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 Today’s session will be recorded.

 An archive of today’s talk will be available at: www.SERCuarc.org

 Use the Q&A box to queue questions, reserving the chat box for comments, and 

questions will be answered during the last 5-10 minutes of the session.

 If you are connected via the dial-in information only, please email questions or 

comments to Ms. Mimi Marcus at mmarcus@stevens.edu. 

 Any issues? Use the chat feature for any technical difficulties or other comments, or 

email Ms. Mimi Marcus at mmarcus@stevens.edu.

WELCOME
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Dr. Paul S. Rosenbloom, Institute for Creative Technologies, University of Southern 

California
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 Intelligence

 “… a very general mental capability that, among other things, 

involves the ability to reason, plan, solve problems, think abstractly, 

comprehend complex ideas, learn quickly and learn from 

experience.” (Editorial in Intelligence with 52 signatories)

 General intelligence

 What is common across cognitive tasks

 Artificial Intelligence

 “… the scientific understanding of the mechanisms underlying 

thought and intelligent behavior and their embodiment in machines.” 
(AAAI)

 Artificial general intelligence

 The ability of a machine to perform any (human) cognitive task

Preliminary Definitions
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 Model of the fixed structure of a/the mind

 Memory, reasoning, learning, interaction, ...

 Integration across these capabilities

 Supports knowledge and skills above the architecture

Cognitive Architecture

Examples are from Soar, an effort I co-led for 15 years

UM

USC/ICT – SASOCMU

USC/ISI & UM – IFOR
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Overall Desiderata for the Sigma (𝚺) Architecture

 A new breed of cognitive architecture that is
 Grand unified

 Cognitive + key non-cognitive (perceptuomotor, affective, attentive, …)

 Generically cognitive
 Spanning both natural and artificial cognition

 Functionally elegant

 Broadly capable yet simple and theoretically elegant

 “cognitive Newton’s laws”

 Sufficiently efficient

 Fast enough for anticipated applications

 For virtual humans & intelligent agents/robots that can
 Think – Broadly, deeply and robustly cognitive

 Behave – Interactive with their physical and social worlds

 Learn – Adaptive given their interactions and experience

Hybrid: Discrete + Continuous

Mixed: Symbolic + Probabilistic
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Soar 9 (UM)

Modular versus Functionally Elegant
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Goal: Advancing elegance, depth and 

breadth of both science and systems
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Approach: Graphical Architecture Hypothesis

Soar 9

Cognitive

Architectures
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f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)

Graphical

Models

+

Key to success is blending what has been learned from over three decades 

of independent work in cognitive architectures and graphical models
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 Efficient computation over multivariate functions by leveraging forms of 
independence to decompose them into products of simpler subfunctions
 Bayesian/Markov networks, Markov/conditional random fields, factor graphs

 Solve typically via some form of message passing or sampling

 State of the art performance across symbols, probabilities and signals 
from uniform representation and reasoning algorithm
 (Loopy) belief propagation, forward-backward algorithm, Kalman filters, Viterbi 

algorithm, FFT, turbo decoding, arc-consistency, production match, …

 Can support mixed and hybrid processing

 Several neural network models map directly onto them

Graphical Models
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p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x)
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f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z) Σ
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 Bayesian network

 Directed graph

 Only variable nodes

 A distribution at each node n

 p(n | parentsn)

 Decompose probabilities

 Factor graph

 Undirected graph

 Variable and factor nodes

 A function at each factor node n

 fn(vsn)

 Decompose arbitrary functions

Bayesian Network vs. Factor Graph
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p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x)
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f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)
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 Compute variable marginals (sum/integral-product) or mode of entire 
graph (max-product)

 Pass messages on links and process at nodes

 Messages are distributions over link variables (starting w/ evidence)

 At variable nodes messages are combined via pointwise product

 At factor nodes do products, and summarize out unneeded variables:

12
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Computer System

Computer

Architecture

Microcode

Architecture

Programs & 

Services

Hardware

Graph ModificationGraph Solution
Graphical Architecture:

