few 
subjects: 
• DNA as a memory molecule in early work (Crick and 

others [15] to [21]), although experiments haven't 
supported this; 

• CNGMs as a means of modelling the the EEG signature 
of gene networks (Kasabov [11]);  

• Ontogeny, or growth of the brain, and how genes can 
efficiently do this (Storjohann and Marcus [13]);  

• Nature versus nurture – models of the relative importance 
of genetics and learning to retinotopic mappings 
(Thivierge [22]); 

 
As a complement and contrast to the above work, this paper 
focuses on the genetic specification and operation of ANNs, 
simply referred to as DNA-ANNs, for which a core 
architecture and learning is pre-specified but the DNA-ANN 
may still learn and evolve over time in a variety of 
environments.  The ultimate intent is to utilize a diverse 
combination of DNA-ANN architectures and learning 
methods such as mentioned in the second paragraph of this 
introduction.  Additionally, there is some emphasis on 
recurrent neural networks in this paper (RNNs, referred to as 
DNA-RNNs when incorporating genetics).  
 
Section II of this paper summarizes three key sources of 
inspiration for DNA-RNNs: genetics; computational models 
of neuron and brain function; and trends with ANNs.  The 
sub-section on genetics overviews some advances in 
interpreting the diverse roles of DNA, and more specifically 
overviews current work on the DNA specification of the 
brain and the way in which it is structured and functions.  
Section III lists the benefits for ANNs that we hope to 
achieve by a similar pre-specification. 
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II.  INSPIRATION FOR DNA-ANNs 
 
A. Inspiration from Genetics: beyond protein coding and 

regulation 
 
1. DNA beyond genes and immediate regulatory function 
 
Conventionally, "genes" might have been thought of as 
being "assembly language programming" for proteins, 
almost in a literal sense.  This process  involves finding the 
appropriate  starting point on the DNA, culling out non-
protein-coding sequences of mRNA (introns, part of 
npcDNA) from coding regions (exons) as indicated by 
spliceosomes.  The mRNA is then used  in ribosomes for the 
assembly of proteins.  Occasionally, "decision points" occur 
in gene sequences that can result in different final proteins, 
depending on the regulatory function of a small component 
of npcDNA.   
 
However, for a long time researchers have suspected that the 
role of DNA goes much further than merely coding for 
proteins, that life was not merely a "combinatorial soup" 
(Mattick [9]) that coincidentally gave rise to the 
tremendously detailed, complex and specific anatomy and 
physiology of the cells and of entire organisms (Mattick 
[23], Ast [24], Eddy [25], Gibbs [26]).  
 
Moreover, it was also clear that the "genes" of eukaryotic 
organisms (having cells with a nucleus as opposed to 
prokaryotic organisms with non-nuclear cells) account for 
only a small portion of the total DNA.  For example, earlier 
estimates were that only  ~1.5% of the 3.2 Giga base-pairs of 
amino acids in human DNA codes for proteins (less now, 
given the lower estimates of today's total gene counts!), and 
yet most  DNA is transcribed to RNA!  Furthermore, 
(Mattick [23]) points out that there is a poor relation 
between an organism's complexity and the number of 
protein-coding genes, but there is a more consistent relation 
between an organism's complexity and the amount of 
npcDNA. His description of the Cambrian period bio-
complexity explosion (~1 Gy ago), and the rest of his 
analysis provide a substantial basis for going beyond the 
"central dogma of biology", that  DNA only codes for genes 
and or their direct regulation.  Highly complex architecture 
argues for the need or advantage and power of precise plans 
and  “drawings” that are highly specific, either in the case of 
human buildings or biological systems.   
 
The past expression "junk DNA" had perhaps conveyed the 
message that much of the DNA may simply be a wasteland 
of leftover code from past or modified needs, code resulting 
from replication errors, or code that served as a buffer to 
protect against certain types of error.  While some of the 
npcDNA may have arisen by such mechanisms, the 
impression that much of it is "junk" could possibly be one of 
the great misnomers of scientific history.  Furthermore, 
perhaps genes are merely the simplest and lowest level of 
coding on the DNA, just a starting point for much more 
powerful functionality and abstractions to be discovered. 
Changes in DNA or its expression can occur through 
mutation, crossover of genes (diploid cells and sexual 

reproduction), and epigenetically (including cell 
differentiation).  Epigenetic changes affect which sections of 
DNA are expressed by changes in the availability or in the 
"locking up" of sections of chromatin, the structures 
comprised of disk-like histones around which DNA sections 
are coiled.  More recently, researchers are focusing on non-
protein-coding RNA and micro-RNA .  The latter consists of 
segments of RNA that can perhaps be as short as 15 to 35 
base pairs, and are thought to play a role in regulating gene 
expression.  The work of Kim, Krichevsky et.al. [27] focuses 
on the role of micro-RNA on neuron-related genetics, and 
shows that micro-RNA can play a gene-regulatory role by 
influencing spliceosome decision points.  
 
2.  DNA and the brain 
 
[Minsky [30]]: “The marvelous powers of the brain emerge 
not from any single, uniformly structured connectionist 
network but from highly evolved arrangements of smaller, 
specialized networks which are interconnected in very 
specific ways.”  
 
Clearly, brain growth or ontogeny is a very highly ordered 
and directed process, and while there is a high degree of 
variability in comparing brains and brain function between 
individuals (based on anatomy, fMRI etc), there is also an 
extremely high degree of commonality and regularity.  
Strikingly similar adult human behavior by identical twins 
separated at birth and the theory of Universal Generative 
Grammar for linguistics (Chomsky [32]) are good examples 
of arguments for the pre-specification not just of "normal" 
anatomy and physiology,  but of a great deal of "initial 
content" for the brain (data, functions, operating systems and 
likely far beyond that to use an admittedly poor metaphor 
from computing, but one that is easy to relate to).  Steven 
Pinker's book "The blank slate" [34] summarizes a wide 
range of results, many of which have been known for a long 
time, that dispel the "blank slate" concept of the brain 
learning everything from scratch.   The expression "blank 
slate" will be used often in this paper to contrast DNA-
ANNs, which have at least some pre-specified initial 
content, with ANNs that only start to learn or evolve when 
presented with data. 
 
Several researchers over time have proposed that DNA 
would have excellent characteristics as a "memory 
molecule", providing enormous information storage 
capabilities ([15]-[21]), but this could not be substantiated 
by experiments.  However it should be noted that 
conventional genomics, which relates genes to proteins and 
regulatory functions, is vastly easier than trying to relate 
DNA coding to brain structure, function and information 
content, none of which can be directly measured in detail.  
That problem will get much worse as higher and higher 
levels of abstract brain function are addressed. 
 
Marcus [8] convincingly argues that the mind is specified by 
genes in a manner that maximizes their information content.  
This occurs because the genes don't specify all of the details.  
More importantly they specify how structures are built and 
learn.   
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More recently, work by Michael Meaney and associates in 
Montreal ([35],[36]) have established strong evidence that 
epigenetic modifications may occur during the first week of 
a rat's life due to it's mother nurturing behavior, and that 
these epigentically-based behavioral modifications can 
persist  throughout the life of the rat.  Furthermore, there is a 
high likelihood that this will be passed on to future 
generations (albeit there will presumably be a fresh 
influence due to each new generation of mothers).  This is 
extremely interesting – not only does it provide a concrete 
example of  epigentically-driven changes in behavior, it also 
provides a basis  for "Lamarckian heredity" of the mind 
whereby traits set during the life of an individual may be 
passed on, in contrast to the conventional "Mendelian 
heredity" for which the die is set at conception, and changes 
during an individual's life are not passed on other than 
through mutation, crossover, duplication of DNA code etc.  
Before being confident about the existence of Lamarckian 
heredity, the results would have to be confirmed over several 
generations of rats, and of course we would need 
experimental results for other examples as well, both 
behavioral and knowledge-related. 
 
As mentioned in the introduction, given these growing 
indications of extensive genetic and epigenetic "pre-
programming" of the brain, and possibly more direct "live" 
interactions between DNA, individual neurons and brain 
function, attempts at integrating gene-like capabilities into 
ANNs have begun.  "Computational Neuro-Genetic 
Modeling" (CNGM) is perhaps best defined by the question 
posed by Kasabov [33]: 

"Can they [CNGMs] facilitate the construction of 
[ANN] models that have flexible architectures, rapid 
trainability, adaptability to new environments, and the 
capacity to facilitate knowledge representation? How 
can we use these models to improve our understanding 
of the brain and to find cures for brain diseases?" 