Graphical models

Piecewise linear functions

Gradient-descent learning

Cognitive Architecture:
Predicates

Conditionals

Nested tri-level control

𝚺 Cognitive System

Cognitive

Architecture

Graphical

Architecture

Knowledge & Skills

Lisp

Memory Access, 

Perception & Reasoning
Input

Decisions, Learning, Affect 

& Attention
Output

Σ
Elaboration Adaptation

The Structure of Sigma
Conjoining the Two Halves of the Hypothesis



13

 Predicates define relations among typed elements
 Both symbolic and numeric (discrete and continuous)

 Conditionals yield patterns over predicates
 Deep blend of rule and probabilistic-graph behavior

 (Soar-like) Nested Tri-Level Control
 A (parallel) reactive layer

 Single graph/cognitive cycle, which acts as the inner loop for

 A (serial/iterative) deliberative layer

 Repeated operator/action selection & application, which acts as 
the inner loop for

 A (recursive) reflective layer

 Impasse-driven meta-level processing

 Maps onto bi-/tri-level models in psychology and robotics

 But unique (with Soar) in functional elegance of nesting

Sigma’s Cognitive Architecture

CONDITIONAL Object-Location-Map

Conditions: Object(value:o)

Condacts: Location(x:x)

Function(x,o): .25

Board(x[0-3], y[0-3], tile[0:9])

Tie

No-Change
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 Graphical models: Factor graphs & summary product algorithm

 Piecewise linear functions and messages

 Continuous, discrete & symbolic

 Gradient-descent learning of functions locally at factor nodes

Sigma’s Graphical Architecture
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Example: Semantic Memory (SM) Graph

Concept (S)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B)

T

Dog=1

B: Boolean

S: Symbolic

D: Discrete

C: Continuous

Function

Perception
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A subset of factor nodes 

(and no variable nodes)

Given cues, retrieve/predict object category and missing attributes
E.g., Given Alive=T & Legs=4 Retrieve Category=Dog, Color=Brown, Mobile=T, Weight=50

Naïve Bayes classifier

Category

Alive Legs Mobile Weight
Colo

r

Walker=1, 

Table=.9,

Dog=.87
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1.3 2.1 2.95 40 2.4

(a) Continuous (approximation)

1 2 3 40

(b) Discrete

1 2 3 40 walker table dog human

1

(d) Symbolic

Piecewise Linear Functions
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Learning by Local Incremental Gradient Descent

Concept (S)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B)

T Gradient defined by feedback to function node

Normalize (and subtract out average)

Multiply by learning rate

Add to function, smooth and normalize

Similar to backpropagation

in NNs, but don’t need a 

separate backprop phase

http://www.mathworks.com/matlabcentral/fx_files/

27631/1/fff.png

Local, incremental search 

for optimal weights
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 Memory
 Procedural (rule) [ICCM 10]

 Declarative (semantic/episodic) [ICCM 10, CogSci 14]

 Constraint [ICCM 10]

 Distributed vectors [AGI 14a]

 Perceptual [BICA 14a, AGI 15]

 Neural network [AGI 16]

 Problem solving
 Preference based decisions [AGI 11]

 Impasse-driven reflection [AGI 13]

 Decision-theoretic (POMDP) [BICA 11b]

 Theory of Mind [AGI 13, AGI 14b]

 Learning [ICCM 13]

 Concept (supervised/unsupervised)

 Episodic [CogSci 14]

 Reinforcement [AGI 12a, AGI 14b]

 Action/transition models [AGI 12a]

 Models of other agents [AGI 14b]

 Perceptual (including maps in SLAM)

 Neural network

 Efficiency [ICCM 12, BICA 14b]

Overall Progress on Sigma [JAGI 16]

 Mental imagery [BICA 11a, AGI 12b]

 1-3D continuous imagery buffer

 Object transformation

 Feature & relationship detection

 Perception
 Object recognition (CRFs) [BICA 11b]

 Speech recognition (HMMs) [BICA 14a, BICA 16]

 Localization [BICA 11b]