 
3) Influence of brain function on DNA expression 
 
The whole "programming metaphor" for the DNA pre-
specification and operation of the brain is hypothetical and 
only weakly indicated by experimental results.  Much of the 
neurological experimental evidence is more suitable for 
establishing the "feedforward" influence of DNA on 
information content and processing.  However, it is assumed 
in this paper for DNA-RNNs (artificial neural nets, not 
biological brains, but using biology as a metaphor and visa-
versa) that the information content of the processing 
activities of a neuron or region of the brain can of itself 
influence npcDNA expression (a information "feedback" 
influence on selecting DNA code).  There doesn't seem to be 
much direct evidence for that biologically, but it will be 
interesting to see if this theme emerges from experiments in 
the future.   
 
Clearly organisms respond to their environment, and this 
involves a huge cascade of gene expression and regulation at 
every level of the organism, and one might argue that these 
could be more or less "fixed" responses.  But learning in the 

brain would require far more flexibility and rapidity of 
change than might exist or be allowable in most 
physiological responses.  In a sense the immune system 
might provide an analogous example that must change very 
quickly to a rapidly changing external environment.   
 
Meaney's results as discussed previously show behavioral 
changes in infant rats that are linked with epigenetic changes 
brought on by their mother's nurturing behavior, and that is 
at least a start.   Extensive research has been carried out to 
model the role of hormones and more specifically 
neuromodulators (Doya, Dayan and Hasselmo [38]).  But 
while this work models the influence of neuromodulators on 
the functioning of neurons or regions of the brain, it does not 
show specific mechanisms for the influence of information 
processing on DNA expression other than for physiological 
requirements.  
 
B. Inspiration for DNA-ANNs from models of neurons, 

brain regions, and psychology 
 
There has been a great deal of work over several decades on 
building ANN models of neurons, brain regions, sensory 
systems (olfactory by Freeman [40], Padgett [41] and their 
co-workers), motor systems (Grossberg [42]) and the effects 
of neuromodulators (Doya, Dayan and Hasselmo [38] as 
cited above).  Furthermore, many general computational 
learning methods have been based on or inspired from the 
field of psychology (Hebbian learning, ART, 
Backpropagation, K series chaotic ANNs).  It has been 
natural to think in terms of specialized neuron arrangements, 
"modules", connections, specialized regions of the brain, and 
whole-brain processes, the latter exemplified by major 
efforts to computationally model the whole brain [43].  
 
There has also been a great deal of work on sensory and 
brain biomimetics and prosthesis (for example, retinal 
prosthetic work by groups led by Mark Humayun [45] and 
Eckhorn etal. [46], and a hippocampal prosthesis by Ted 
Berger's group [44]).    
 
So what lessons or inspiration can we draw from neuron, 
brain, and psychology studies that can help us to develop 
DNA-ANNs?  The short answer is that there will likely be a 
huge wealth of growth strategies, architectures, functions, 
and processes which should be directly relevant to DNA-
ANNs, and the mind harbors capabilities that will continue 
to inspire research for a long time.   
 
But some general observations are worth repeating here: 
• Natural systems are rich, varied, dynamic and incredibly 

powerful at EVERY level – from the sub-neuron level 
up to the whole brain.  It goes without saying that this is 
a massively parallel architecture, commonly with 
recurrent connections. 

• There is a huge diversity and redundancy of structures, 
and spiking.  Non-stationary dynamics seems to be a 
key characteristic. 

• The growth process of the brain involves making 
seemingly random connections between neurons, and 
the die-off of a significant fraction of the initial neurons.  
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In spite of this, there is a regularity to the architecture of 
the brain and its subsystems: the brain is capable of 
highly reproducible performance for challenging 
problems in very noisy environments, even where there 
may be significant damage to many of the neurons 
involved (graceful degradation of performance). 

• We likely have a long ways to go before we can properly 
identify and understand processes at higher levels of 
abstraction, even though current models are showing 
promise. 

 
Ideally, a more general discussion of neural and brain 
models (ANNs) would be provided here, but only a few 
examples are listed below: 
• Frontal cortex and basal ganglia circuits (Brown, Bulloch 

& Grossberg [42]); 
• Multi-modular brain (Taylor [48]); 
• Thalomo-cortical loops (Hecht-Nielson [49]); 
• Temporal sequences in frontal lobes (Taylor & Taylor 

[47]); 
• Learning categories (Grossberg, Carpenter, Ersoy [50]); 

and  
• Purkinje cell models (Dunin-Barkowski et.al. [51]). 
 
The work of Storjammen and Marcus [13] is providing a 
first computational framework for the genetic specification 
of growth and end structure of "modules" that produce the 
right kind of functionality.  Kasabov etal [10],[11] have 
worked on modelling the EEG signal characteristics of brain 
regions based on the kinetics of gene networks.   
 
C.  Inspirations forDNA-ANNs from trends with  ANNs 
 
This sub-section gives a very brief listing of selected trends 
in ANNs that are also a source of inspiration for 
Computational Neuro-Genetic Modelling (CNGM).   
 
1)  Diversity of approaches 
 
As mentioned in the Introduction, there is a great diversity of 
ANN architectures and of approaches for their learning and 
evolution.  The overall intent of DNA-ANNs as proposed in 
this paper is to make use of as many of the available ANN 
architectures and approaches as required or as possible.   
 
2)  Local, incremental learning approaches 
Neural Gas Models [52][53] and Evolving Connectionist 
Systems (ECOS, Kasabov [54]) are examples of ANNs 
which have been designed to learn incrementally as new data 
is encountered.  This may fit in well with DNA-ANNs, 
where a diverse population of substantially pre-specified 
DNA-ANNs could potentially be evolved in a more concise 
and effective manner.  
3)  Multi-phase NN Architecture: "Crystalline to Gaseous" 
 
An interesting recent trend has been to generate substantially 
fixed weight neural networks for which only a small portion 
of the weights undergo changes during the learning phase, 
such as the Extreme Learning Machine (Huang [55],[56]) 
and Echo State Networks (Jaeger [57],[58]).   Although there 

are challenges and limitations (Prokhorov [63]), this 
provides some insight into how one might do even better by 
rapidly integrating and training DNA-ANN "modules" by 
pre-specifying architectures that allow the modules to be 
very rapidly and efficiently trained and  evolved. 
 
4)  Networks, hierarchies of NNs: 
 
There has been strong interest in building ensembles and 
hierarchies of many varieties of ANNs (Carpenter and 
Martens [60], Cuadros-Vargas and Romero [61]. 
 
5) RNNs and  Approximate Dynamic Programming (ADP) 
 
RNNs are of particular relevance to the whole concept of 
DNA-ANNs, as they can handle dynamical systems well and 
they are an important tool for tackling high-level decision 
making and adaptation challenges such as Approximate 
Dynamic Programming (ADP) and control (Werbos [62], 
Prokhorov, Puskorius, Feldkamp [63], Venayagamoorthy 
[64], Si et.al. [65]).  A recent paper (Santiago and Lendaris 
[66]) claims that RNNs can overcome a fundamental 
limitation of Artificial Intelligence (AI) – the "Frames 
Problem".    This subject also leads into the theme of a 
recent workshop on achieving functional integration led by 
Hussain [67]. 
 
6)  Signal processing and information theoretics 
 
Signal processing techniques have been successfully applied 
to the difficult problem of training recurrent neural networks 
(RNNs) (Puskorius & Feldkamp [68],[69], Wan and van der 
Merwe [70]) in combination with the calculation of error 
derivatives for each node using Back Propagation Through 
Time (BPTT).    
 
 

III.  WHAT MIGHT WE HOPE TO ACHIEVE WITH 
 DNA-ANNs? 

 
How might the incorporation of DNA-like capabilities into 
ANNs benefit their design, learning, evolution and function?   
For the sake of brevity,  potential benefits are listed below 
with a minimum of explanations, but keep in mind that any 
advantage of DNA-ANNs over other ANNs remains to be 
demonstrated.   Note that many of the points raised in 
Section II provide background for the DNA-ANN wish lists 
below. 
 