 Natural language
 Word sense disambiguation [ICCM 13]

 Part of speech tagging [ICCM 13]

 Sentence identification [WS 15]

 Dialogue [WS 15]

 Affect [AGI 15]

 Appraisal

 Attention

 Integration
 CRF+Localization+POMDP [BICA 11b]

 Rules+SLAM+RL+ToM+VH [IVA 15, WS 15]

 SLAM+Appraisal+Attention+VH

 SentenceID+Dialogue [WS 15, ICAVCD 16]

Rosenbloom, P. S., Demski, A. & Ustun, V. (2016).  The Sigma cognitive architecture and system: 

Towards functionally elegant grand unification. Journal of Artificial General Intelligence, 7, 1-103.

Kurzweil Awards at AGI 2011 & 2012
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Example: Supervised Naïve Bayes 

Probabilistic Classifier Learning
Concept (S)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B)

Learn prior distribution on Concept: P(C)

Learn conditional distributions on features given Concept: P(f | C)

Naïve Bayes classifier

Category

Alive Legs Mobile Weight
Colo

r

P(C,A,L,Col,M,W) = 

P(C)P(A|C)P(L|C) …
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Example: Learning Maps in SLAM

CONDITIONAL Object-Location-Map

Conditions: Object(value:o)

Condacts: Location(x:x)

Function(x,o): .25

wall door1 door2 wall

 Map: P(Objects | Locations)
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G

0 0 0 0 00 09

Learn values of actions for states by 

backwards propagation of rewards

received during exploration:

Q(st, at) ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

Example: Reinforcement Learning
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0 1 2 3 4 5 6 7
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Example: Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards

received during exploration:

Q(st, at) ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 
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Example: Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards

received during exploration:

Q(st, at) ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 
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0 1 2 3 4 5 6 7
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Example: Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards

received during exploration:

Q(st, at) ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 
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0 1 2 3 4 5 6 7

0 0 0 9

Example: Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards

received during exploration:

Q(st, at) ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 
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0 1 2 3 4 5 6 7

0 9.855.81225

Example: Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards

received during exploration:

Q(st, at) ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 
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 Knowledge:

 Initial uniform predictors for:
 Current reward (R)

 Projected future reward (P)

 Action preferences (Q)

 Regression (backup) knowledge

 Action models (predict next states)

 Supervised learning of:

 Current reward (R)

 Projected future reward (P)

 Action preferences (Q)

 Add diachronic cycles to also 

learn action models

Deconstructing RL in Sigma

0 1 2 3 4 5 6 7

Reward

Projected
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Left

Right
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5

10

0 1 2 3 4 5 6 7

0

5

10

0 1 2 3 4 5 6 7

Graphs are of expected values, but 

learning is actually of full distributions

0 1 2 3 4 5 6 7

G
0 0 0 0 00 09
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 Implementing NNs in Sigma is quite simple w/o learning

 Each link simply becomes a rule with the weight as its function

 Extended GA’s existing non-linear processing for sigmoid

 Can compress units at each layer (yielding speedups)

 Yields one rule per layer, with weight matrix as function

 Implement backpropagation via “backward” rules

 Use correctness to measure the error

Example: Neural Network Learning in Sigma

CONDITIONAL Layer-0
Conditions: (Level-0 arg:v0)
Actions: (Level-1 s arg:v1)
Function: ws-0-1

InputInput
Learn

Learn

Target

Input

Correctnes

s
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 Motivated by combination of:

 Theoretical desiderata of grand unification and generic cognition

 Practical goal of building useful virtual humans

 Hypothesis that emotion is critical for surviving and thriving in 

complex physical and social environments

 Part of the wisdom of evolution

 Largely non-voluntary and immutable

 Likely a significant architectural component

 But also affected by knowledge and skills

Aside: Emotions in Sigma
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Appraisal-Driven Emotional Processing

Emotional

State

Architecture

Expectedness

Knowledge & Skills

Curiosity

Attention

Learning (BP)