A. "Starting with the right answer" 
 
Starting with the right answer, or approximately the right 
structure, function, processes and network pre-training, is 
the most obvious potential advantage of pre-specified DNA-
ANNs.  In general we of course don't know the answer 
before we start, but a good guess can go a long way towards 
finding a good solution quickly. 
• Evolution has a very long time to develop extremely 

powerful methods – and perhaps "true learning" requires 
evolutionary processes (Fogel [74]).  It may be too 
much to ask that "excellent, real-time" ANNs arise 
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quickly from "blank slate" ANNs that have no training 
and an inappropriate structure, while DNA-ANNs will 
naturally posses  a diverse "toolbox" of proven solutions 
to a wide variety of problems.  Obviously a desirable 
characteristic of DNA-ANNs would be the automatic 
evolution of new capabilities over time, including novel 
strategies and principles in both general and specialized 
domains. 

• In essence, we can take advantage of "societal/ species 
experience" across time and environments well beyond 
an individual's own experience.   

• The evolution of stable systems of complex modules 
may greatly facilitate their application, interpretation 
and the extraction of meaning from their connections 
and behavior when modeling a system.  This type of 
"interpretability" may help contribute to building robust, 
effective systems of ANNs and hybrid systems 
involving ANNs.  There are also several related issues: 
o Small-world universal function approximation – 

what is the smallest set of ANNs, of various 
functional capabilities (general to specific), that is 
sufficient to solve most of the problems in a domain 
of interest?  Are there general design principles for 
deriving a reduced set (something like design and 
analysis patterns for software development 
([76],[77],[78]))?  

o False confidence in good fits -  This is the converse 
situation whereby models of sufficiently complex 
systems may tend to become “small-world 
universal function approximators", and  while these 
may fit data extremely well, there may not be a 
strong assurance that the model is conceptually well 
founded.  In any case, one hope is that DNA-ANNs 
will have the property of developing "sensible" 
models for problems, models that minimize the 
chances of arriving at "wild" or 
phenomenologically erroneous solutions.   

• Reiterating the point above in another way, we are 
looking for the [evolution, emergence] of [enduring, 
robust, powerful] representations of [risks, processes, 
situations, systems, data].   We are hoping to 
simultaneously achieve goals that may appear to be 
conflicting when "learning from the blank slate": 
o excellent AND fast;  
o richness of representation and understanding AND 

with only a minimum of input data and 
environmental situations.   

• We can avoid an excessive reliance on general, powerful 
learning methods, and base learning more on the 
capabilities and power of a long evolutionary heritage 
that is pre-programmed (including very general & 
powerful learning methods).   

• The brain and modern computers have huge a memory 
space and processing capacity.  Take advantage of this!  
This means that we are not restricted to a small set of 
tools, nor to a single learning theory/method.  That 
doesn't mean that very general powerful learning 
methods aren't important or that they won't be 
commonly used, it's just that there is no reason to be 
constrained to a small subset of approaches where 

highly specialised solutions work much better.   
 
B.  Higher levels of abstraction 
 
Following on with the concept of rich representations as 
discussed above, what we would also like to achieve, and 
expect to be present with DNA-ANNs, are ever-evolving, 
higher and higher level abstractions of the environments we 
encounter and the toolsets that we are using.   
• Abductive reasoning (reasoning by simili and metaphor 

versus inductive, deductive and transductive logic) -  
Reasoning by simili or metaphor (pattern matching and 
beyond) could be one of the more important learning 
methods at higher levels of abstraction.  This kind of 
reasoning would facilitate problem solving and 
innovation through restructuring existing solutions for 
different problems. Furthermore, a rich DNA-RNN 
environment with "lessons from the past" is essential for 
this.  Is abductive reasoning actually more common and 
powerful than inductive and deductive logic, especially 
after an ANN or individual gains experience and 
wisdom?   

• Meaning - Perhaps by defining and identifying relatively-
common modules with well known characteristics, it 
will become easier to describe the functioning of ANNs  
to predict their behaviors for different problem domains, 
and therefore to visualize how to build completely new 
modules and systems.  This is related to the concept of 
"logic is an emergent property" for complex systems (a 
term borrowed from a similar phrase for semantics).  

• Symbolic logic – Symbolic logic immediately comes to 
mind as being a natural extension from abductive 
reasoning.  When does symbolic (rule or belief based) 
reasoning take precedence, and is this related to the 
degree of abstraction? (see also Healy et.al [84]) 

• Coherence – For DNA-ANN modules which "fit 
together" with other modules, subsection A above 
("Starting with the right answer") also infers that they 
would "co-evolve".    That doesn't mean that all new 
modules have to fit with many others – a "stand-alone" 
module might legitimately lack coherence with other 
modules yet still serve a purpose well. 