Desirability

Familiarity

Correctness
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 Implementing NNs in Sigma is quite simple w/o learning

 Each link simply becomes a rule with the weight as its function

 Extended GA’s existing non-linear processing for sigmoid

 Can compress units at each layer, yielding speedups as in SM

 Yields one rule per layer, with weight matrix as function

 Implement backpropagation via “backward” rules

 Use correctness to measure the error

 Tie corresponding functions/messages together

 Reuse forward messages as needed going backward

 Can replace standard GML in RL to yield neural RL

 Provides an architectural embedding for neural networks
 Enables unification within a single graph of neural networks, 

probabilistic graphical models, symbolic rules, etc.

 May provide guidance for how to combine deep learning with other 
necessary components, such as memories, search and attention

Example: Neural Network Learning in Sigma

CONDITIONAL Layer-0
Conditions: (Level-0 arg:v0)
Actions: (Level-1 s arg:v1)
Function: ws-0-1

Learn

Learn

Target

Input

Correctnes

s
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Example: Interactive, Adaptive Virtual Humans

 Control behavior of SmartBody VH(s) in a retail store scenario

 A civilian instance of a physical security system

 Rule-based, probabilistic and social reasoning (ToM)

 Simultaneous localization and mapping (SLAM)

 Multiagent reinforcement learning (RL)
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SLAM

Before Map Learned

After Map Learned

RL

Before Model Learned

After Model Learned
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Example: Appraisal Based Exploration

Searching for an item only leveraging architectural appraisal variables

 Appraisal is the first stage of the full emotional arc

 Attention (surprise & desirability) and Curiosity (surprise & familiarity)
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 Immersive Naval Officer Training System (INOTS)

 Targets leadership and basic counseling for junior Navy leaders

 Trained over 12,000 sailors since 2012

 INOTS “mind” based on two tools

 Statistical query-answering tool (NPCEditor)

 Transition diagram for dialogue management

 Both aspects reimplemented and integrated together in Sigma

 Query answering via (naïve Bayes) semantic memory (reactive)

 Dialogue management by sequences of operators (deliberative)

 Being extended to include speech via graphical models in Sigma

Example: Conversational Virtual Human Mind
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 Can general intelligence be provided in this manner?

 Can it all be sufficiently efficient for real time behavior?

 What are the functional gains?

 Can the human mind (and brain) be modeled?

Fundamental Questions about Sigma
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 Sigma embodies a new approach to cognitive architecture
 Based on a broadly uniform, (largely) mathematically sound, and 

(potentially) efficient graphical architecture

 For next generation virtual humans and intelligent agents/robots

 But does require some extensions to graphical models

 … and still has a ways to go for full general intelligence

Conclusion

The National Artificial Intelligence Research and Development Strategic Plan (Basic R&D segment of Fig. 4) 
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3. The Deep Learning Revolution

5. Areas of Rapid Progress other than Deep Learning

5.1. Reinforcement Learning

5.2. Graphical Models

5.3. Generative Models and Probabilistic Programming 

Languages 

5.4. Hybrid Architectures

Selected Recommendations from report: 

DoD should both track (via a knowledgeable cadre) and invest in 

(via a 6.1 research portfolio) the most dynamic and rapidly 

advancing areas of AI, including, but by no means limited to DL. 

DoD’s portfolio in AGI should be modest and recognize that it is 

not currently a rapidly advancing area of AI. …

JASON (1/17): Perspectives on Research in Artificial 

Intelligence and Artificial General Intelligence Relevant to DoD

But can AGI based on these five concepts advance more rapidly?

Sigma is an approach 

to combining all five!
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What Are Cyber-Social Learning Systems And How Will We Form Them?

Dr. Kevin Sullivan, University of Virginia

June 7, 2017 | 1:00 pm ET

UPCOMING TOPICS:

Dr. Barry Horowitz, University of Virginia

Munster Professor of Systems and Information Engineering and Chair

August 2, 2017 | 1:00 pm ET

Thank you for joining us! 

Please check back on the SERC website for today’s recording and future SERC Talks information!
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