• Systems-level tools - While concepts and toolsets move 
to higher levels of abstraction and complexity, we might 
expect the need for systems-level approaches to 
building and operating that complexity.  Which of the 
conventional IT tools will apply, and how will these 
have to evolve?  For example: 
o design/ analysis patterns – as mentioned in Sub-

section A above ;  
o global brain model projects may illustrate these 

challenges [43]. 
• Problem decomposition and modularisation seems to be a 

“natural” way to analyze complex systems.  DNA-
RNNs should help this (see "abductive reasoning" and 
"logic is an emergent property" immediately above in 
Sub-section II.B and which relate directly to this). 

• Ockham's razor [75] (all other things being equal, take 
the simplest explanation) is a natural for ensembles of 
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ANNs, and applies very well to the DNA-ANN concept:   
o use algorithms/ theories where appropriate (constant, 

linear, gentle non-linear, strong non-linear, chaotic, 
discontinuous); 

o extend to the next level of complexity when 
necessary; and  

o step up into complexity for the purposes of 
generalization to cover a greater portion of the 
problem domain. 

 
C.  Rapid training, learning and evolution 
 
Many researchers are looking for orders of magnitude faster 
training while still generating accurate/ robust solutions.  
Local learning methods have contributed to this (Kasabov 
ECOS), and recent examples include "Extreme Leaning 
Machings"  (Guang-Bin Huang et.al. [55][56]) and "Echo 
State Networks" (Jaeger [58] and Prokhorov [59]) as 
described in Section II.C.3 above.  Of course, fast 
specialized modules can always be combined with powerful 
general learning techniques for unusual/ difficult problems, 
where more time will be required to learn/ evolve.   
• The clear preference is for training time to almost 

disappear if quality solutions can still be generated – in 
other works we should be targetting one-shot learning 
where that is possible!!  And how do we know when 
this should be possible? 

• Rapid reconfiguration of DNA-ANN modules – a 
capability to rapidly rearrange them along “high 
likelihood solutions” arrangements would be desireable.  
In the limit, dynamic structures would allow DNA-
ANNs to switch and evolve in real time!   If that "easy 
approach" doesn't work then a longer term, more 
exhaustive evolution may be required.  

• Data (delivery mechanism) – DNA-ANNs offer a unique 
opportunity – that code segments can identify data 
(DNA or RNA code keys physically bring data and 
destination together!), and "data" can drive code and 
architecture.  A mental picture is that of RNA 
transcription, where chunks of micro-RNA and introns 
are shed off, and can potentially work in parallel as 
interacting code and data. Perhaps there is something 
that can be done with a "computational soup" (This is 
reminiscent of Stuart Kauffman's work [79], however, 
whereas Kauffman spoke of the benefits of being at the 
edge of chaos, current research is showing the benfits of 
being fully chaotic). 

• Recurrent Neural Networks (RNNs) are especially 
difficult to train, and benefits here may be of greatest 
value. 

 
D. Quality of solutions/ models 
 
Hopefully, DNA-ANNs will provide the robustness, 
reliability, and accuracy of solutions that have evolved over 
a broad range of real-world situations encountered over 
evolutionary times ("tried and true").   This bears some 
relationship to Subsection B above as it leads into "bigger 
picture", better solutions that simultaneously address other 

needs, threats and opportunities that may be associated with 
the immediate objective in mind.  However, achieving this 
with DNA-ANN modules will likely be harder than for most 
of the specialized ANNs currently used. 
• Plasticity versus stability - This classical challenge for 

ANNs is to retain what is learned, while training on new 
data.  Many ANNs have addressed this problem, but in a 
sense DNA-ANNs may be the penultimate solution, if 
the learning is closely related to pre-specified "content"!   

• Resistance to the effects of damage and disease -  DNA-
ANNs should have regenerative capabilities, at least for 
their pre-specified components.  And while ANNs have 
always been recognized for their amazing robustness, 
DNA-ANNs could take this to quite a different level.  
Lamarckian heredity makes this even more interesting!   
If cortical neurons can be "reborn", that clearly would 
provide an AMAZING plasticity of the brain!  However 
epigenetic changes won't be sufficient unless they can 
be communicated from "experienced" to new neurons.  
See Section II.A.2 for comments on Lamarckian 
heredity.  

 
E.  Resource utilization 
 
Because of their "hybrid symbolic/ connectionist" nature, 
DNA-ANNs may offer some unique opportunities for the 
efficient and effective utilization of "brain resources". 
• Perhaps biological neurons cannot fire too long due to 

energetic, ion, neurotranmitter and other physiological 
demands, with the consequences that: 
o they must rotate tasks to have competitive system 

performance, and to minimize downtime; and  
o the "spacially wandering" processing of tasks would 

lead to qualitatively different computational 
capabilties. 

• Share/ swap/ rotate tasks – Taking the previous insight 
further, it's easy to imagine the advantage of "migrating 
computations" in a biological NN.  But the capability of 
doing "wandering computations" will itself give rise to 
new capabilities: 
o This will help to balance workload across the brain, 

allowing a restauration of ions, energy, and 
neurotransmitters, and a period of rest for neurons.   

o Individual neurons don't have to operate at  
maximum power for long periods of time even 
though the problem or its solution may actually 
require that a constant high output be provided.   

o There could result a tremendous robustness of the 
brain's capabilities as these will be realitively 
insensitive to local neuronal damage, disease and 
dysfunction. 

• Functional overloading – having multiple functionalities 
share the same NN module will clearly yield an 
efficiency of resources.  But as hinted in sub-sections 
above it may possibly lead to some kind of "morphing" 
evolutionary process towards more powerful learning, 
architectures and abstraction. 
o Functional overloading – reminds one of the effects 

of  neuro-modulators (Kenji Doya [38][39]) and 
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gene networks (Kasabov [10],[11]), including a 
capacity for meta learning.  

o Beyond merely "switching" between functionalities, 
the same NN module could simultaneously be part 
of many different “models” and processes.   

o The ability to handle variable object inputs and 
problem types should be a characteristic that arises 
from functional overloading. 

• DNA code overloading - This is not the same as 
functional overloading for an ANN module as discussed 
in the previous point, but instead refers to the potential 
re-use of DNA coding for different purposes in different 
neurons, or for different computational processes in the 
same neuron.   
o Given  that there are 3.2 Gbp (base pairs) of amino 

acids in the human DNA – for any "program" of 
length x bp, what is the probability of finding the 
code on an individual's genome (assuming that 
there is some way of accessing all code on the 
genome).  Clearly this relates to the length of x, 
given that the probability is 1.0 for one "legitimate" 
bp, and pretty well zero for x = length of the 
individual's entire genome. 

o For code of "moderate length" (say 100,000 bps), 
there is probably a reasonable chance of finding 
code very close to that being sought, but that may 
have a few errors.  So could "errors" result simply 
because of the convenience of using an 
approximate sequence of code, rather than from any 
change in the code or its expression? 

o DNA code overloading provides for a way of "re-
interpreting DNA" for a completely different 
application. 

 
F.  Non-linear dynamical systems modeling and control 
 
This author feels that RNNs, and especially those for control 
and Approximate Dynamic Programming, are a particularly 
important class of ANNs for which real advantages of DNA-
RNNs must eventually be shown.  Merely using DNA-
ANNs as a pre-specification for ANNs is fine, but it doesn't 
give much more than simply what has already happened – 
many researchers over time creating highly specific and 
effective ANNs through a variety of approaches, and that 
activity will certainly continue.  But the power of RNNs 
may be currently limited by the difficulties with training, 
evolving and applying them, and if DNA-RNNs, together 
with many other approaches to this challenge, could make 
substantive contributions in this area,  then perhaps not only 
will it help with the implementation of current RNNs, but it 
may also contribute to the development of much more 
powerful RNNs.   
• Dynamic transitions and performance in non-stationary 

environments –  Given that RNNs and their ensembles 
are characterised by recurrent feedback, how can one 
rapidly evolve systems that are robust with respect to 
non-stationary environments where changes may 
cascade in an unstable fashion through the RNN?  
DNA-RNN modules offer an opportunity to implement 

"self-muting" or "self-stabilizing" mechanisms to reduce 
these problems, or conversely, to promote instability 
when that is required.   Examples of issues in this area 
include: 
o Dynamic transitions during learning/evolution and 

control actions -  Current RNNs already learn how 
to do this quite well (as previously cited Puskorius 
and Feldkamp [68],[69], Wan and van der Merwe 
[70]) , plus Kozma and Meyers [82]).  Naturally, it 
would be preferable that cycling through DNA-
RNN modules would be possible in real time.  

o Searching problem/solution state space – It may be 
desirable to "destabilize" ANNs to cycle through 
possible approaches to solving problems.  An 
example might be chaotic searches through weight-
space as a means of "parameter adjustement", or 
cycling through many modules of a very diverse set 
of DNA-RNNs, wherein each of these ensemble-
architectures is effective for different classes of 
problems.  And if there isn't an easy solution on 
hand, then building new "pre-configured ensemble-
architectures" should be a capability of DNA-
RNNs.  This provides a "stategic" capability for 
DNA-RNNs, in that completely new approaches/ 
techniques/ concepts would arise, as might be 
appropriate for Approximate Dynamic 
Programming (ADP).  Evolutionary theory, particle 
swarms, and chaos theory are examples of 
techniques for implementing searches that are at 
least partially randomized, and these can be used in 
combination with each other or in conjuction with 
gradient-based methods like BPTT. 

o Variable object inputs/ problem types - as with 
functional overloading, it would be a useful 
capability  if DNA-ANNs were designed to be able 
to use a different number of inputs, a variety of 
input "types" and missing data.  Actually, that 
capability may be essential in many real-world 
situations, and its the sort of thing that is difficult to 
do in a general sense starting from a "blank slate".    

• Instability-breaking – Is it possible to "break through" the 
Lyapunov and Slotine [83] criteria for stability 
constraints simply because the "behavior" of a DNA-
RNN isn't "fixed?  Can DNA-RNNs "quench" unstable 
control responses to provide stable short-term dynamics 
that enhance learning speeds and response times? 
(Obviously, switching control strategies is an option). 

• Ultimately, to use software programming analogies, 
perhaps what we are looking for are "strategies, design 
patterns, evolutionary principles, system engineering 
principles" to copy, create, and evolve DNA-RNN 
modules, and that these strategies would be provided as 
part of the "DNA code".  What are the principles and 
means of more effectively evolving infrastructure and 
processes for meta-or-abstract level data / functions/ and 
processes? 
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V. CONCLUSION 
 
The chief potential advantage of DNA-ANNs may be the 
ease and rapidity of evolving and training robust modules 
(genetically pre-specified core of  DNA-ANN ensembles, 
and ensembles of ensembles, with a capability for further 
learning and evolution) for very diverse and non-stationary 
environments.  There may be an especially important role 
for DNA-RNNs in controls and Approximate Dynamic 
Programming.  However, many of these capabilities could 
easily be part of an RNN design package for an "RNN 
ensemble design engineer", so it's not clear if the 
incorporation  of "DNA" into ANNs will really add much 
beyond the "hand-crafted evolution" that has always 
occurred with human scientific and engineering endeavors.  
 
Clearly, approaches to specifying DNA-ANN modules are 
the  second priority, drawing from a rich population of 
existing ANNs (general and highly specialized), and 
creating/ evolving new compact modules and means for their 
integration.  To be really useful, means are required of 
evolving large-scale DNA-ANN modules over a very large 
and diverse population of benchmark problems.   
 
There is also a critical need to better understand the meaning 
of, and to find appropriate tools for, evolving and training 
modules at higher and higher levels of abstraction (meta-
levels) – one can't help thinking that at some point this 
transitions into the symbolics of Artificial Intelligence (AI).   
 
Finally,  the overall vision of this paper is on the retention of 
a vast set of DNA-ANN tools and methods because reliable 
and robust approaches to highly varied problems will likely 
require a rich environment of evolved, proven tools, very 
much as implied by Minsky's quote in Section  II.A.2.   The 
issue becomes not one of finding a "grand unified field 
theory" of problem solving at this very early stage of the 
development of ANNs, but to evolve effective ways of 
coordinating a variety of these DNA-ANN methodologies to 
work together at different levels of abstraction. 
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